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EFFICIENT PARAMETER ESTIMATION FOR
SELF-SIMILAR PROCESSES

BY RAINER DAHLHAUS

Universitdit Heidelberg

Asymptotic normality of the maximum likelihood estimator for the
parameters of a long range dependent Gaussian process is proved. Further-
more, the limit of the Fisher information matrix is derived for such processes
which implies efficiency of the estimator and of an approximate maximum
likelihood estimator studied by Fox and Taqqu. The results are derived by
using asymptotic properties of Toeplitz matrices and an equicontinuity
property of quadratic forms.

1. Introduction. Let X, ¢t <€ Z, be a stationary Gaussian sequence with
mean p and spectral density fy(x), x € Il :== (—m, 7), where p and § € ©® C R”?
are unknown parameters which have to be estimated. We are interested in
strongly dependent sequences X,, that is, in sequences with spectral density
fo(x) ~ |x| "*®Ly(x) as x — 0, where 0 < a(f) < 1 and Ly(x) varies slowly at 0.

Processes of this type occur in many applied sciences, for example in eco-
nomics and geophysics [cf. Granger and Joyeux (1980) and Mandelbrot and
Wallis (1969)]. Examples of parameteric models of the above type are fractional
Gaussian noise, obtained as the increments of self-similar processes [Mandelbrot
and Van Ness (1968)] and fractional autoregressive moving average processes
[Granger and Joyeux (1980)]. Fox and Taqqu (1986) have considered an approxi-
mate maximum likelihood procedure to estimate the parameter 8. They adapted
the approach of Whittle (1953), introduced for weakly dependent random vari-
ables, and minimized the function

23(8) = % f_”w{log folx) + %} dx

with respect to § € ©, where
2

N _ 1 N
,  Xy= N glxj.

Y ei(X; - X)

IN(x) = 277_N

We denote the minimizing value by 6. "

Fox and Taqqu (1986), Theorem 2 have proved that éN is asymptotically
normal with rate of convergence N~'/2 In the case < a(f) < 1 this result is
quite surprising, since the basic tool in the proof is a central limit theorem for
the quadratic form [7 {Iy(x) — EIy(x)}¢(x)dx with ¢(x) = /98, f(x)™!
[proved by Fox and Taqqu (1987), Theorem 4]. We note that the CLT for this
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1750 R. DAHLHAUS

quadratic form does not hold in general [it is, e.g., wrong if ¢(x) = x[o A1(x); cf.
Ibragimov (1963), Section 6]. It is the special form of ¢(x) that makes the above
CLT and therefore also the CLT for fy valid.

In this paper we prove that 0N is not only asymptotically normal but also
asymptotically efficient in the sense of Fisher. Furthermore we derive the same
for the exact maximum likelihood estimator. In Section 2 we note that certain
restrictions of Fox and Taqqu concerning the parametrization can easily be
dropped by using essentially the same proof. Section 3 contains consistency and
asymptotic normality of the exact maximum likelihood estimator and in Section
4 we derive the efficiency. The proof technique is based on results on the
asymptotic behavior of Toeplitz matrices. These results are proved in Section 5.
Section 6 contains an equicontinuity property of parametric quadratic forms
which is needed in Section 3.

The results are proved under the following assumptions.

(A0) X,, t € Z, is a stationary Gaussian sequence with mean p and spectral
density fy(x), # € ® C RP, where p and 6 are unknown parameters. Let p, and
0, be the true parameters of the process where 6, is in the interior of ® which is
assumed to be compact. If § # 8’ the set {x|fy(x) = fy(x)} is supposed to have
positive Lebesgue measure.

(A1) g(8) = [ log fo(x)dx can be differentiated twice under the integral
sign.

There exists a: ® — (0,1) such that for each § > 0:

(A2) f,(x) is continuous at all (x, 8), x #+ 0, f; '(x) is continuous at all (x, §)
and

fo(x) = O(jx| =« ~?%).

(A3) 3/36, fy (x), 82/80j 30, fy (x) and 83/80j 30, 30, f; (x) are continu-
ous at all («x, 6):

fo x) = O(jx|*®=%),  1<j<p,
2
36, 36,
83

———f; '(x) = O(|x |““’) %), 1<j,k<p,
fri(x) = O(x[*®~%),  1<j,k,I<p.

(A4) d/dxf,(x) is continuous at all (x, ), x # 0, and

d
() = (1 17%).
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(A5) 92/9x 0, fg (x) is continuous at all (x, §), x # 0, and
2

9x 99,

fy '(x) = O(|x|*®~17%), 1<j<p.

(A6) 9%/0% d8; f; '(x) is continuous at all (x, 8), x # 0, and
3

J .
Figg. 00 (%) = O("727%),  1<j<p.
J

(A7) 9f/(9x) fg "(x) and 32/(3x)%fs '(x) are continuous at all (x, ), x # 0,
and

a k
-1 _ af)—k—8
(c?x) fo (x) O(|x| )
for £ =0,1,2.

(A8) The above constants can be chosen independently of 6 (not of &).

(A9) a is assumed to be continuous. Furthermore, there exists a constant C
with
Ifo(x) — fo(x)] < C|6 — 6'|fp(x)
uniformly for all x and all 4,60’ with a(6) < a(8’) where |- | denotes the
Euclidean norm.

(A0)-(A6) [apart from the third order differentiability in (A3)] are due to Fox
and Taqqu (1986). The third order differentiability in (A3) is used to obtain the
equicontinuity of ZQ in Theorem 6.1 (and therefore to obtain asymptotic
normality of the exact maximum likelihood estimate). (A7) is needed to derive
the limit of the Fisher information matrix. (A8) and (A9) are used to establish
the asymptotic properties of the exact maximum likelihood estimate, All condi-
tions are fulfilled for fractional Gaussian noise and fractional ARMA-processes.

The assumption of a compact parameter space is somewhat unpleasant.
However, we do not assume that the estimates are lying in the interior of ©.
They may also lie on its boundary.

For the derivation of the asymptotic properties of the exact maximum
likelihood estimator a slightly different set of conditions would be more ade-
quate. One needs mainly conditions on f, and its derivations instead of condi-
tions on f, . However, we do not want to complicate the presentation by a
second set of conditions. For example, the property |9/98; fo(x)| = O(|x| —a8)-3y
x # 0, can easily be derived from (A2) and (A3).

In our proofs K always denotes a generic constant which may vary from step
to step.

2. Asymptotic normality of quasi maximum likelihood estimates. In
this section we state a CLT for the estimate 8,,. Fox and Taqqu (1986), Theorem
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2 considered the special parametrization fy(x) = o%g,(x) [there denoted by
0?f(x,0)] and assumed " log g,(x) dx = 0, which is equivalent to the fact that
X,/0 has a one-step prediction standard deviation independent of #. This
assumption on the parametrization is not crucial (it only prescribes a certain
choice of the parameter space). However, Fox and Taqqu prove their CLT only
for the estimate 6, of 8 and not for the estimate 6.

In the following theorem this restriction is dropped by considering an arbi-
trary spectral density f,(x) that fulfills the assumptions (A0)—(A6). This includes
the special model o%g,(x) since now o2 may be, e.g., the first component of .

Our proof widely uses the results of Fox and Taqqu. We mainly give a new
proof for consistency. That the parameter restriction of Fox and Taqqu can be
removed was also noted by Beran (1986), who gave a different proof. Let

d a2
VE8s = 30.5¢ 29, 80kg0

J

and vig, = (

Jyk=1,..., p

THEOREM 2.1. Suppose conditions (A0)—(A6) hold. Then YN (éN — 8,) tends
in distribution to a normal random vector with mean 0 and covariance matrix
T'(6,) " where

1 /=
[(8) = o [ (v 1og fo(x))(v log fx)) .

Proor. Let

Z(0) = ym f {logfo(x)+ fo"éx))}dx.

Lemma 1 of Fox and Taqqu (1986) implies
(1) sup| £y/(6) — £(8) > 0
)

with probability 1. Since #(#) is minimized by 6, we have
ZMby) <2¥(8,) and 2(8,) <2(by),
which implies £( éN) - Z(6,) a.s. and therefore also HAN — 6, with probability 1.
Furthermore, we obtain by the mean value theorem
Vysz(éN)i - vey(6,); = {V2$13V(01(\;))(4N - 00)},-,

with [6§ — 65| < |8y — bpl, i=1,..., p. If fy lies in the interior of ©, we have
V.Sfly( 0N) =0.If 0N lies on the bounda.ry of ©, then the assumption that 6, is
in the interior implies |0N — @) =6 for some § > 0, ie, we obtaln

P(/N|AZL¥(6y)] =€) < P(|fy — 6| = 8) > 0 for all ¢> 0. Thus, the result
follows if we prove

(i) Vzglsv(az(vi)) - v2&\(6,) »p O,
(ii) v22%(6,) = p T(6,),

(iii) VN v2¥(8,) 5 #(0,T(6,)).
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(i) and (ii) follow from the smoothness conditions (A0)-(A6), Lemma 1 of Fox
and Taqqu (1986) and the consistency of 0N The proof of (iii) is contained in the
proof of Theorem 2 of Fox and Taqqu (1986). O

REMARK 2.2. The assumption of a compact parameter space is only needed
for proving ,?((fN) - 2£(6,) as. (if GAN — 0, as. is known, one may derive
asymptotic normality in the same way as above by considering ®’ = {§ € O:
|0 — 6,| < &8} with some fixed § > 0 instead of ©). In the case considered by Fox
and Taqqu (1986), 8 = (o2, 7) with f,(x) = o%g(x) where [ _log g.(x)dx = 0,
02> 0 and 7€ E, E compact, it is possible to derive .£(§) - £(6,) as. by
modifying the above arguments. Alternatively, one may also use Theorem 1 of
Fox and Taqqu (1986), where 6, — 0, a.s. has already been established.

It is normally not possible to solve the estimation equations v.#¥(0) =
exactly (they are usually nonlinear). Instead one would determine the estlmate
e.g., by a Newton iteration where the integral in £¥(9) is replaced by a sum
over the Fourier frequencies, i.e., one would minimize

1 N-1 (x)
gN(o)_ 2N lngo(x)+ f( )

with x, = 27s/N. The resultlng estimate 6, has the same asymptotic
behavior as 6y, which may be proved analogously to above [note that

VN (v2(0,) = vZi(8,)} —p 0]
In most cases it is computationally easier to minimize

NlI(x)

—logoz(()) + — 2N = h(w)

where
1
0%(0) = exp[ﬁfnlog@wfo()\)} dA

is the one-step prediction error variance (especially when o? is itself one of the
parameters 6;). This leads also to an equivalent estimate.

3. Asymptotic normality of exact maximum likelihood estimates. In
this section we consider exact maximum likelihood estimates #, obtained by
minimizing

1
— (Xy — find)Ty(fy) "Xy — finl)

——logdet T, + —
ogae N(fo) aN

°?N(a’ ﬂN) = 9N
with respect to 0, where
Tu(1) = { [ fl)ex(ia(r - ) )

is the Toeplitz matrix of f4,1 = (1,...,1) and fiy is a consistent estimate of p,
(e.g., the arithmetic mean).

.....
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To derive consistency and asymptotic normality we use several asymptotic
results for Toeplitz matrices derived in Sections 5 and 6. We define

AP = Ty( f())_lTN(Vfa)TN( fo)_lTN(Vfa)TN( fo)_l,
AP = Ty( fo)_lTN(sza)TN( fa) ™

and
AP = Ty( f())_lTN(Vfo)TN( fo)_l-

Suppose A is an n X n matrix. Let

(x*A*Ax )1/2

x*x

lAll = sup

xeCc”

be the spectral norm of A (where A* denotes the conjugate transpose of A) and
|Al = [tr(44%)]"

be the Euclidean norm of A. We use the following well known relations:

ltr(AB)| <|A| -|B|, |AB|<|4|-|B],
|AB| <|A|-IBll,  |IAB| < | All - IBIl,
A + Bl <Al +IBl, Al =14, Al <|A] < V|4,
x*Ax < x*x| A for A >0

[cf. Davies (1973), Appendix II and Graybill (1983), Section 5.6]. Note that as an
example Ty (Vf,) is a vector of matrices. Thus,
2) 1/2

p

)

=1

ITn(Vfg)ll|  means

T ad
We start by proving consistency of 5,\,. It would be nice to establish this by
proceeding as in Theorem 2.1. However, we were not able to derive (1) with %),

instead of #y. Therefore, we have adapted the ideas of Walker (1964), Section 2
to our situation.

THEOREM 3.1. Suppose (A0), (A2), (A3) and (A7)-(A9) hold and [iy is a
consistent estimate of p,. Then

by —p b,.

ProoF. Since f, is uniformly bounded from below, we obtain || Ty( f,) || < K
and as a consequence

S‘;P|$N(0’ﬂN) —$N(0,u0)| —p 0.

We now prove that for all §, € © there exists a constant ¢(6,) > 0 with
I\}iinwEoo{gN(ov o) — Ln(65, 1)} = c(6)).
We obtain with T, = Ty ( f,),

1 1
Eo{ Zn (01, o) = Zn(80, o)} = Grlogdet{ T, T, '} + ——tr{T, 1" — I}.
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Let Aypy,...,Ayy be the eigenvalues of T, T, '. By a Taylor expansion of
log det(I + tA) around ¢ = 0 we obtain that there exists a 7 € [0,1] such that
the first summand is equal to

N
@) >

J=1

1+'r()\jN—l) '

Consider the case a(6,) > a(f,). (A9) implies fo(%) < Kfg(x) and therefore
Ty, < KT;. Since Ty T, ' has the same eigenvalues as T,\/*T; 'T,\/%, we therefore
obtain that there exists a constant C > 1 with 0 < A ;y < C for all j and N. This
implies that (2) is larger than

1 N 1
c? W,-;(Aﬂv - 1)2 =C” mtr{(TaoToIl - I)z}’

which tends to

fol(x)

by Theorem 5.1. If a(8,) < a(6,), we obtain C < A ;y for all j and N with some
C € (0,1), which implies that (2) is larger than

Cc? %/ﬂ( f®) 1) dx > c(6,)

1 N 1 x 2
C2m,§1(1 - )\}1\})2 N C2§fn( Z;Exi - 1) dx > c(6,).
Since
1\}if.nw V;Zr {Zn(01,10) — Ln(6h,10)} =0,
we obtain
(3) I\}Enw By (Ln(8y, i) — Zn(6y, in) < c(6,)/2) = 0.

Furthermore, with a mean value 6,

1
Ly (0, 10) — Ln(01, 1) = (6, - 6,) - ﬁtr{Ta_lTN(Vfa)}

1
+ o v~ el (T3 = T ) (X — wol).-

Let d/00; f,=g"— g~ with g*, g7> 0. With Theorem 12.2.3(3) of Graybill
(1983), we obtain

d
tr{To-lTN(ﬁfa
J

Since Ty ! < KI,, uniformly in 6, we obtain from (A2), (A3) and (A8) for all
8§ >0,

(4)

<tr{T; 'Ty(gh)} + tr{T; ' Ty(27) ).

ltr{ Ty Ty (Vfp) | < K tr{Ty(Vfel)} < KNf_ﬂ x| %@ ~38 gy
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which, by using the continuity of a in (A9), is bounded by KN uniformly in N
and all 8 with |§ — 6| <7 for some 5 > 0. Together with Lemma 5.5, the
modulus of (4) therefore is bounded by

1 N
i {1+ 5 2 (%= o]
t=1

for all 6, with |6, — ;] <.
Thus, there exists a § > 0 such that [with Uy(4,) = {6, € ©: |6, — 6| < 8}],

lim By sup 12y(6, fin) — L8y i)l = c(6))/4) = 0.
N=oo N g,e Uy

With (3) we get

Jim B[ it 2y(8, ) ~ Lu(0, ) = e(8)/4) = 1.

Now the collection of sets {Uyq,(6,)6, + 6,} and the set U;(6,) where §, is
arbitrary, together constitute an open covering of @. Since © is compact, this
contains a finite open covering. This implies

L. o R
lim P( int £y(0, ix) 2, L0, iv)

and therefore
lim P(|6y — 6y = 8,) = 0. 0

N- oo

THEOREM 3.2. Suppose (A0), (A2), (A3) and (A7)-(A9) hold and fiy is an
N{=«)}/2_ consistent estimate of p,. Then

VN (8y - 6,) =5 #(0,T(6,)7").
ProOF. Application of the mean value theorem yields
VgN(JN’ IIN),- = VLN (b, fin); = £1V2$N(51(J), ﬁN)ij(gN - 00);-
j=
Since dy —p 6, we obtain, as in the proof of Theorem 2.1,
VN vZy(8y, in) —»p 0.

For the assertion it is obviously sufficient to prove

(i) W(V-?N(ao’ﬁN) — vZn(0y,110)) =p O,
(ii) mvgN(ao’Ho) =4 #(0,0(6,)),
(iii) Sl;plv2$N(0’ﬁN) - v2%y(0, 1) =p O,

(iv) 51\1 —p 0, implies |V2$N(§N’F‘O) - v%%y(0y, o)l =5 O,
(v) V2%Z5 (65, o) = p T(6,).
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(i) We have with Ty = Ty(f) and T, 4 = Tn(V fy),
1 1
vZy(0,p) = ﬁtr{To T 4} — N(XN — p1)AP(Xy — p1)

and therefore
\/IV{V.,?N(HO, naN) - VgN(o()’ nu‘O)}
1 1
= W(ﬁN — po)VAP(Xy — pol) — W(ﬁw — o) AL
Lemma 5.4(d) and Jensen’s inequality imply
|1'A§30)1| < KNl—a(00)+8
and
E[VAD(Xy — pl)| < [VAPT, AP1V2 = [V AD1]?
< KN(I_"(0°)+8)/2.

We therefore obtain (i).
(ii) follows with the cumulant method. We have EVN v.%2y(8,, 1,) = 0 and
by using the product theorem for cumulants [Brillinger (1981), Theorem 2.3.2],

1
Ncov{v.S,PN(ao,po) V‘g)zv(ao,ﬂo)} —ﬁtr{Tao T, Tao v, oo}

which tends to I'(6,) by Theorem 5.1. Similarly, we get
Nl/2cum{V$N(009 nu'O)il’ RS v"“?N(a()’ nU‘O)il}

l
- lN—z/z(_l)’l Y tr| T[T (T, Ty fo
2 TR T L '

permutation of
(ll ERRE] ll)

which tends to zero by Theorem 5.1.
(iii) We have
2 1 -1 — 1 1 1 2
V(0. 1) = — 5t { T ' To 6Ty 'To 0} + S t{Ti ' Tn(v %))
1 s Al 1
+ 5 Xy = i) APXy - 1) - o

N Xy — 1) AP(Xy — p1)

and therefore,

2
AN~ kol supll’A“)(XN o)l
+ three further terms.

Sl;p|V2°?N(0» fin) = V2&N(0, 1) <
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Application of the Cauchy-Schwarz inequality and Lemma 5.4 yield for each
>0,

» 1/2
11'A§1)(XN = pol)l < ( ;./:_ |1'A$)1)1jj| Xy — I‘ol),Ag)(XN - F'Ol)kkl)

J 1

N 1/2
- swecswnd $ (5,

t=1
and the first term therefore tends to zero. The other terms are treated similarly.

(iv) We have with Ry(0) = 1/2N) tr{Ty ‘T, Ty 'Ty 4},

vV Zn(0, 1) = ZP(0) — 3ZP(0) + Ry(9),

with Z{((6) and Z{ () as in Section 6. Due to the equicontinuity of Z§’ and
Z® (Theorem 6.1) it is sufficient to prove that Ry(6y) — Rx(8,) —p O.

Let n be given with 0 < < . Choose ¢ > 0 with |a(6) — a(6,)| < 7 for all 8
with |8 — 6, < &. We have

IRy(Oy) = Ry(6)] < 10y - 00|[ (L

1
+ l Ntr{Ta:lTN(V 2f01)T0:1TVv"1}

(5)

|

with a mean value 6, with |6, — 6,| < e. We prove that the term in the square
brackets is uniformly bounded in 8, by a deterministic constant which gives the
result. Let /36, f, = g*— g~ with g%, g7> 0. We have for all § > 0,
Ty(g™* T i
< —_—
n(g") < T, 36, fo,
Let A=T, 1/“’T,\,(g“L)T(,:V2 and B =T, 12T (KA “"("0)‘"‘6)’1‘0: /2, Since
0 < A < B we obtain, with Theorems 9.1.19 and 12.2.3 of Graybill (1983),

) < Ty(KJA| @) =n=8),

1 1 1 1
el 3 - 2 _ 1/2R A1/2 1/2Q A1/2
tr{A%) < —tr{A?B} = —tr{AV2BA2A} < —tr{A/*BA/*B)

1 1
< -ﬁtr{ABz} < ﬁtr{Ba}.

Furthermore, we get, with Theorem 1é.2.14(2) of Graybill (1983), from (A7),
k=0,

T0:1 < TN(KlM—a(oo)+n+3)—1
and the same arguments now give
1 B 3 1 u 1 PN
Ntlf[{T‘r;1 Ty (&%)} ] < Ntr[{TN(Kw @0 +n+8) LT (KIA| o0 -n-2) ) ],

which tends to K™ |A| 73"~ 3 dX\ by Theorem 5.1. All other terms occurring in
(5) can be treated similarly and (iv) therefore is proved.



ESTIMATION FOR SELF-SIMILAR PROCESSES 1759

(v) follows with Theorem 5.1 since E v2%5(0,, r,) — I'(6,) and
var V 2%y (6, po) — 0. O

The condition that i, is N ~*%)}/2consistent is for example fulfilled for the
maximum likelihood estimate of u [Adenstedt (1974)—note that the maximum
likelihood estimate of p is equal to the BLUE-estimate of p], the arithmetic
mean and M-estimates [Beran and Kiinsch (1985)].

Theorem 3.2 was proved by Yajima (1985) for ARMA(O, d, 0)-processes under
the assumption that the mean is known.

4. Efficiency of the estimates. We now prove that the estimates é\N and 0y
are asymptotically efficient in the sense of Fisher [cf. Lehmann (1983), Chapter
6.1]. N~! times the Fisher information matrix Ty(6,) is equal to

NE,,O[{V,Z’N(ﬁo, 20) HVZn (05, 10)}]

= %COV[(XN — pol) Tn( fo) T (V1) T ( fs) "Xy = pol)]

- ot Te(h) TV )Tl 1) ' Tu(91).

Theorem 5.1 implies that I'y(6,) tends to I'(f,). We have obtained the following
result.

THEOREM 4.1. (a) Suppose (A0)—(A7) hold. Then 6y is an efficient estimate
of 8,. ~

(b) Suppose (A0), (A2), (A3) and (A7)-(A9) hold. Then 8y is an efficient
estimate of 0,,.

5. Properties of Toeplitz matrices. In this section we derive some asymp-
totic results on Toeplitz matrices. The following theorem plays an important role
in the proofs of Sections 3 and 4. For classical ARMA-processes it was derived by
Taniguchi (1983), Theorem 1 and in a special situation by Davies (1973),
Theorem 4.4. In our proof we make use of a result of Fox and Taqqu (1987).

THEOREM 5.1. Let peN and a,BER with 0 <a, B <1 and p(B—a) <
3- Suppose f(x) and g(x), j=1,..., p, are symmetric real valued functions,
where all f; are nonnegative and satisfy (A2) and (A7) ( for k = 0,1) (with the
parameter 6 dropped), and all g; are continuous at all x # 0 and satisfy

g,(x) = O(jx|#~°)
for all 8§ > 0. Then

(6) lim ~tr j_li{TN(fj)_lTN(gj)}] Lo {I"] gj(x)}dx‘

Nooo —2a )4\ o fi(x)

Theorem 5.1 is proved at the end of this section. In the proof we approximate
Tn(fo) ! by Tn({47%fs} ~1). This approximation is considered in Lemma 5.2. It
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is the same approximation as for weakly dependent processes [cf. Dzhaparidze
and Yaglom (1983), Section 3]. However, due to the long range dependence, the
used proof methods are different.

LEMMA 5.2. Let 0 < a < 1. Suppose (A2) and (A7) ( for k = 0,1) hold (with
the parameter 0 dropped). Then

(7) |7 - Tu (1) Ty ({47 } )T (£)2] = O(N?),
for each 8 with 0 < § < a/4.

Proor. Let
N
(8) Ay(x) = ; exp(—ixn).

Since [7,An(x — ¥)AN(y — 2)dy = 27AN(x — 2) the square of the left-hand
side of (7) is equal to

N - 2tr[TN( f )TN({4w2f}“)] + tr[(TN( f )TN({4w2f}"))2]

(9) _ (94 f(x) )(f(xz) B )
(27) f<_w,ﬂ4(f<y1) N 1

XAn(x, = y)AN(3 — %) AN (%5 — 3,) AN (22 — x,) dx dy.
Let Lp(x) be the periodic extension (with period 27) of

N, x| < 1/N,
Ly(x) = {1/|x| 7> |x| > 1/N.

Summation by parts gives

(10) |An(x)] < KLy(x).

(A7) implies for each § with 0 < § < a and a constant K € R,
f(x)
f(y)
This may be derived by considering the cases 0 <y <x/2, 0 <x/2 <y <ux,

0<x<y<(3x)/2and 0 < (3x)/2 < y separately. For example in the first case
we have x < 2(x — y) which leads with (A7) to

Iy _ x|1—38

-1 < K————
|x|1—8

(11)

f(x) [x/¥] . .
oy -1 1) 755 = 7| 1) B 1+ 103) - o)
< K|x|—“-5|y|zk‘,|ky|“'1-8 < Klx|" % < K%
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(10) and (11) give as an upper bound for (9):
Kfn4|x1|_1+8|x2|_1+8LN(x1 - y1)38L1v(y1 — x3)Ly(xy — y2)38LN(y2 - x,) dxdy

< KN%In’ N,
which proves the lemma. O

LEMMA 5.3. Let f(x) and g(x) be positive symmetric functions such that
there exist a and 8,0 < a, B < 1, with

f~H(x) = O(jx|%)
and
g(x) = O(jx|~#).
Then

TN (F) ™" T (&) "Il = | Tn(8) T ()72 = O(Nmex((B=eor2.00),
Proor. Since Ty(f) has rank N we obtain
- x*Ty(g)x
1Ty (&) *Tn(f) "2 = sup 75—
| N( ) N( ) | =1 x*TN(f)x
B 1 ) R G
T =1 [T TR, exp( —iyn)® dy
< K sup /7 Y1 7Ph(y) dy
T heay ST vl h(y) dvy’

where 2, = {h(y): h(y) probability density on [—=, 7] with h(y) < N}. If
B < a, the above expression is bounded; if B > a, the sup is attained by
h = Nx(\y<1/@n) So that the above bound is equal to O(N*~%). O

The last part of the above proof is due to H. Dehling who improved a former
version of this lemma [cf. Tagqu (1986)].

As a consequence of Lemma 5.3 we obtain the following results (recall the
definition of A" at the beginning of Section 3).

LeEMMA 54. Suppose (A2), (A3), (A7) and (A8) hold. We then obtain for
each 8 > 0 and i = 1,2, 3 with a constant K independent of 8 and N:

(a) AP | < KN?,

(b) VAPl < KN?,

(c) |x’A{Px| < Kx’xN® forallx € R,
(d) [VAP1| < KN'~@*,

ProorF. We prove the results for i = 1. The results for i = 2 and 3 are
obtained similarly.
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(a) We obtain with T, = Ty( f,),

d d
x'Ty YTy ( YRl ) Ty Vx| < T VP Ty | | = fo || Ty /2
a0; a0,
and therefore with Lemma 5.3 for each § > 0,
d d
Ta_ 1/2TN - fa To_ 172 S Ta_ 1/2TN - fa To_ 1/2 < KNS.
a0, a0,

Since f, is uniformly bounded from below we get ||Ty( f,)"!|| < K and therefore
the result.

(b) follows analogously to (a).

(c) is an immediate consequence of (a).

To prove (d) we note that

d d
1Ty ITN(_30. fo) T, 'Ty ( Er) fo)To_ 1
i /i

d
< VT 1) Ty V°Ty, ( 20, fs ) T '?

d
T0_1/2TN ( ﬁfO)TH_ 1/2 .

J

Since 1'Ty 1 < KN'~*®*? for each 8 > 0 [cf. Adenstedt (1974), Theorem 5.2]
we get the result. O

PROOF OF THEOREM 5.1. Let k < 2p and j,,..., Jr € {1,..., p}. By consid-
ering all combinations ©¥_ s, f;! and Xf_,rg ;, With s;, r; € {0,1} we obtain from
Theorem 1.a of Fox and Taqqu (1987),

k [ & gilx
(12)  lim %tr{I=I]1TN({4W2,-,‘1})TN(gf:)} - %f_,{g é;,j((x)) } o

Since Ty(g;) = Tn(g)) — Tn(g;) with g7, g7 > 0 we now assume without loss
of generality that all g; are nonnegative. We define for j = 1,..., p,

Aj = TN(gj)l/zTN( fj)_lTN(gj+1)1/2
and
, -1
) = TN(gj)l/zTN<{4'”2fj} )TN(gj+1)1/2’

where we set g,,, = g;. With this notation the left-hand side of (6) is equal to
(1/N)tr{T12_,A;}. We obtain

1 p p P 1 k-1 p
—tr{nAj— nBj} |y 2| TI8|(a, - B[ 1T 4,
N =1 j=1 r=1 N =1 J=k+1
(13)
p 1 |k-1 p
<X HBj |A, — Byl l_[ Al
N
k=1 J=1 J=k+1
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(12) implies Il—[f';llBjI = O(N'?) and by using Lemma 5.3 we obtain
|A)|| < O(N™axtB-a+28,0})  for all jand all § > 0.
Furthermore, we get with Lemmas 5.2 and 5.3,

|4k = Bul = 1Tw(g) T (1) |1 = Tu(£)" T ({47} )1l 1))
XITw(£) ™ T (g2 1)l

< O(Nﬂ—a+38)

for all £ and all & > 0. Thus, (13) tends to zero and with (12) we obtain the
result. O

The following result is needed in the proof of Theorem 3.1.

LeEMMA 5.5. Suppose (A2), (A3) and (A7)-(A9) hold. Then there exists a
constant K independent of 8,, 8,, N and y with

(T 1) ™" = Tl ) "} | < Kity - 611y,

Proor. Without loss of generality we assume a(6,) < a(6,). We have with
Ty = Tn(fo),
x'Ty 'x

’

1|y'y

|y/(T0;1 — Tojl)yl < KSl;Clp x’TGIIx _

X TV 2T VT %
= Ksup — :

. x'x
x'diag(A,..., Ay)x

= Ksup - - lly'y,
x x'x

’

Yy

-1

where A,,..., Ay are the eigenvalues of T,/*T, 'T;/%. Since T, '/*T,T;'”* has
the same eigenvalues this is equal to

Ksup
X

(A9) now gives the result. O

6. Equicontinuity of quadratic forms. To prove relation (iv) in the proof
of Theorem 3.2 we need an equicontinuity property of certain quadratic forms
depending on the parameter . This property is established by using a version of
the chaining lemma. Let A’ be defined as in Section 3 and

29(0) = 5 (R ~ B AP Ky~ ped) — Ar{APT( ).
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THEOREM 6.1. Suppose (A2), (A3) and (A8) hold. Then Z{(6), i = 1,2, are
equicontinuous in probability, i.e., for each 1 > 0 and ¢ > 0 there existsa 6 > 0
such that

lim supP( sup |ZP(6,) — ZP(6,) > n) <e.
N-ow |0, -0, <&
Proor. Let
N(8) = inf{m|there exist 6,,..., d,, € © with inf;|§ — §,| < 6 for all § € 0},
H(8) = log{4N(8)*/8}
and
J(8) = [*H(u) du.
0
Since 0O is compact, J(8) < . The exponential inequality, proved in Lemma 6.2
and a straightforward modification of Lemma VII1.9 of Pollard (1984) imply that
P(Z(6,) — Z{P(6,)] > 26DJ (6, — 65])
for some 8., 6, € ® with |0, — 6, < ¢) < 2, i=1,2.

Note for the modification of the chaining lemma that the special form of H was
used in Pollard’s proof only on page 144 (the second line from the bottom). We
need this different H because of our different form of the exponential inequality.
If 7 > 0 is given we therefore have for § with n > 26D.J(6),

P( sup |Z{(6,) — ZP(6,) > 71) < 26. O
16, — 6, <8

LEMMA 6.2. Suppose (A2), (A3) and (A8) hold. Then there exists a constant
D such that fori = 1,2, all 8,,0, € ® and all n > 0,

P(1Z{(6,) — ZQ(6,) > |6, — 6,]) < 4p®exp(—n/D).

PROOF. We have to prove an exponential inequality for each component of
Z{(0). Let 6, # 6, and S = {Z{(0,) — Z{(0,)};/10, — 0,]. By using the
Markov inequality and Fubini’s theorem we obtain for all ¢ > 0

P(S| >n) < P(S>n) + P(-S>n)

© k

< 2exp(—tn) Y, —|ES*.
r=o k!
Below we prove that exists a constant C, independent of 6,, 6, and [, with

(14) |cum,(S)| < I!C~

Application of the product theorem for cumulants [cf. Brillinger (1981), Theorem
2.3.2] yields

|ESH < k1(20)"
with the same constant. Choosing ¢t = {4C} ' and D = 4C gives the result.



ESTIMATION FOR SELF-SIMILAR PROCESSES 1765
We now prove (14). We obtain for [ > 2,

lcum,(S)| = |6, — 6, 'N~(1 - 1)12!!

tr[{TN( foo)(Agl) - Agz))fk}l]

< 10, - 0N 022 (4 - ) ]
Application of (x) in Appendix II of Davies (1973) gives with Lemma 5.4(b),
|(a$ - 49) .|| < 16, - d,1c(8)N°.

Furthermore we have [with A y(x) as in (8)]

1Zu ()" = [[ foe o 2N = ) ey

Application of Holder’s inequality shows that this can be bounded by
C(8)N1+¥0)+23 for each 8 > 0. If (A8) holds, & can be chosen independently of
0y, 6, and 0,, i.e., we obtain (14). O

Acknowledgment. The author is grateful to Professor H. Kiinsch, ETH
Zirich, for bringing the problem to his attention.
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