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THE GRENANDER ESTIMATOR: A NONASYMPTOTIC APPROACH

By LuciEN BIRGE
CNRS and Université Paris X, Nanterre

In this paper we shall investigate some nonasymptotic properties of the
Grenander estimator of a decreasing density f. This estimator is defined as
the slope of the smallest concave majorant of the empirical c.d.f. It will be
proved that its risk, measured with L}-loss, is bounded by some functional
‘depending on f and the number n of observations. For classes of uniformly
bounded densities with a common compact support, upper bounds for the
functional are shown to agree with older results about the minimax risk
over these classes. The asymptotic behavior of the functional as n goes to
infinity is also in accordance with the known asymptotic performances of the
Grenander estimator.

1. Introduction. This paper is meant to illustrate some of the problems
that occur in density estimation: choice of a proper estimator, evaluation of its
risk. Although a lot of things are supposed to be known in density estimation,
answering a question like “I have 1000 observations from a density, which is
certainly very close to unimodal. What should I do?” is not so obvious.

There are many ways of estimating densities and many different types of
results to obtain. They depend widely upon the class of densities you consider,
the type of loss function, the kind of uniformity you are looking for and the
asymptotic approach. This variety will appear immediately after looking at some
papers or books like Bretagnolle and Huber (1979), Ibragimov and Has’'minskii
(1981), Prakasa-Rao (1983), Devroye and Gyorfi (1985), Birgé (1986) and Devroye
(1987). Some familiarity with the subject rapidly convinces the reader that the
different approaches are not easily comparable. To be somewhat more precise, let
us briefly sketch our problem. Suppose we are given n ii.d. observations from
some unknown density f on the line. If fn is an estimator, its risk will be defined
through I! distance by

R,(f,f,) = IE,[[ 1F(x) = fu(x)l dx .

The choice of 1! is motivated here mainly by its invariance properties and
further references to previous works. It is always possible to find a consistent
sequence of estimators f, such that

(1’1) Rn( f’ fn) —n_—_>_+—o_o)0)

but this is not a very interesting result since this convergence can be arbitrarily
slow as shown in Birgé (1986). In order to get some uniformity in (1.1), it is
generally necessary to restrict one’s attention to a given compact (or at least
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o-compact) class % of densities. In this case it is generally possible to show that

(1.2) C,r(n) < infsup R,(f, f,) < Cyr(n), r(n) —520.
f. fe&F

The constants C,, C, and the rate of convergence r(n) (usually of the form n=%
depend on %. It is also often possible to find some good estimator f, which
satisfies

(1.3) lim R,(f, f)/r(n) = R(f) < Cy,

where R(f) is some functional defined on %#. (1.2) and (1.3) illustrate two
different points of view regarding the same problem—global nonasymptotic and
local asymptotic, respectively—and both of them have advantages and disadvan-
tages. (1.2) is safer because it is valid for all n but puts emphasis on the worst f
in & and does not take care of more regular cases which might be more likely to
happen (incidentally, the author must apologize for having used this minimax
approach in his previous papers). It is also difficult to choose between various
estimators using minimax criteria. On the other hand, the asymptotic point of
view illustrated by (1.3) is much more precise, but what is asymptotically
justified can be far from reasonable with an ordinary (even large) amount of
observations especially in nonparametric problems like density estimation where
the rates of convergence are slower than n~'/2, It is therefore generally difficult
to judge the validity of (1.3) when n = 1000, which is already a lot in practice.

Our purpose in this paper is to show how these two points of view might be
misleading in some circumstances, that important distortions can occur between
them and, mainly, to present an alternative choice: the local nonasymptotic
point of view. It will not lead to very precise results but it seems to be rather
interesting. We do not intend to develop it in great generality, but in a specific
case: estimation of a decreasing density on the line. This particular choice is
motivated by two reasons: (i) It has been one of the author’s concerns during the
last years and (ii) it is possible to develop reasonably precise computations in
this context.

In this case, the two competing points of view are illustrated by the papers of
Birgé (1987a, 1987b) and Groeneboom (1985), respectively. If #(a, H, L) is the
set of all decreasing densities bounded by H with support on [a; a + L], then

(1.4) 019583 < inf sup n'°R,(f,f,) <1.958°
h feF(a, H,L)

with S = log(1 + HL) and n > 39S.
If f is any bounded decreasing density on [a; + o), with compact support
and continuous first derivative, then from Groeneboom (1985),

(1.5) lim n'R,(f,f,) = O.82f+w|f(x)f’(x)/2|1/3dx.

Actually, Groeneboom proved a much stronger result using second derivatives
but, according to him, (1.5) will be true in our context even if only one derivative
is assumed. f, denotes a specific estimator, known as the Grenander estimator
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and defined as the slope of the smallest concave majorant of the empirical c.d.f.
This estimator was introduced by Grenander (1956) and is described and studied
in Barlow, Bartholomew, Bremner and Brunk (1972) and Grenander (1980). Let
us denote by I(f) the integral in the right-hand side of (1.5). Then it can be
derived from Birgé (1987a) that when HL > e — 1,
sup I(f)=0C(S)S"3, S=1log(HL+1), 0.65<C(S)<0.75,
feF(a, H, L)

but this is rather exceptional since this supremum is obtained for a particular
shape of f. In some other cases, I( f ) is much smaller than this upper bound and
(1.5) is asymptotically much better than (1.4). It is also noted that I( f) is not
continuous with respect to 1! norm, which means that convergence in (1.5) is
certainly not uniform. Therefore we do not know what confidence to give to (1.5)
when n is only moderately large.

In order to solve (at least partially) the dilemma, we shall give a nonasymp-
totic bound for the risk R (f, f,). This bound is of the form #( f, n~'/2) where
f—= 2(f,2), z> 0, is some IL'-continuous functional closely related to the error
of histogram estimators. It might be viewed as the nonasymptotic counterpart of
I(f). Actually, although its definition might look strange at first sight, the
functional I(f) [and Z(f, z) as well] has a nice interpretation in terms of the
optimal risk for histograms. Let us begin with some heuristics. Suppose one
wants to estimate a density on [0, 1] using n i.i.d. observations and the estimator
f. is the histogram based on some subdivision x, =0, x,,...,x, = 1. Let us
denote by N, the number of observations falling in J; = [x;_;; x;) and by f; the
average of f on J,

fi = (xi - xi_l)_I/;’f(t) dt.

On J, f, takes the value (x; — x;_,)"'N,/n and its risk is bounded by the sum
of two terms: a bias term

B= Y [Ii(t) - iat

and an error term, which is the analogue of the classical variance term

E- % [ [ (f(t)/n)dt]w-

i=10"%

Therefore an optimal subdivision {x;};_ ,, will tend to minimize B + E and will
usually not lead to a uniform partition. If we take for granted that the J;’s
should be small when »n is large and assume that f’ exists and is continuous, the
following approximations are valid for large n:

1(®) = R de = 4G = 20 (),

1/2
[(rmya]” < (= s 1) n]
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In order to minimize the error, the ideal choice of x;, — x,_; should be
[4f(x;)/(nf'(x;)*)]"3, leading to the approximation

LENIE
- 175

which is proportional to I(f). We also note that the optimal partition is
generally far from being uniform.

The same heuristics, in a nonasymptotic framework, can motivate the intro-
duction of the functional #Z(f, z). Let us begin with some notation. If f is a
nonnegative nonincreasing function on the interval J = [a; b), b being possibly
infinite, we set

(J)=b-a, [(J)= fJf(t) dt,  Af(J) =1(b) - f(a),

1/3

(t)f O 4

m
E+B=32""3Y (x;,—x,_,)

i=1

bi(J) = fJIf(J)/l(J) — f(t)dt it U(J) < +oo,
b (J) = f(J) i UJ) =

When we use several intervals oJ,,..., J,, and no confusion is possible, we put f;
for f(<J;), Af; for Af(J;) and so on. Any finite increasing sequence {x;}o.;
with x, = a, x,, = b generates a partition # of o/ into intervals J; = [x,_,; x,),
1 < i < m, and a functional L(_¢, f, z) defined for positive z by

LA 02 = 2 [ + 27007 = £ [of+ o2,

(1.6)

It is easily seen that L(#, f, n~/?) is exactly the sum B + E for a histogram
based on the partition _#. Looking for the best partition of </ will lead to the
functional

£7(f,z)=infL(f, f,2), 2>0,

where the infimum is taken over all relevant partitions _# of ¢J. Our heuristics
show that for large n and smooth f, ZJ(f, n"'/?) is approximately
3/2n~13I( f). The main purpose of this paper will be to prove the validity of
this approximation and show that the Grenander estimator has a nonasymptotic
risk which is bounded by a small multiple of £ f, n~'/2). This means that it
automatically adapts to the shape of f in order to pick an approximately
optimal subdivision {x;},.;..,, Without requiring any arbitrary choice of a
smoothing parameter. This is certainly an advantage for the Grenander estima-
tor, but we must temper our optimistic view by two remarks:

1. By construction, the Grenander estimator is a decreasing density and there-
fore can only be consistent when the underlying density is itself decreasing as
shown in Devroye (1987). Nevertheless, we could also show in Birgé (1986)
that it still behaves very reasonably when f is close to decreasing.

2. The rate of convergence is not better than n~'/3 (except for piecewise
constant densities) even if the underlying density is very smooth. Actually,
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with smooth densities, it is always possible to improve the bias term using
approximation by smooth functions rather than the piecewise constant. The
balance between bias and error is modified, resulting in better rates of
convergence. Clearly, our heuristics, using first order approximation, are
intended mainly for the case where nothing is known about second deriva-
tives. If f were known to have a continuous second derivative and a compact
support, the rate of convergence of well-tuned kernel estimators would be at
least n~2/%. The Grenander estimator would then be far from optimal and its
use not, recommended. Unfortunately, it is not always clear that the existence
of f” can be assumed since f is unknown. The “good” performance of the
Grenander estimator is related to the fact that we assume no more than a
decreasing density. In this respect, the Grenander estimator can be viewed as
a tool for the pessimistic statistician. The optimistic one will assume a nicely
bounded second derivative and use a kernel estimator. If he is able to choose
the smoothing parameter correctly, he will do better asymptotically, but if n
is moderate and sup, |f”(x)| fairly large, it is not clear at all that the kernel
will do better.

2. Nonasymptotic risk of the Grenander estimator. Although our main
concern here is the classical Grenander estimator, we shall take a somewhat more
general point of view in order to deal with various situations like estimation of a
monotone tail or a unimodal density with known mode and begin with the
introduction of the relevant concepts.

If G is any right-continuous nondecreasing and bounded function on the real
line and J some interval [a; b) where a is finite and b possibly infinite, we shall
denote by G (omitting the superscript when it is clear) the smallest concave
majorant of G on J. This is a nondecreasing function with derivative g and it
satisfies

GY(a) = G(a), GI(b)=G(b), G'(x)=G(x) fora<x<bd

with an obvious meaning when b is infinite. It is well-known [see, for instance,
Barlow et al. (1972)] that if the derivative g of G is a step function (histogram),
& can be derived from g by the technique known as “ pooling adjacent violators.”

When F is a concave distribution function on [a; + »), X|,..., X,, are n ii.d.
variables from F and F, is the corresponding empirical c. df then the smallest
concave majorant F, of E, is the classical Grenander estimator as described in
Grenander (1956, 1980), Barlow et al. (1972) and Groeneboom (1985) and its
density f is a nondecreasing step function looking like a histogram. If we
restrict ourselves to some subinterval J of [a; + ), F will be called the
(restricted) Grenander estimator on o/ and its derivative denoted by f" Let us
notice that F7 is not the restriction of ¥, to J: F/(x) < F(x) for x in J and
the mequahty is generally strict for some x’s.

Our purpose in this section will be to bound the risk of the estimator f7 in
terms of Z(f, z) when f is the true underlying density. Part of the argument
is based on the following lemma.
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LEMMA 1. Let f= {J;},.i<n be some partition of J, F an absolutely

continuous_distribution function, F, the corresponding empirical c.d.f. and
F, = F/; E! = FJ the related Grenander estimators. Define

m
F(x) = X Fi(x)1,(x)
i=1
and f and f, to be the respective derivatives of F and F,. Then

e| 1) - 1| < [ f7o) - 1],

ProoF. The definition of the Grenander estimator implies that the smallest
concave majorant of F, is F,. Therefore f, is deduced from f, by “pooling
adjacent violators.” Since f is decreasing, the conclusion follows from Proposi-
tion 1 of Birgé (1987b). O

We are now in a position to prove

THEOREM 1. If F is a distribution function which is concave on J and FJ is
its Grenander estimator on J with respective derivatives f and f,, then

(1) €| [1iGx) - Fx)de| <2291, Kn ), K =1/2(Cy772 +1),

where C < 1.18. According to a classical conjecture we can take C = 1, which
leads to K = 1.13.

Proor. The proof relies in an essential way on the classical inequality by
Dvoretzky, Kiefer and Wolfowitz (1956), Lemma 2,

P[Sl;p(Fn(x) - F(x)) > t] < Aexp(—2nt?).

It was conjectured in Birnbaum and McCarty (1958) that A =1 and this
conjecture was supported by numerical computations. Very recently, Massart
(1988) showed that it is true at least when 2nt?> > log2, which implies by
integration that

(2.2) €[ sup (F,(x) - F(x))| = C/2(n/(2n))”
with C = 1.18 according to Massart and C =1 if the conjecture is true as

expected.
By Lemma 1 it is enough to prove that for any partition #= {J;}, ;. of J,

e[ [ 1) - L] s 2 [or+ e (m ),

where f, is the derivative of F,. This is certainly true if we have for any
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arbitrary subinterval I of JJ the inequality

@3) & [i) - Penas| < 2orn) + K1)/

In order to prove (2.3) we first assume that I is finite and that N observations
fall in it, N having a binomial distribution #(n, f(I)). Then with f, = f/,

f, If(x) = f(x)ldx < bf(I) + |f(I) = N/n| + bf,(I).

The only difficulty comes from the last term. Define G to be the conditional
c.d.f. of the observations that fall in I and g its derivative. Then

E;[f,(I)IN] = N/nE,[bgy(I)N]

because the joint distribution of the N observations falling in I given N is the
same as the distribution of N i.i.d. variables from G. If U(x) is the uniform c.d.f.
on I, then

1/2b3(1) = sg[éN(x) - U(x)] = smg[GN(x) - U(x)]

< sup [Gy(x) — G(x)] + sup[G(x) — U(x)]

xel

< sup[Gy(x) — G(x)] + 1/2bg(I).
xel
Since bf(I) = f(I)bg(I), we get
E, [8f(I)IN] < N/n[2!Eg{su};[GN(x) - G(x)]|N] + bf(I)/f(I)]

and using (2.2),

E, [of(I)IN] < N/n|[[C/2(2n/N)?| + bf(I)/£(1)].

A final integration with respect to N leads to (2.3) when I is finite since
E[N'?] < [nf(I)]*/2% When I is infinite, the result is trivial from our definition
of bf(I). O

This theorem clearly applies to the classical Grenander estimator of a decreas-
ing density on [a; + 00). But it is also valid for the estimation of the right-hand
tail of a density (if this tail is known to be decreasing) by a restricted Grenander
estimator. Clearly, by symmetry all these results are immediately translated in
terms of increasing densities on (—o0; a] and the greatest convex minorant of
the empirical c.d.f. Therefore it is also possible to estimate monotonous left-hand
tails and, using both techniques simultaneously, unimodal densities when the
mode is known. The problem is more delicate when the mode is unknown and
will be treated elsewhere. Another interesting problem is to estimate a decreasing
density f on J = [a; + 00) when a is unknown. A possible solution is as follows.

- Denote by X, the smallest observation and by F! the restricted Grenander
estimator on I = [X; +o0) with F}(X,,,)) = 1/n. We denote its derivative by
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1 put fX( X)) = H and take as final estimator of the unknown density f,
(2.4) fo(x) = Hlix, ~(rimy; x4)(%) + (n = 1)/nf}(x).

COROLLARY 1. If f(x) is defined by (2.4), then

E f If.(x) — f(x)] dn] <(2+n Y2 f, Kn"V?) + 3/n,
J

K being defined as in Theorem 1.

ProoF. [*O)|f (x) — f(x)| dx has an expectation bounded by 2/n. In order

to control [,|f(x) — f(x)| dx, we take conditional expectations with respect to
X,y and apply Theorem 1 to the conditional distributions, obtaining

S ———
< 2f(I)$’( f(fl) K(n-1)" 1/2)

<2max[ (i() ) } LU f, Kn17?).

Since LX(f, z) < ZY(f, z), as will be checked in the next section, we can write

E, [/I| f(x) - fnl(x)|dx|X(l)] < [E,Uﬂ _ 1|[f1(x)dx m}

+ 2max[1,(:—f(_—1-)—)l/2]$°’( f, Kn—1/2)

1
v @+ Y)2I(f, Kn~V?),
_[mitD) =

n-—1

The conclusion follows from the fact that

E[(D)] = ——,  Var(f()) = T Dint2)

and therefore E(Y?) <n%2for n> 3.0

3. Some properties of the functional. As we shall see, the constants 2 and
K in (2.1) are probably far from optimal. Nevertheless, even if we were able to
improve them, the bound would still be in terms of Z(f, z) and it would be
interesting to derive some properties of this functional and relate it to previous
results about estimation of decreasing densities. At first sight ZY(f, n=1/?%)
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appears as a rather complicated object which is not likely to be continuous with
respect to f (only upper semicontinuous) and difficult to relate to n. But a closer
look will show that this is not true. Let us first state a few useful facts. Since bf
is a decreasing function, i.e., bf(I) < bf(J) when I C J, we get

(38.1) FLUf,2) <LI(f,z) forIcd
and also
k k
32 - LNf,2)< L L%(f,2z) itd= U,
j=1 Jj=1

Finally if f is a step function on o/ related to the partition #= {dJ,,..., J,}, ie,
f(x) = L2y () /UJ)1,(x), then

m
(3.3) L f,2) <z L [1()]* < z[mf ()]
i=1
We are now in a position to study some more delicate properties of Z( f, z).

Continuity properties. We shall begin with an auxiliary result which could
prove interesting by itself. The definition of #¥(f, z) involves arbitrary finite
partitions but we shall show that, up to some approximation, we can restrict
ourselves to consider partitions with a bounded number of elements. From now
on, J denotes the interval of interest and we omit the corresponding superscript.

LEMMA 2. If f is decreasing on J and ¢ > 0, there exists a partition
I =A{J,..., J;} of J such that
m<2f(J)/e+1, L(Z,f,2) <Z(f,2)(1+e?/2).
ProOF. Let us consider an arbitrary partition = {J}, ;. of J. After a
convenient renumbering of the indices, we may assume that
f(J)=e fori<p, f(J)<e forp+1<i<M.

We derive a new partition &' = {J;/}, ;. of J by choosing J/ = if i<p
and we pool all remaining adjacent J;’s in order to get the J/’s with indices
larger than p. Then

m-p<p+1 and pe<f(J),
which gives the bound on m. Also
m M
L(f,f,2) <L(#, f,2)+ X bf(J)) <L(A f,2)+ X [(J).
i=p+1 i=p+1
The conclusion follows from the fact that

M M
Y ()<t T ()" <% L( L, f, 2). O

i=p+1 i=p+1
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We are now in a position to prove that £(f, z) is L'-continuous, which is
satisfactory since it serves as a bound for a risk function which is itself
[L'-continuous.

PRrROPOSITION 1. Suppose that f and g are nonnegative decreasing functions
defined on (a; + w0) and (b; + o), respectively, and set them to zero outside of
their intervals of definition. Then

1/4

#(6,2) - 2(1,2) = 6| [ (@) - (@)
with a constant C, depending only ( for z < 1) on max{ [f(x) dx, [g(x) dx}.

PRrROOF. We shall assume that J = (b; + ), a > b, and set 1 = [|f(x) —
g(x)|dx. Then applying Lemma 2 with & = z27"/? we can find a partition
F={J}o<i<m0f (b; +00) with J, = (b; a] and such that

i (2f 2+ bf,) <2(f,2)Q + /%),

i=1

m

m+1<2(f(J)nV/22+1), Z(g2)< ¥ (28 + bg,).
i=0

Using these inequalities and

Z - bg;)

m
+ bg, <, ZI 12— g% < Zlf - &l

we deduce

L(g,2) <2(f,2)(1+ 774 +n+z[2n(f()n %2 +1)]"7,
and since Z(f, z) < z + f(J),

L(g,2) - 2(f,2) <1/ [z + {() + F(9)°] +n + (20)"2.

The reverse inequality is proved analogously. O

Some upper bounds for £(f,z). We shall see here that some mild restric-
tions on f imply that z~*°%( f, 2) is bounded, which implies uniform rates of
convergence for f, over large classes of decreasing densities and will also prove
useful in our asymptotic derivations. We begin with a case which has been
studied in Birgé (1987b).

PROPOSITION 2. Assume that f is a decreasing density on J = [a; a + L)
with Af(J) < H [Af being defined in (1.6)] and set

=log(HL +1), t=(28/2)"%+28/3.
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Then t > 1.2427%2/3 + 0.46 and

(3.4) 2(f,2) < (1 +t1)"*[3/2(2822)"° + 1/8(2522)"°).

PROOF. Generate a partition £ of J with an increasing sequence {x

i}OSisp
such that x,=a, x,=a+ L and p —1 < ¢ < p. Then

D
L(A, f,z2)< X [zfi1/2 +1/2(x; — ;) ( f(x,) — f(xi—l))]'
i=1
Some computations, perfectly similar to those in the proof of Theorem 1 in Birgé
(1987b) with the same values of the x,’s, lead to
L(fZ, f,2) <2p'/? + exp(S/t) — 1 < [(¢ + 1)/¢]V*[ 262 + exp(S/t) - 1].
The result follows from Lemma A2 of Birgé (1987a). O

The proposition can be extended to decreasing functions which are not
necessarily densities by the following corollary, which will prove useful in the
sequel.

CoROLLARY 2. If f is a nonnegative decreasing function on J and S’ =
log(1 + Af(UJT)/f(I)),

2(f,2) < (1+ z2/3/2)[3/2(2S’(zf(J))2)1/3
(3.5) 2/3 1/3
+1/8(28'2%) " (f(J))7"|,
o6 L f,2) < (2/2)7°(1 + 272 [3(Af(I)U(I) (T )
3.6

+275/3(22 A ()i T)) Y.

PRoOF. g(x) = f(x)/f(J)is a density on o satisfying Ag(J) = Af(J)/f(J)
and

29(f,2) = {(J)2(g, 2(f(J)) ).

(3.5) follows if we apply (3.4) to g with (1 + ¢7})2 <1+ 1/22%? and (3.6)
since log(1 + x) < min(x, x/2). O

We may also want to deal with long-tailed or unbounded functions. In this
case the following propositions are helpful.

ProposITION 3. If f is a decreasing function on J = [a; +) and
JoFY%t)dt = M < + 0, then

222 (f,2) < [3/2( f(@)M2) + 22 fa) ).
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ProoF. We consider the partition #= {J;},_; .., induced by the numbers
x,=a+i,0<i<m,and J,, ; = (x,; + ). Then

L(#, 1,2) < T (o + 172 f(xi0) = F@))] + 2halls + o

<zMI% + 2(f (@) + i (a) /2 + 2f Y2 + £, 1.

m

The result follows if we choose I = (zM /f(a))?/? and let m go to infinity. O

ProposiTION 4. If f is a decreasing function on #=[0;a] such that
& fP(t)dt =M < +oo for somep > 2 and H = lim,_, ,_ f(x) > 0, then

2" Y(f,2) < 3/2(H/(H - 1)) (aMH*/(p - 2))”,
h® = 2% *MH*?/(p — 2)

provided that Mz? < (p — 2)a’HP*1.

ProOOF. From our assumption H > A. For j such that jhA < H < (j + 1)A,
define the partition #= (), ;. 0f J by J, = {x[f(x) = m}, J; = {x|f(x) <

(j + 1A} and J; = {x|ih < f(x) < (i + 1)h} for m > i > j. If I, = I(J],), we have
fori<m,

fi<(i+1)Lh, b <l,h/2, ffp(t)dtzl,.hpip
Jz’

and

m—1
L(f, f,2) <ah/2+ 2072 3 [(i+ )L+ [ f()de+ 2
. o

i=j

fJf(t) alt]l/2

and letting m go to infinity,
LI f,2) <ah/2 + 202 Y [(i + 1))
i>j
Using the Cauchy-Schwarz inequality and our definition of j we get

[:[(i + 1)1,-]1/2}2 < [Z.(i + 1)’%”2(” + 1)1_"]
< (ﬁ—l ph‘PLfP(t) dtf+°ot1‘1’dt

1
1+ =
J

Mh~?
p—2
MhP( H \°(H-h\*?
<p—2(H—h)( h )
H \?P72 Mp—2H?P
(H—h) p-2

jr
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Then from our choice of A we derive

H \r7!
(H—_—Z) ah/2 + 2

3( H \P7Yz22aMH? P\
E(H—h) ) '

p—2

REMARK. These propositions could be used to extend the results of Birgé
(1987b) (which were restricted to densities with compact support) to densities
belonging to 1}/2 N L?, p > 2. Proposition 4 also shows the superiority of the
Grenander estimator over ordinary histograms or kernel estimators when the
underlying density is not bounded. Under the assumptions of this proposition,
the rate of convergence of the Grenander estimator will be n~/® which is
impossible for histograms as shown by Theorem 5 in Devroye and Gyorfi [(1985),
page 98] and similarly for kernel estimators with fixed bandwidth.

IA

2(f,2)

MhH2P\?
p—2 )

O

Asymptotic behaviour for small z. The preceding results show that Z({, z)
goes to zero at a rate which is at least 22/2 for a large class of functions. This is
in accordance with the rate of convergence of the risk of the Grenander estima-
tor n~ /2 and suggests looking at the asymptotic behaviour of z~2/3%( f, z) and
its possible relation with the asymptotic functional

I(f) = [11(=)f'(x)/2]"" dx,

which describes the asymptotic risk of the Grenander estimator [see Groeneboom
(1985)]. It is clear that no general result is to be found since I( f ) need not even
be defined. Nevertheless I( f ) will exist under proper assumptions. For the sake
of simplicity we shall restrict ourselves to the following:

Al. f is decreasing on [0; + c0) and for some a > 0, A > 0,

a + o0
[ 228 dt < +oo, | A dt < + .
0 a

A2. [’ is defined and continuous on the complement of some set whose
closure is negligible.

These assumptions and Hélder inequality imply that I( f ) is well defined and
we can prove

THEOREM 2. If f satisfies Al and A2, then
(8.7) limz~23%(f,z) = 3I(f).

z2—-0
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The original proof has been substantially shortened by the use of the follow-
ing lemma due to Piet Groeneboom.

LEMMA 3. Let f be a decreasing function with a continuous derivative on the
compact interval J, such that f and f' are bounded away from zero on J. Then
uniformly over all closed intervals {a; b] C JJ,

lim 2~ 22219 £, 2) = § [ {(2)f'(x) /2] .

z2—-0

Proor. For any interval I C J we have
bi(1) > 32%(1) inf 1f'(x)
xe

Since z~2/3%[a; b]( f; z) is uniformly bounded by Proposition 2, we may restrict
ourselves to consider partitions £, into intervals of length smaller than Az'/? if
A is a large constant. From our assumptions we deduce that if x; is the left-hand
point of the interval I, we have uniformly on I,

bf(I) = L 1f (2 (D)1 + o(UT))),  f(I) = f(x)U(I)(I+ o(UT))).
Then for all relevant partitions #, with intervals of length smaller than Az'/3,
L(Z, f.2) = T UD[UDIF /4 +2[ 1) /UD]]1 + o(2)).
Ieg,
The function g(t) = at + Bt~/? is minimal for ¢ = (B8/(2a))*? with value
3(8/2)% %'/, Therefore the choice
(3.8) UI) = [22/2(x,) /1 (x0)]] 7"
is optimal, leading to the lower bound
32 Zfl(l)[ FIf (x0)1/2] /(1 + o(2)).
Ieg,
Since we can always define our partition by

2/3

Xg=a, Xiv1 = inf(b, x;+ 1), l;= [22f 1/2(xi)/|f'(xi)|] ,

we see that we can almost get an optimal partition with intervals I satisfying
(3.8), apart from the last one, which will be smaller. Since its influence is O(2*/%),
we get

infL(f, f,2) = 222 L L[ f(x)If (x:)1/2] (1 + 0(2)) + O(2*°)
and therefore

2 PN f, 2) = ST L] FxIF(x)1/2] /(1 + o(2)) + O(%7),

Since sup, /; = O(z?/?), this sum can be approximated uniformly with respect to
a and b by the integral [°|f(x)f'(x)/2|*/? dx, which completes the proof. O
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PROOF OF THEOREM 2. Let us begin with the upper bound part. We split the
support of f into [0; @), [@; a™'] and [a™!; + o) for some small, conveniently
chosen a and then split [a; a™!] into a finite number of intervals with the
following properties: Intervals of the first type are those for which the assump-
tions of Lemma 3 are satisfied; intervals of type 2 are those on which f is
constant; intervals of type 3 are the others, the total length of which is smaller
than e. Now, from (3.2), z~2/3%( f, z) is smaller than the sum of the correspond-
ing functionals on the various intervals. Using Propositions 3 and 4 we see that
the contribution of the outer intervals is negligible if @ is small enough.
The contribution of intervals of type 2 is asymptotically zero since on those
Z(f,z) = O(z). The contribution of intervals of type 3, which we denote by
Jy,..., Jy, is bounded using Corollary 2, which implies that

z2—0 i=1

P p
limsupz =% Y £7(f,2) <3 % [AF(F)UL) ()]
: i=1
and by Holder’s inequality, this is smaller than
P P P
3 [AF(R]? L [UR? ZLHI < 3[f(a)e]
i=1 i=1 i=1

and this is small for a good choice of e. Finally, Lemma 3 implies that the total
contribution of intervals of type 1 is smaller than 3I( f).
For the lower bound result,

(3.9) liminfz~23%(f,2) = 2I(f),

z2—0

we notice that I(f) can be approximated as closely as we want by
[l F(x)f'(x)/2|'/® dx, where K is finite union of intervals on which f satisfies
the assumptions of Lemma 3. The arguments used in the proof of this lemma
show that the trace of the optimal partitions on K is made of intervals of length
O(z%/?), which implies that restricting to K can only decrease the left-hand side
of (3.9). The conclusion follows by an application of Lemma 3 to K. O

REMARK. As a by-product of the proof we see, at least asymptotically, what
the structure of an optimal partition is. Under the assumptions of Lemma 3, the
size of the intervals should be of order n~'/3 as expected for histograms.
Actually, our heuristic developments (see the Introduction) concerning the
optimal bin widths could be turned into a rigorous proof concerning the perfor-
mance of histograms for estimating general densities using L'-loss under suitable
assumptions (compact support and a continuous first derivative with a finite
number of zeros, say, although these could certainly be weakened). The best
histograms will clearly have a risk that is asymptotically bounded by
3n=130 | f(x)f'(x)/2]"% dx + o(n™1/3). A slightly more sophisticated analysis
using the normal approximation would lead to the analogue for L'-norm of
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Theorem 1 of Kogure (1987),

tmsup it B, 1, £,)| = [ ()27 i,
n In

where the infimum is taken over all possible histograms and c is a universal
constant. Such a result is clearly not the subject of this paper and, anyway, does
not lead, without suitable adaptation, to the effective construction of an optimal
estimator since the optimal histograms depend in a crucial way on the unknown
density f. This is a serious limit to its practical consequences. On the contrary,
we would like to emphasize the adaptive nature of the Grenander estimator
which automatically selects almost optimal partitions without knowledge (except
for monotonicity) of the underlying density.

4. Conclusion. It is now possible to put all the pieces together. Qur main
result says that
(4.1) R,(f,f,) <22(f, En"'?).

If we assume that the constant C in (2.2) is 1, then K = 1.127 and Theorem 2
leads to

(4.2) limsupn'/°R,( f, f,) < 3K?°I(f) < 3.25I(f),

while Proposition 2 implies that for S = log(HL + 1) and n > 40S,

(4.3) sup  n'°R,(f,f,) < 4.748'3.
fe#(a,H, L)

This means that, up to multiplicative constants, our study leads simultaneously
to the local asymptotic bound of Groeneboom (1985) and the nonasymptotic
global result of Birgé (1987a). It also has the advantage of relating both points of
view and providing a continuous upper bound for R ( f, f,). Obviously, due to
our crude methods the constants in (4.1) are likely to be too big, but the
asymptotic constant in (4.2) is only four times the constant of Groeneboom. If we
consider that (4.2) is only valid for smooth functions and that this smoothness
induces some asymptotic bias reduction, it is likely that (4.1) is less than four
times too large. Even if our computations are not very precise, it seems reason-
able to consider #( f, n~'/%) as a good index of how difficult it is to estimate f
using n observations.

Contrary to Z( f, z), the asymptotic functional I( f) is discontinuous, due to
the fact that convergence in Theorem 2 is not uniform. This means that the
asymptotic point of view could be very misleading when the convergence of
27232(f, z) to I(f) occurs for very small values of z. It is easy to give simple
examples of this fact: If f is a step function with m steps, by (3.3) R, will
converge to zero at a rate n~ /2, which is not surprising since I( f ) = 0. But such
a phenomenon may be completely asymptotic if m is large, and it is perfectly
possible that the right-hand side of (3.3) is much bigger than the bound given by
(3.4) unless z is very small. The effect of a small value of I(f) could be
noticeable only with a very large number of observations. The opposite case



1548 L. BIRGE

could also occur: A bad behaviour of f in the tails could result in a very large
value of I( f) but will not affect Z( f, n=/2?) for moderate n because the latter
functional will be mainly determined for small n by the central part of the
density.

The same types of arguments show that the minimax point of view could be
just as misleading. The upper bound in (3.4), which is valid for the whole class
& (a, H, L), is clearly much too big for most functions in the class and particu-
larly for step functions with a small number of steps. This illustrates the
well-known fact that there is no good choice between the two points of view,
local asymptotic and global nonasymptotic. The intermediate point of view
adopted here, local nonasymptotic, seems to be interesting because it can explain
more precisely what happens and gives some idea of the reliability of the other
points of view. The main drawbacks of those arguments are (i) in most cases,
such local nonasymptotic evaluations are not available at the present time and
(ii) when they are, as in our case, they are likely to be far from optimal, the
constants being too large.

These considerations naturally lead to some interesting open questions. How
do we improve on (4.1)? What about other estimators? Is it possible to improve
on f_ in a large number of situations? Is it possible to find optimality criteria in
such a situation and how?

In any case, #(f, z) seems to be an interesting functional and is probably
very closely related to the “difficulty in estimating f,” if it is possible to give a
reasonable meaning to this expression. It seems difficult to compute the exact
value of Z(f, z), but numerical methods would probably lead to reasonably
precise upper bounds.

Acknowledgment. The author would like to thank Piet Groeneboom for
his suggestions which greatly improved a former version of this paper and
drastically shortened the original proof of Theorem 2.
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