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ON THE ASYMPTOTIC INFORMATION BOUND!

BY AAD VAN DER VAART

Free University, Amsterdam

This paper discusses several lower bound results for the asymptotic
performance of estimators of smooth functionals in i.i.d. models. The key idea
is to look at a set of local limiting distributions of an estimator sequence,
rather than to impose regularity conditions, or to consider limits of maximum

~ risk. Special attention is paid to situations where the tangent cone is not a
linear space. As an example, the local asymptotic minimax risk in mixture
models is computed.

1. Introduction. This paper is concerned with bounds on the asymptotic
performance of sequences of estimators for smooth functionals in i.i.d. models.
The best known results in this field are the convolution theorem and the local
asymptotic minimax (LAM) theorem. Both theorems originate from work by
Hajek (1970, 1972) and Le Cam (1972) and have been generalized to nonparamet-
ric, semiparametric and general models by—among others—Koshevnik and
Levit (1976), Pfanzagl and Wefelmeyer (1982) and Begun, Hall, Huang and
Wellner (1983). The convolution theorem shows that the limiting distribution of
regular estimator sequences is the convolution of a certain normal and another
distribution. The LAM theorem applies to every estimator sequence and gives a
lower bound for the limit of the maximum risk over a shrinking neighbourhood
of a fixed probability distribution. An attraction of the convolution theorem over
the LAM theory is that it is concerned with limiting distributions, rather than
limits of expectations. However, the convolution theorem applies only to a
subclass of estimators. Now “reasonable” estimator sequences have “local limit-
ing distributions.” Though these need not all be equal (as required for the
convolution theorem), several results can be obtained concerning the set of local
limiting distributions, including a (generalized) convolution theorem.

The main results in Section 2 are formulated in a terminology adapted from
Pfanzagl and Wefelmeyer (1982). In particular, bounds are expressed in terms of
a tangent cone (or tangent set). Since in semiparametric theory convex, but
nonlinear, tangent cones may arise naturally, special attention is given to this
case. It turns out that the technique based on finding a most difficult one-dimen-
sional subproblem now yields a too optimistic bound. As an application we
compute the LAM risk at finite mixtures in Section 3. Proofs have been put in
Section 4.

We use both N, (7, A) and N, , to denote the m-variate normal distribution.
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1488 A. VAN DER VAART

2. Main results. Let £ be a set of probability measures on a measurable
space (%, #). The statistical problem is to estimate a functional x(P) € R¥,
when an i.i.d. sample X,..., X,, from some P € £ is given.

Fix P % and let #(P) be a set of maps ¢ — P, from some interval
(0, ¢) C R into £ such that

(2.1) [le7 (a2 - dP'72) — 4gdP]" > 0 astlo,

for some g € Ly(P) (the set of P-square integrable, measurable functions from
(%, &) into R; the integral means [[¢~ X pi/? — pi/?) — 1gpl/?]1% du,, where p,,
and p, are dens1tles of P, and P with respect to an arbltrary o-finite measure p,
that dominates P, + P). A direct consequence of (2.1) is that [gdP = 0.

The set of all g’s (often called scores) thus obtained is denoted T(P)
and called a tangent set. It is customary to let ¢ —» P, be in #(P) for every
h > 0, whenever ¢ — P, is. Then T(P) is a tangent cone: hg € T(P) for every
h > 0, whenever g € T(P).

It will be assumed that k is differentiable in the sense of existence of a
vector-valued function kp € Ly(P)* such that

(2.2) t Y (x(P) — k(P)) - /kpgdP, every g € T(P),

when ¢ — P, is the path in (2.1). The vector «p is called a gradient or influence
function. Since (2.2) only specifies inner products of &, with elements of T(P), a
gradient is unique only up to components orthogonal to T(P) (orthogonal with
respect to the inner product (g, g&,) = fg1g2 dP). The (unique) gradlent which
is contained in Iin T Pik will be denoted &p. Its (B X k) covariance matrix is
written Jp = [ pRp dP

An estimator T, = t (X, ..., X,) corresponds, as usual, to a measurable map
t: (" B") > Rk. Our interest will be in estimator sequences satisfying
(2.3) Lp (T, = k(P ) = Ly, every g € T(P),

where ¢t — P, is the path in (2.1) and L, is a probability distribution on R,

This restricts the class of estimator sequences under consideration a little, but
in a sense (2.3) is only slightly stronger than tightness of the sequence of laws of
Vn (T, — k(P)) under the fixed P. Indeed, it can be shown under this condition
(and for finite-dimensional tangent sets) that any subsequence of {n} has a
further subsequence such that (2.3) holds along the subsequence (cf. the first part
of the proof of Theorem 2.1). The results below next go through for the set of
limiting distributions thus obtained. Moreover, if one is willing to read vague
instead of weak convergence in (2.3) (so that L, may be defective), most of the
results can even be formulated for arbitrary estimator sequences. However, to
avoid technicalities, Assumption (2.3) is made throughout the paper.

Our first result says that, given a finite-dimensional subset G of T(P), the set
of limiting distributions {L,: g € G} equals the set of distributions of a random-
ized estimator in a normal experiment. Let V' be a random element in R™. By a
randomized estimator based on V we mean here a statistic #V, U), where U is



ASYMPTOTIC INFORMATION BOUND 1489
uniform on [0,1] and independent of V and ¢ R™ X [0,1] —» R* is measurable.

THEOREM 2.1. Let (2.2) and (2.3) hold and let {g,,...,8,} be a linearly
independent subset of T(P). Then there exists a randomized estimator for D h
based on V ~ N, (h, 27 ') (with £ known) such that

(2.4) Z,(t(V,U) — D;h) = L, everyh'g € T(P).
Here g = (&y,---,8n), W'g =L~ 1.8, 2 = [gg dP and Dy = [ipg' dP.

A consequence for the theory of lower bounds is that the set of limiting
distributions {L,: h'g € T(P)} cannot be “better” than the set of distribu-
tions of the “best” randomized estimator for D i based on V ~ N, (h,271)
where £ is known to liein {2 € R™: h'g € T(P)}. Theorem 2.1 is closely related
to Le Cam’s general theory of limiting experiments [cf. Le Cam (1972, 1986)] and
can also be deduced from a combination of his results. Qur proof in Section 4 is
direct and easy.

It would be nicest to give a (nontrivial) lower bound for the quality of every
L, separately. This, however, is impossible. As is well known, given a g € T(P),
there exist estimator sequences which perform particularly well in the direction
of g, and L, may even be the perfect limiting distribution: point mass at zero.
To overcome this superefficiency problem Hajek (1970, 1972), within the context
of parametric models, introduced two devices. Either assume that {7} is regular
(i.e., all L, are equal) or consider the maximum risk over all g. This leads to the
convolution and LAM theorem, respectively. Here we proceed by considering
(normal) averages of the L,.

THEOREM 2.2 (Generalized convolution theorem). Let {(V,U) be as in Theo-
rem 2.1 and for h € R™ define L;,, by (2.4). Then for every T € R™ and positive
definite matrix A,

(2.5) thng AlR) = Ny, p ((S+A~ "Dy * M, \
for some probability measure M, , on R*.

The interpretation of Theorem 2.2 is that on the average the L,’s are more
spread out than a N; p s4x-1)-1p, distribution.
To see the role of A, “note that

(2.6) DD, - DS+ AY) D

[= D= + 2AZ) 'D;] is nonnegative definite for all A and converges to zero if,
e.g.,, A = AT and A - 0. Thus the improper, equivariant prior on R™ (A ~ )
gives the largest lower bound N, p, s-1p,.

Here D>~ 1Dé has an 1nterest1ng 1nterpretat10n It is the covariance matrix
[Rp kb dP of the vector of orthogonal projections &p ; of a gradient onto
lin{g,,..., &} [i.e, (kKpg); is the unique linear combination a’g satisfying
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{(Rpg);— a'g, g;) =0, J=1,...,m]. Thus, since Kp — Kp g L Kp g,
2.7) Jp— DS D]

is nonnegative definite for every choice of {g,..., &,,}. Moreover, by the defini-
tion of Kp this difference can be made arbitrarily small by appropriate choice of
{gl) sy gm}‘

A convolution and LAM theorem can be obtained as corollaries of Theorems
2.1 and 2.2.

THEOREM 2.3 (Convolution theorem). Let T(P) contain an inner point as a
subset of lin T(P) and let (2.2) and (2.3) hold with L, = L for every g € T(P).
Then

(2.8) L=N,;*M
for some probability distribution M on R*.
Let I: R* — [0, c0) satisfy

1(0) = o,
(2.9) I(x) = I(~x),

{x: I(x) < ¢} is convex and closed for every ¢ € R.

THEOREM 2.4 (LAM theorem). Let T(P) be a convex cone and let (2.2), (2.3)
and (2.9) hold. Then

sup liminf sup Epl/ﬁ'glwz(Tn - "(Pl/ﬁ,g)))
G N7® geG

(2.10)

> sup [JIdL,> |ldN, ;.
geT(P)f £ f I

Here for every g € T(P), t - P, , is the path in (2.1) and the supremum on the
left side of (2.10) is taken over all finite subsets G of T(P).

The assumptions made on T(P) are weaker than the usual assumption that
T(P) is a linear space. For parametric models the strengthening of the convolu-
tion theorem was already obtained in Droste and Wefelmeyer (1984).

As regards the LAM theorem: The first inequality in (2.10) is of course true
for any T(P) (and any lower semicontinuous /). Convexity of T(P) is crucial for
the validity of the second inequality [though of course it suffices that T(P)
contains a convex cone, the closed linear span of which contains lin #]. It turns
out to be difficult to compute a sharp lower bound for sup, ¢ 1 py [{dL, for other
shapes of T(P), in general. In view of Theorem 2.1 the quantity

(2.11) supinf sup  E,l(¢(V,U) — Dh)
g t h: hgeT(P)
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qualifies. However, even for the simple normal experiment V ~ N(A,1), h €
[—a, a] € R, the minimax risk is known for small a [Casella and Strawderman
(1981)], but only approximately known for a — oo [Bickel (1981)].

For completeness, we remark that the far left side of (2.10) is larger than the
far right side for any estimator sequence. A proof of this is (for £ > 1) somewhat
more technical due to the fact that one has to keep account of mass escaping to
“various infinities.” A proof in the spirit of this paper is given in van der Vaart
(1988a), page 29.

The next result is an “asymptotic Cramér—Rao bound.”

THEOREM 2.5. Let T(P) be a cone and let (2.2) and (2.3) hold with [xdL, =
u € R* for every g € T(P). Suppose that the covariance matrix 2(L,) of L,
exists. Then (L) — Jp is nonnegative definite.

Clearly, if T(P) is convex, Theorems 2.3 and 2.4 yield the same lower bound,
loosely speaking a N, j, distribution. Hence, in particular, in this case a “best
regular” estimator is a LAM estimator, at least in the sense that it attains
equality in the second inequality of (2.10). Note that in this case the lower bound
corresponds to a “direction” & , which may not be contained in the closure of the
tangent cone. This is different from the situation considered in Begun, Hall,
Huang and Wellner (1983), where the lower bound corresponds to a “hardest
one-dimensional subproblem.” In the language of the latter paper one might say
that the effective score for 8 is obtained by subtracting from the score for § its
projection on the linear space spanned by the nuisance scores, rather than its
projection onto this set itself.

On the other hand, if T(P) fails to be convex the second inequality of (2.10)
may fail to hold too and, in general, a best regular estimator may not be LAM.
That this may easily happen follows for the case that 2 = 1 and /(x) = x? from
Theorem 2.5, which implies that the minimax quadratic risk of a regular
estimator (which is larger than its asymptotic variance) is larger than Jp, under
only the condition that T(P) is a cone. An example where T(P) is a cone, k =1
and the LAM risk is only half the asymptotic variance of a best regular
estimator sequence is given at the end of this section.

In many applications T(P) will indeed be convex. Then the LAM property of
a best regular estimator ensures that not overly much is lost by considering
regular estimators only. A best regular estimator may easily be (locally) asymp-
totically inadmissible, though. [Here we mean to compare the asymptotic risks
JldL,, g € T(P), for different sequences of estimators which satisfy (2.3).] The
following theorem gives sufficient conditions for it to be the only LAM estimator
sequence, in which case it is clearly admissible.

THEOREM 2.6. Let T(P) contain lin i p, let J, be nonsingular and let (2.2)
hold. Suppose that V is unique as a minimax randomized estimator for h based
on V ~ Ny(h, Jp), h € R*, with respect to the loss function . Let (2.3) hold.
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Then

(2.12) sup fldL < fldNOJ
geT(P)

if and only if
(2.13) n (T, - k(P)) =n"'/ Z p(X;) + op(1).
Moreover, if (2.13) holds, then L, = N(0, JP) for every g € T(P).

More precisely, the condition on the normal experiment is: If #V,U) is a
randomized estimator with sup,cg+ E W&V, U) — h) < [LdN, ;, then
t(V,U) = V a.e. Whether this condition holds depends on the loss function. It is
well known that it generally fails if the loss function depends on three coordi-
nates or more. In this case shrinkage estimation yields examples of inadmissibil-
ity of a best regular estimator. On the other hand, the condition is usually
satisfied if the loss function depends on two coordinates or less [see Blyth (1951),
Stein (1956), James and Stein (1960), Brown (1966), Hajek (1972) and Brown and
Fox (1974)].

Finally, if T(P) is not a linear space (which typically is the case when P
is—in some sense—on the boundary of &), then there may exist estimator
sequences that improve the performance of a best regular estimator for every
loss function. For parametric models this is obvious, because one can truncate a
best regular estimator into the parameter set. For semiparametric models, such
as the one in the next section, this is an unresolved matter.

EXAMPLE. Let 2 be the set of N(6,1 + V2 ) distributions, where (0, ) is
known to be in B = {(u,v): u =0, v > 0or u > 0, v = 0}, the boundary of the
positive quadrant in R2 The paths ¢t — N(¢,1) and ¢t = N(0,1 + vV2¢) lead to
scores lg(x) =x and [(x)=2""%x%-1) at N(0,1). Thus set T(N(0,1)) =
{uly + vl,: (u,v) € B). The functional N(9,1 + V27) > 6 + 7 is differentiable
at N(0, 1) Here &y 1) = Iy+ 1, and JN(01 = 2. By Theorem 2.5, the LAM
quadratic risk of a regular estlmator is bounded from below by 2. Application of
Theorem 2.4 to either of the convex subcones corresponding to the half lines in B
yields a lower bound for the LAM quadratic risk of 1. Both bounds are sharp.
The first is attained by T, = X, + 27"%(n"'E?_(X; - X,)? — 1) and the sec-
ond by T, =max{X,,2 1/2(n'123’ (X, - X, )2 —1),0) [see van der Vaart
(1988a), page 42, for a proof of the latter] 3

Note that if B would be slightly enlarged to B = {(u, v): 0 < u < ev}, € > 0,
fixed, then the LAM risk would jump to 2, though for ¢ < 1, &y , is still not
contained in T(N(0, 1)).

3. Mixtures. Let ® be an open subset of R* and let J# be a collection of
probability measures on a measurable space (£, 7). For each (6,2) € @ X &
let hg(-)gs(Y4(+), 2) be a probability density with respect to a o-finite measure p
on (£, #). Assume that h, and {, are a measurable map in [0, c0) and some
measurable space, respectively. Moreover, let gy(y, z) be measurable as a func-
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tion of (y, z). Now let Z= (P, ,: (,1) € © X '}, where F; , is the probability
distribution with density

(3.1) Po,o(%) = hy(x) [o(¥4(x), 2) dn(2).

Suppose that p, , is smooth in § in the sense of existence of [0,11 € L2(P,,,,1)k
such that

(32) - f[t_l( p;izth,n - p;,/ﬁ) - élh,l'a,np;,/fplz d‘"’ - O, ast 1.0,

for every h € R*. Thus paths of the form ¢t = P, ,; , generate scores h'[o, o 1tis
clear from (3.1) that any score resulting from a path of the form ¢ — F,; , will be
a function of ;. Then one expects joint paths ¢ = F;,,, ,, to yield scores of the
type h'ly,, + b(¥,). The main result of this section is that, under completeness
of y,, there exists a convex tangent cone, which has the set of all functions of
this form as its closed linear span.

For given (6, 1) let G, , be the law of y4(X) when X ~ B, , and set

Hy oy = {"l' €H: Py, < By ,and fpg,n'/p(?,ndp' < oo}.

THEOREM 3.1. Let (3.1) and (3.2) hold for every (8,m) € © X 3, let H# be
convex and suppose that {G, . 1 € ¥, .} is complete. Then there exists a set of

paths t = Py, . such that the resulting tangent set T(F; ,) is a convex cone
and satisfies

(33) ImT(PR,,)= {h’l},m +b(yy): hE R, b e Ly(Gy ), fbdGM = 0}.

Together Theorems 2.4 and 3.1 lead to lower bounds for the LAM risk. We
give two examples. Let

(3-4) io,n = jo,n - Eo(jo,n(X)l‘Po(X) = ‘Po( )),
(3'5) fo,n = Eo,nio,n(X)io,n(X)'-

COROLLARY 3.2. Assume that I~0’n is nonsingular. Then:

(i) The LAM risk for estimating P,,: o, = 0 is bounded from below by [ldN,, i
(i) The LAM risk for estimating P, , — [f dF, , (where f is a known bounded
function) is bounded from below by [LdN,_j, , where

jo,n =<, ﬂ,’n)'ﬁ;},(f, [o,n> + 05 o ( Eq( F(X)¥e(X))).

The question of whether the bounds of Corollary 3.2 are sharp has been
answered positively in two cases [Pfanzagl and Wefelmeyer (1982), Chapter 14
and van der Vaart (1988a), Chapter 5 and (1988b)]. If ¢, is independent of # or
84(+, 2) is a smooth density of ,4(X) with respect to Lebesgue measure on a
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convex open subset of R™, then there exist regular estimator sequences with the
normal distribution in (i) or (ii) as the limiting distribution.

The above-mentioned work also discusses conditions under which Theorem 3.1
can be strengthened to the assertion of existence of a set of paths ¢t — F_,, ,
having the linear space on the right side of (3.3) as a tangent cone. Sufficient for
this is that J# is the set of (essentially) all probability distributions on % and

(3.6) {Gy ,: z € A} is complete for every A € &7 with / dn=1.
: A

For instance, let 5 be the set of all probability distributions on (%, /) and let

go(y,2) = cy(2)dy(y)e??9®

be an exponential family. Then the weaker assertion (3.3) is typically true at
every (6,7m), whereas (3.6) and its implication is true at (#,n) where 7 is
absolutely continuous, but may fail if n has a support without a limit point.

The difference between the two cases is important, e.g., in view of admissibil-
ity of a best regular estimator (see the discussion at the end of Section 2).

ExXAMPLE. Let 5# be all probability measures on R,® = (0,00) and
hy()8e(Yg(+), 2) the density of a NQ((Z) 0I) distribution. Denote the observa-
tions by (X, Y}),...,(X,,Y,) and set ,(x, y) = x + y. Then G, , isa N(2z,260)
distribution and the conditions of Theorem 3.1 are satisfied. The obvious estima-
tor for 0, T, = in~'L"_ (X, — Y))? satisfies Vn (T, — 0) = n™/2%"_,[, (X, Y)).
Hence it is LAM and best regular at every (6, ).

EXAMPLE. Let ©® be empty, # be all probability measures on (0, ) and
p(x,2) =e %2*/x!, x € {0,1,2,...}, be the density of a Poisson distribution.
Set Y(x) = x. By Theorem 3.1 there exists a convex tangent cone T(P,) with
closed linear span equal to all mean zero functions in Ly(P,). The functional
P,— P(X = a), where a € {0,1,2,...}, fixed, satisfies (2.2) with gradient
np(x) = 1,(x) — P(X = a). Hence the empirical estimator T, = n™'L"_1,(X})
is LAM and best regular at every P,, irrespective of its support. This strengthens
results of Tierney and Lambert (1984).

Under some conditions on the support of 5, Lambert and Tierney (1984) prove
equivalence of {7T,} and the maximum likelihood estimator. As Tierney and
Lambert (1984) point out, the MLE may be preferable over {T,} for its finite
sample performance. Perhaps it is also preferable for its asymptotic behaviour at
P, for which the support of 7 is finitely discrete. Indeed, for such 7 the stronger
condition (3.6) is violated and the best regular estimator may be inadmissible for
all loss functions. Unfortunately, it appears hard to calculate the limiting
behavior of the MLE in this case. One clearly does not expect normal limiting
distributions.
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4. Proofs.

ProoF oF THEOREM 2.1. Since marginal tightness implies joint tightness,
Prohorov’s theorem can be applied to see the existence of a subsequence of {n}
(abusing notation denoted {n}) such that

4y w7 E e(x))| - 2(T5),

J=1

for some random vector (T, S) with £(S) = N,(0, ). Forg € T(P)let t > P, ,
be the path in (2.1). It is well known that (2.1) implies local asymptotic
normality

(42) A

n n n
® Py @ 7| - £ a(X) 4 45 (x) =0
J= J= j

Jj=1

where A(Q, P) is the log-likelihood ratio of @ and P (the logarithm of the
quotient of their densities with respect to an arbitrary o-finite dominating
measure). Combination of (4.1), (4.2) and (2.2) yields

gp(\/E(Tn— K(Pl/ﬁ,h,g)),A( QP we @ p)
(43) \ J=1 Jj=1
- 2(T - D,h, 'S — W'Zh).

This determines the limiting law of %p 7 wegVn (T, — (P, /m,wg) by
Le Cam’s third lemma. It is given by B — [p.ge* dZ(T — D,h, 'S
— $h’Zh)(y, N). Thus [cf. (2.3)]

(4.4) Ly (B) = E14(T — D,h)e?S-1/2¥=k  pg e T(P).

Now let V ~ N, (h, =71). It is fairly straightforward to construct a randomized
estimator such that

(4.5) Z(t(V,U),2V) =2(T,S)
(cf. Lemma 4.1). Then
P,(t(V,U) - D,h € B)

‘

(4.6) = fP(t(o, U) — D,k € B)e™ V/X0~WE-D/det’S do(2m) ™
= Eg(t(V,U) — Dyh)e=V-1/2=h
Combination of (4.4)-(4.6) yields (2.4). O

LEMMA 4.1. Given a random vector (T,S) in R* X R™, there exists a
measurable function t such that L((S,U),S) =%(T,S), where U has a
uniform distribution on [0,1] and is independent of S.
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ProOF. To simplify notation we give a construction for the case that m=2,
It is easy to produce two independent uniform [0,1] variables U, and U, from
one given uniform [0, 1] variable. Therefore it suffices to construct a randomized
estimator based on U, and U,. It suffices to find a statistic t(S, Uy, U,) such that
L(U(s, Uy, Up)) = L(T|S = s) for every s. Take versions of the cumulative distri-
bution functions of T} given S = s and 7, given S = s and T, =t Let Frs_,
and Fp s . n_ 4 be their quantile functions. Standard arguments show that
Fris-.(w;) and Fpls_, 1,-+(U5) are measurable functions of their two and three
arguments, respectively. (They are right continuous in the u’s and for fixed u
measurable in the remaining arguments.) Now L (Fr, lls=v(U1)) =2(T\S = s)
and L(Frs_, n_(Uy) = L(T,|S = s, T, = t,). This implies that U(s, Uy, uy) =
(Fris=o(1y), FT‘2I{g=s’T1=,1(S’ u)(U2)), where t(s, u)) = Frs- (1), satisfies the re-
quirements. O

PROOF OF THEOREM 2.2. Note that
ehs1/2nEh dN, ,(h) = c(s) dN,(5), z+a-1y1(R),
where
p(s) = (Z+ A7) (A +s),
c(s) = det(Z + A~1) /" det A~1/%~ VAT - (A 4 syu(o]

Set T'= #V,U) and S = SV. Then by (2.4) and (4.6),

th,g(B) dN, (k) = fEO1B(T — Dyu(S) = Dyh)e(S) dNy (5, p1y-1(R).
Thus (2.5) holds with M, , given by
M, \(B) = Egl5(T — D,u(S))e(S). O

PrOOF OF THEOREM 2.3. Let {g,,..., &m} C T(P) be linearly independent.
By Theorem 2.1, L = Z,((V,U) — D, h) for all A in an open ball in R™ The
map h — E,e“V:")"De") makes sense for A € C™ and is analytic. Since it
equals the constant [e’*” dL(y) for all A in an open ball, it must be constant on
C™ Thus L = Z,(t(V,U) — D h) for all h € R™ Take a N, A1 average on both
sides and apply Theorem 2.2 to conclude that L = No, pys a1yt p * M. Using
characteristic functions it is easily seen that M, >, M as A - oo and that
L =N, p,z-'p; * M. Finally, choose a sequence of subsets {81,+-+, 8n). of T(P)
such that the difference in (2.7) converges to zero. O

PROOF OF THEOREM 2.4. Since [ is lower semicontinuous, the first inequality
follows easily. For the second let {g,,..., &m} € T(P) be linearly independent.
Since T(P) is a convex cone, h'g € T(P) for every h > 0. The middle term of
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(2.11) is therefore not smaller than (with R € R ™, arbitrary)

sup [IA RdLy,> [ [t A RdLygdN, (k) - RN, \(R™ — (h: b > 0}),
h'geT(P)

> /l A Rd [No, Dg(S+A~Y) 1p,* MT» A]

— RN, \(R™ - {h: k> 0}),

by Theorem 2.2, which by Anderson’s lemma [see, e.g., Pfanzagl and Wefelmeyer
(1985), page 454 and Ibragimov and Has’'minskii (1981)] is greater than or equal
to

/l A RdNy p 54 a1y — RN, A(R™ = {h: h > 0}).

Now choose 7 = (d, d,...,d) and let d > . Then the second term in the last
expression converges to zero. Next set A = AI and let A - oo. After that choose
a sequence of finite subsets {g,, ..., g,,} of T(P) such that the difference in (2.7)
converges to zero. Finally let R — c0. O

ProoF oF THEOREM 2.5. It suffices to prove that for all 8 € R*,

B'=(Ly)B — B'JpB = 0.

Since this concerns the asymptotic variance of the estimators B'T, of the
functional B’k (which has gradient B’kp), it suffices to prove the theorem for
k=1

Let {g,,...,&,} C T(P) be linearly independent. By Theorem 2.1, with
T =uV,U),

(4.7) /deh,g(x) = E,(T — D;h) = E|(T — D,h)e”V-1/2k=h

whenever h'g € T(P). Since T(P) is a cone, (4.7) holds in particular for 2 = ae;,
0<ax<l, i=1,..., m Taking partial derivatives with respect to A from the
right at A = 0 yields

(4.8) 0=ETV-D,.
Let V = D, =~'V. By the Cauchy-Schwarz inequality
0%(S) = 6 2(V)Cov%(S,V) = D,.z27'D;,
by (4.8). Complete the proof by choosing appropriate {g,,..., &,}- O

Proor oF THEOREM 2.6. The last assertion of the theorem is an immediate
consequence of Le Cam’s third lemma and (2.2). Next (2.12) is obviously satisfied.
We prove that (2.12) implies (2.13). By Theorem 2.1, applied with g = Jp % p,
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there exists a randomized estimator ¢ based on V ~ Ny(h, J~P) such that
Ly(HV,U) = h) = L, for every h € R*. By (2.12),

sup E,l(t(V,U) — k) < fszo e

heR*

Thus #V,U) is a minimax randomized estimator for A. By assumption
{(V,U) = V a.e. Now refer back to the construction of ¢ in the proof of Theorem
2.1. By (4.5) T — JpS = 0 a.e. Next the definition of (T, S) in (4.1) yields (2.15). O

ProOF OF THEOREM 3.1. Fix (,7)in ® X 5 and %’ in % ,. Set

by = 86,480, — 86,4)1{&0,, > 0}
and set n, = tn’ + (1 — ¢t)n. It will first be shown that

@9) [ (Db, — 282) = S (Wl + b,(40))DH2] du 0,
as t | 0. The idea here is that because of convexity, differences of the form

Po_,l(l’o,n/ - pp,,,) = 3/3t|t=010g Do, ty+a-1t)n

are n-scores. However, showing joint differentiability in (8, n) as in (4.9) requires
some tedious work.

By (3.2) and absolute continuity of P, , with respect to Fj ,, it suffices to
show convergence to zero of the integral in (4.9) over the set A = {p, , > 0}. Let
M,100 such that tM,— 0 as t|0. Write p,=py,ipn 9= Popsinnr b=
h'ly il 1 = M) and k, = h'l, L1l 1< My Set

u, =t (p? - py?) - Wpy? o=t a0 - at”) - that”.
Then write py ,, ,, = Po + b, + ¢, + d, + e,, where
bt = tl‘po + t(qo - pO)l(l(Io*PolﬂMtPo)’
= (1 - t)t2ul? + t%? + 1/4¢t%k]q,,
= (1 - t)[2tu,pl? + t*ul,py/? + 1/4t*2p, |
+ ¢k, + (g, — p0)1(|q0—p0|>MLp0) — t%1,p,,
= 2t%,qY% + tv,k,q/?.
It is straightforward to check that

t‘zf [ pod2 + ¢, + |e,|] dp — 0, t2 fpo_lbf du = 0(1).
A A
Now obtain (4.9) by applying the inequality
2
[(a +b+c+d+e)”” —a? - tba™17|

< dle| + 4d%/[a(l — &)] + dc+ (1T —¢ —1)*b%/a
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(valid for real numbers satisfying @ > 0, |ba"}|<e<1,¢>0,a+b+c+d>
Oanda+b+c+d+e>0).
To complete the proof, set

T(P,,) = (Wi, + ab(y;): RER*, a 20,7 €5 }.

This is a convex cone and corresponds to the paths ¢t - F;_, , . We only have to
show (3.3). Let b € Ly(Gy ,) be such that b L {ab,(Yy): @ > 0, 7' € 5#; ,}. Then
for all n' € 54 ,,

0= [bb,dG,,= [bdG,,, ~ [bdG,,.
By completeness, b must be constant. O

ProOF OF COROLLARY 3.2. It is easily checked that the gradients kp are
given by:

@ I3l
(D) (f, Lo, )Ty, nlo,n + Eo( F(X)¥e(X) = 4o( ) — [fdPy .
Now apply Theorem 2.4. O

Acknowledgments. I thank Chris Klaassen and the referees for helpful
remarks.
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