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VARIANCE ESTIMATION!
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The delete-1 jackknife is known to give inconsistent variance estimators
for nonsmooth estimators such as ‘the sample quantiles. This well-known
deficiency can be rectified by using a more general jackknife with d, the
number of observations deleted, depending on a smoothness measure of the
point estimator. Qur general theory explains why jackknife works or fails. It
also shows that (i) for “sufficiently smooth” estimators, the jackknife vari-
ance estimators with bounded d are consistent and asymptotically unbiased
and (ii) for “nonsmooth” estimators, d has to go to infinity at a rate
explicitly determined by a smoothness measure to ensure consistency and
asymptotic unbiasedness. Improved results are obtained for several classes of
estimators. In particular, for the sample p-quantiles, the jackknife variance
estimators with d satisfying n'/2/d — 0 and n — d — oo are consistent and
asymptotically unbiased.

1. Introduction. Variance estimators given by the delete-1 jackknife are
known to be asymptotically consistent for sufficiently smooth estimators. If the
estimator is not smooth, the jackknife may lead to an inconsistent variance
estimator. The best known example of inconsistency is the sample quantile. See
Miller (1974) for a review of both kinds of results. On the other hand, bootstrap-
ping the sample quantile does lead to a consistent variance estimator under
reasonable conditions on the underlying distribution [Efron (1982) and Ghosh,
Parr, Singh and Babu (1984)]. This is a major triumph of the bootstrap over the
jackknife. The main intent of this article is to remove this deficiency of the
jackknife by proposing a more general version with d, the number of deleted
observations in the jackknife, depending on a measure of smoothness of the
estimator. The less smooth the estimator is, the larger d needs to be.

To aid our understanding of what causes inconsistency, let us examine more
closely the example of the sample median, originally due to Moses. Let 6 be the
median of a distribution F, X,,..., X, an ii.d. sample from F and X, <
< X, their order statistics. Assume n = 2m. The estimator § is the sample
median (X,,, + X, +1))/2 Let §_; be the median estimate after deleting X,

from the sample, ie., §_; = Ximsy fori<m and X, for i > m + 1. In this
case § is identical to the average of _ ;- The jackknife variance estimator
n-— 1 n

(1.1) Yy = _n— E(é—i - 6)2
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turns out to be
2
(n = (X imary = Ximy) /4
and
noyg, = 0%(x3/2)"  in distribution,

where o? is the asymptotic variance of n'/%(§ — 0) and x2 is a chi-square
random variable with 2 degrees of freedom [see Efron (1982), Chapter 3]. Hence
U,y 18 inconsistent. R

Intuitively o ), would work if §_, — § could mimic the sampling behavior of
6 — 6. However, 6_ 0 O,(n~ 1) is an order lower than § — 6 = O (n‘1/2)
For sufficiently smooth 4, thls mismatch of orders does not cause problems since
the scale factor (n — 1) in v, will correct it. For less smooth 6 such as the
sample quantiles, this simple correction by rescaling does not work. A remedy is
to delete more observations, say d, in the repeated evaluations of 6. This method
is called the delete-d jackknife. Formally we define the delete-d jackknife
variance estimators as follows. .

Suppose that X,,..., X, are iid. with distribution Fe€ = and 6=
d( X,..., X,) is an estlmator of a parameter §. Here = denotes the space of
dlstrlbutlons. Without loss of generality, 6 is assumed to be symmetric.
For a fixed n, let d = d, be an integer less than n and r = n — d. Define S, ,
to be the collection of subsets of {1 ., n} which have size r. For any s =
{iy--- 5,1 €S, ,, let 4, = 0(X,, » X; ). The delete-d jackknife estimator of

Var§ is
A\ 2
(12) DJ(d)—EﬁZ( ,—6),

where N = (") and L, is the summation over all the subsets in S, ,. The
delete-d jackknife was considered for other purposes, e.g., Bhargava (1983) and
Wu (1986).

Another version of the delete-d jackknife variance estimator is

(1~3) ﬁJ(d) dNZ(o - _20 ) = Vyay ~ 2‘(%2@ - é) :

s

For certain estimators such as the U-statistics and the sample median, 6=
N-'Y 4, and Oya) = Oyq) In general, v,, and ¥,,, are unequal but are
asymptotlcally equivalent iff

(1.4) 2(%20‘3—0‘) - o (nY).

Sufficient conditions for (1.4) are given in Proposition 1 and Corollary 3.
When § is linear, i.e.,

A 1z
(1.5) 6= 0+ —Top(X),
1
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for some function ¢y, it is easy to show that these estimators are identical to the
usual variance estimator

1 n 1z
(1.6) Opay = Oyay = Oy = m; op(X;) - ;;‘PF(Xi)

for any d.

Using the rationale of “order matching,” by choosing d = An, 0 <A <1, in
V) OF vJ(d), the resamphng error” ,— 6 has O )(n~1/?) which matches the
order of the “sampling error” 4 — 4. Moreover the coefficient r/d in v, is
O(1). Unlike other choices of d which result in r/d — 0 or o, no drastic
rescaling is required. It turns out that for this choice of d, v xd) 18 consistent for
a wide class of § (Corollary 1).

The special case of deleting half samples deserves pa.rtlcular attention. Here

=n/2, r/d =1 and therefore no rescaling in v J(d) is required. In this regard
Vyqy With d = n/2 behaves like the bootstrap variance estimator with B boot-
strap samples [Efron (1982)]

1 B A
'Db= EZ(é*b—§)2’ ,é*b=0(X1*b»'~~,Xn*b)’

where the bth bootstrap sample X *b » Xt bi is drawn at random with replace-
ment from X, ..., X,. Both §* — é and 0, — § have the same order O ) (n=1/%)
as that of § — 0 and nelther variance estlmator requires rescaling. Half-sample
estimates are commonly used in survey sampling [Rao and Wu (1985)].

Our approach was originally motivated by the above concept of “order
matching,” which, however, is not precise enough to treat cases in which order
matching does not hold. For example, in the case of the sample quantile, it is
found (Section 5, Example 1) that any d satisfying n'/2/d — 0, but not necessar-
ily of the form d = An, will make v, consistent. If the order of d is strictly
between n and n'/? é — § is of a lower order than § — 8 and yet consistency
holds.

A more general concept than order matching for studying the asymptotic
properties of v ). is given by the notion of “smoothness” of §. Assume that §
admits the expansion

(17) G=0+~Yon(X) +R,,

where the function ¢, has mean zero and positive variance o2 and Rn is the
remainder term. An important example of (1. 7) is the von Mises expansion [see
Serfling (1980)]. Since n~'L¢p(X;) in (1.7) is O, (n~'/2), it is reasonable to
assume that R, = o,(n"'/%). We use the order of nER? as a smoothness
measure of 0. Another smoothness measure is given in (3. 2) Typically, ER? =
o(n~"'). Necessary and sufficient conditions for this to hold are given in
Lemma 1.

In Theorem 1 we establish a general condition on d in terms of ER? and n
for v, 4, to be consistent and asymptotically unbiased. Necessary conditions for



JACKKNIFE VARIANCE ESTIMATION 1179

the consistency and asymptotical unbiasedness of v, 4, are established in Theo-
rem 3. For sufficiently smooth 0, v 1y and more generally v, ;) with bounded d,
are consistent (Corollary 2 and Theorems 4 and 5). Theorem 2 provides further
insights on why the choice of d in Theorem 1 makes v, , consistent. Noting
that the expansion (1.7) decomposes # — @ into the linear part n™'L¢,(X;) and
the nonlinear part R,, v;,, can be similarly decomposed into a linear compo-
nent (i.e., v,y with 6 replaced by its linear part), a nonlinear component and
their cross product. If the linear component dominates the nonlinear component,
the asymptotic behavior of v, is determined by its linear component and
standard results apply. Precise conditions for this domination are given in
Theorem 2 and the discussion following it. For sufficiently smooth 6, the linear
component dominates even for d = 1. This explains the consistency of v,,. For
less smooth #, the linear component may not dominate if d is bounded. The
situation can be rectified by choosing a larger d to increase the order of the
linear component so that it becomes dominant.

To alleviate the computational burden of v,,, for d > 1, a more economic
resampling plan, called balanced subsampling, is introduced in Section 5. All the
results for v;,, and &, hold for this plan. Several examples, including the
sample quantiles, L- and M-estimators, U-statistics and Fréchet differentiable
functionals, are given in Section 6 to illustrate the theory. For the sample
quantiles, v 4, is shown to be consistent if d satisfies n'/?/d — 0 and F” exists
in a neighborhood of 6. Some concluding remarks are given in Section 7.

2. A technical lemma. Several results to be given later are obtained under
the following condition on the remainder term R,:
(2.1) ER? =o(n™Y).

Lemma 1 states conditions equivalent to (2.1) that may be easier to verify in
some situations. These conditions are combinations of the following:

(2.2) R, = o,(n"'7?),
(2.3) E[¢s(X,)R,] = o(n7Y),
(2.4) Ef =0+ o(n"1?),
. o2
(2.5) Vard = -t o(n71),
(2.6) {n(8 - 6)")} is uniformly integrable.

Condition (2.2) is quite weak, since n™'L¢p(X;) in (1.7) is O(n~"/?) and (2.2)
means that the remainder term R, is of a lower order. When 6 is a statistical
functional T(F,), where F, is the empirical distribution of X,..., X,, a suffi-
cient condition for (2.2) is that T is quasi-Fréchet differentiable with respect to a
norm | || for which ||F, — F|| = O,(n~'/?) [Serfling (1980), page 221]. Examples
will be given later. Condition (2.4) is also quite weak. It means that the bias of 6
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can be of any rate lower than n~'/2 Typically the bias of § is of the order n~!
[Lehmann (1983), Section 2.5].

Under (2.2), 62/n is the variance of the asymptotic distribution of §. Condi-
tion (2.5) ensures that o2/n is a valid asymptotic approximation to Var 4.
Usually Var § > 0%/n in view of Lemma 5.1.2 of Lehmann (1983) and Var§ =
02/n + o(n™!) for sufficiently regular estimators with finite variances. A limita-
tion of our approach is that for some estimators (2.5) fails or is technically
difficult to verify. This will be further discussed in Section 7(ii).

Sufficient conditions for (2.6) are given in Serfling (1980), pages 13-15. One
such condition is

sup E|n"/%(§ — 0)|2+8 < oo for some & > 0.
n

LEMMA 1. The following four conditions are equivalent:

(a) (2.1) holds.

(b) (2.2) and (2.5) hold.
(c) (2.3)-(2.5) hold.

(d) (2.2) and (2.6) hold.

Proor. It is obvious that (2.1) implies (2.2), (2.4) and (2.5). From
2.7) nVarf = 6% + nVarR, + 2nE[¢,(X,)R,],

(2.1) implies (2.3). Therefore (a) implies (b) and (c). To show that (c) implies (a),
note that (2.4) is equivalent to ER, = o(n"'/?) and (2.3) and (2.5) imply
VarR, = o(n~") via (2.7). Hence (a) is equivalent to (c). To show that (b)
implies (d), note that

(2.8) nR? < 2|n(f—6)° + %(f%(xi)) }
and
(29) n-lE[iqsp(Xi)] - o

Conditions (2.2) and (2.5) imply that nE(f — 6)2 is bounded [see Lemma 2 of
Ghosh, Parr, Singh and Babu (1984)], which together with (2.8) and (2.9) implies
the uniform integrability of n'/2R,. Hence from (2.2), (2.4) follows. This and (2.5)
imply

(2.10) nE(f - 0)2 - o2

From the central limit theorem,

(2.11) n~2Y ¢n(X;) > N(0,6%) in distribution,
1
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which, along with (2.2), implies that
(2.12) n'/2(§ — 8) - N(0, 62) in distribution.

Now (2.10) and (2.12) imply that {n(é — 6)?} is uniformly integrable [Serfling
(1980), page 15]. It remains to be shown that (d) implies (a). From (2.9) and
(2.11), n~[Xrr(X;)]? is uniformly integrable. Hence nR? is uniformly inte-
grable by (2.6) and (2.8). Thus (a) follows from (2.2). This completes the proof. O

3. Consistency and asymptotic unbiasedness of jackknife variance esti-
mators. Several definitions are needed before stating the main results.

DEFINITION 1. For any estimator v of Var§ < oo

(i) v is consistent for Var § iff (v — Var0)/Var0 =0 (1)
(ii) v is asymptotically unbiased for Var § iff (Ev — Var §)/Var § = o(1).

Definition 1 requires that Var 6 be finite. A more general definition of
consistency, even when Var ) does not exist, is to replace Var 6 in Definition 1 by
o? o®/n, the limiting variance of 4. That is, v is consistent iff no — 6% = 0,(1) and
v is asymptotically unbiased iff nEv — o2 = o(1). If condition (2.5) holds, the
two definitions are equivalent. )
Let R, , be the remainder term in the expansion (1.7) for 6,,

o 1
as = 0 + ; Z¢F(Xz) + Rn,s

i€s
and
(3.1) U=R,,- R,

Since {X;} are exchangeable, ER? , = ER? and EU? = E(R, — R,)* for any s,
where R, = R, with s = (1,..., r}. Write

(3.2) 8,=rER?, and 1.=rEU2.

Note that 8, is r times the mean squared error of the linear approximation to
é; with sample size r and 7, is r times the expected mean squared deviation of
R, , from R,. Both can be taken as measures of smoothness of 6. In this section,
the asymptotlc properties of v, 4, are studied by relating d to the smoothness
measures 8, and 7. All the results hold also for &,,, with the smoothness

measure 7, replaced by
'?r=rE‘/.32’ V;=Rn,s_N_lan,s’
S
The proofs are similar and omitted.

The following theorem gives sufficient conditions for the consistency and
asymptotic unbiasedness of v, 4.
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THEOREM 1. Let d = d,, be the number of observations deleted, r = n — d
and 8, and 7, be defined in (3.2). Assume either

. nd,
(3:3) Jm g =0
or

. n‘Tr
(3.4) nh_{r; p = 0.

Then v, 4, is consistent and asymptotically unbiased.

REMARKS. (i) Condition (3.3) implies lim , , ., 8, = 0, which is equivalent to
(2.1) since r - o0 as n — oo. .

(i) Condition (3.4) is also necessary for the consistency and asymptotic
unbiasedness of v, 4, (see Theorem 3). Condition (3.3) is stronger than (3.4) but is
easier to check. Also (3.3) allows the choice of d to be made directly from the
second moment of R, without involving the subsets.

(iii) For the validity of the theorem, only the weak law of large numbers is
needed in (3.6). The strong version of (3.6) will be used in the proof of Theorem 4.

PrOOF OF THEOREM 1. Let

1 12
(8.5) L=~ Y ¢p(X;) — = Xop(X))-
r i€s n
From (1.6) and the strong law of large numbers,
nr nr
. — Y L?| =02 Y 2 2as.
(3.6) E(ng s) 0® and dNXS:Ls—HI a.s

From (3.1) and (3.5),
nr
"xd) = IN Y (L, + )"
By the Cauchy-Schwarz inequality, the results follow from
nr
_ 2| — 1
which is guaranteed by (3.3) or (3.4). O

From (1.6), vy, for linear ¢ is unbiased and consistent for any d. For
nonlinear 6, Theorem 1 proves the asymptotic unbiasedness and consistency of
vyq) With a restriction on d, which depends on the smoothness of d. Conditions
(3.3) and (3.4) in Theorem 1 relate d to 8, and r,, respectively. Thus the choice
of d can be made via these relations, especially (3.3). For asymptotic unbiased-
ness and consistency d/n, the percentage of observations deleted in the jack-
knife, should be of a larger order than 7, or §,. The smoother § is (i.e., smaller 7.
or §,), the smaller number of deleted observations is required.
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Two important special cases are d bounded and d satisfying
(3.7) —Ze forsomeey >0 and r=n-d - .

The case of bounded d will be discussed in the next section. If d is chosen
according to (3.7), (3.3) holds under the mild condition (2.1), i.e., 8, = 0. This is
stated as Corollary 1.

CoROLLARY 1. Under (2.1), v,,, for d satisfying (3.7) is consistent and
asymptotically unbiased.

The interplay between the smoothness of § and the number of observations
deleted in v, 4, is further explored in the following theorem.

THEOREM 2. Assume that (2.2) holds. Let {s,} be any sequence of subsets
such thats, € S, ,. For each n, let L, and U, be defined in (3.5) and (3.1) and

e, =0, —6=L, +U,.
() If d/n - 0 (with d bounded or unbounded), then
L, = 0,(d’n"") and U, = o(n"172),

where A, = O,(a,) means that A, has exactly the order a,,.
(ii) If there is an e, > 0 such that -
d

(3.8) go < — <1-—¢g,

then
L, =0,(n""?) and U, =o,(n'?).
(iii) If d/n — 1 but r - o, then
L, =0,(r '?) and U, =o,(r'/?).
Proor. We drop the subscript n in s, in the proof. For any of the three

cases, U, = 0,(r /%) by (2.2). Hence the assertion for U, in (i)-(iii) is proved.
Note that

s ( 1,s 2‘3)’
\Nhere

1 1
L= - Y ¢p(X;) and L,,= F Y op(X))

i€s €5

are independent and § is the complement of s.
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Cask (i). For bounded d, n"'dL, ;= O,(n"%?) and n™'dL, , = O (n™").
Hence L, = O,(n~ )., For d > o and d/n -0 (and therefore r/n — 1),
n~'dL, = p(dn 32)and n~'dL, ,= O,(d'/?n™"). Hence L, = O,(d'?n™").

CasE (ii). From (3.8) and the independence of L, , and L, ,,

d1/2
L

o,1) + Op(l) = 0,(n"?).

s 1/2 f4

Casg (iii). Since d/n—1 and r— o, r/n—0, L, = Oy(r '/?) and
L, ,= O,(d'/?). Hence L, = O (r~'/?). O

The quantity e, can be 1nterpreted as a “resampling error” and L, (3.5) as
its linear component If 6 is linear in the sense of (1.5), then e, = L The
prevmus theorem shows that if d/n > ¢, > 0 and r - oo, the hnear component
of e, is the dommatlng term and the jackknife variance estimator v, behaves
asymptotlcally as in the linear case. This explains why in Corollary 1, v, is
asymptotically unbiased and consistent without requiring any further smooth-
ness condition on the point estimator § other than (2.1).

On the other hand, if d/n — 0, the linear component of e, is not necessarily
dominant since from Theorem 2(i),

d\1/2
L, =0,(d"*n™") = (Z) Oy(n™1%),

which may converge to zero faster than U, . This explains why v, ,, with small d
may not work well for nonsmooth 4. L, becomes the dominating term iff

(3.9) U =o 0!1/2(m)_1/2 for any sequence s,,,
n p n

which follows from (3.4). In fact, (3.4) is necessary (in addition to sufficient) for
the asymptotic unbiasedness and consistency of v, 4, as shown by the following
theorem. Therefore (3.9) is also necessary for the asymptotic unbiasedness and
consistency of v, 4.

THEOREM 3. Assume that (2.1) holds.

(i) Condition (3.4) is necessary and sufficient for the asymptotic unbiasedness
of Vyay

(i) Condition (3.4) is sufficient for the consistency of vy, It is also a
necessary condition if in addition {(nr/dN)LJU2)} is uniformly integrable.

Proor. Sufficiency was already proved in Theorem 1.

. (i) Using the same notation as in the proof of Theorem 1,

n*r,
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Since X L, =0, X, LU, =X L .R, .. Note that for any s,

- Zon(x) - Zw(X)] y

lES les

ELsRn s =
’ n

d
—E
d
=—E
d
—E

(;
5| Eero]r
{1

;éw(x;)]ze,} - 2 Elos(X)R),

where R, is R, with s = {1,...,r}. Then

"z

where the last equality follows from (2.1) and Lemma 1. Hence nEv,, = ¢ +
nt/d + o(1) and nEv,, = 6% + o(1) iff (3 4) holds.
(ii) It is easy to see that {(nr/dN)L,L?} is uniformly integrable. From

onr
noy gy < N Z(L2 + U, )

=[rE[¢p(X)R.]}=0(1),

{nv sy} 18 uniformly integrable. Hence if nv,4, = 6% + 0,(1), then nEv;,, =
6% + o(1). Thus by part (i), (3.4) holds. O

As a final result of this section, we give some sufficient conditions to ensure
that v;,, and 3,4, (1.3), are asymptotically equivalent.

PROPOSITION 1. v, and &, are asymptotically equivalent under (i) con-
dition (3.4) or (ii) conditions (2.1) and (3.7).

ProoF. Condition (3.4) implies (nr/dN)L U} = o,(1), which implies (1.4).
This proves (i). (ii) follows since from Corollary 1 and Theorem 3, (2.1) and (3.7)
imply (3.4). O

4. Results for v,,, with bounded d. From the computational point of
view, the delete-1 jackknife v, is the most convenient one. It is clear from
Theorems 1-3 that its consistency requires the point estimator 6 to be very
smooth. In this section the consistency and asymptotic unbiasedness of v,
with bounded d are established. For bounded d, (3.4) becomes

(4.1) ., =o(n1).
Hence we have the following corollary of Theorem 3. Note that (4.1) implies that
the point estimator 6 is very smooth.

COROLLARY 2. (i) Condition (4.1) is necessary and sufficient for the asymp-
totic unbiasedness of v; 4, with bounded d.



1186 J.SHAO ANDC. F. J. WU

(i) Condition (4.1) is sufficient for the consistency of v,y with bounded d. If
{(nr/dN)L U2} is uniformly integrable, then (4.1) is also necessary.

For a smooth § with ER? = O(n™?), condition (3.4) [or equivalently (4.1) for
bounded d] can be verified through the following lemma, which holds for any d,
bounded or unbounded, as long as r — co. It will be used in Theorem 5 and
Example 5.

LEMMA 2. Suppose that

ER = > 4 o(n"?) and ER,R,= 2y o(r=?)
" n? R ) ’
where a is independent of n. Then (3.4) holds.

Proor. From (3.2),

2~ “E(R, - R,)* - Z(ER®+ ER: - 2ER,R,)
d d r n d r n ritn
e, .9 —2]
d[r2+n2 2rn+o(r )
nra{(1 1)\° s d+n -1
_7(;—;) + o(r )—aE 50(" )]s

which converges to zero as long as r - 0. O

_ Another way of defining smoothness is by the concept of differentiability. For
0 = T(F,), where F, is the empirical distribution of X,..., X, and T is a
differentiable functional in a suitable sense, we will show that v,,, with
bounded d is consistent. For a strongly Fréchet differentiable T' [Definition 2(i),
below], Parr (1985) proved that v, is strongly consistent, i.e., nv;,, — 62-0
a.s. His result can be extended to any bounded d (Theorem 4). The same result
holds for T which is second order Fréchet differentiable [Definition 2(ii)].

DEFINITION 2. (i) A functional T is said to be strongly Fréchet differentiable
at F with respect to a norm || || on = iff there exists a ¢z: R = R depending
only on T and F such that E¢p(X;) = 0,0 < E¢%(X,) < co and

I7(6) - T(H) - for(x)d[G ~ HI(=)|
IG - H|

as |G — F||+||H - F|| > 0,for G, H € E.

(ii) A functional T is said to be second order Fréchet differentiable at F with
respect to || || iff there are ¢p(x) and Yg(x, y) such that E¢x(X;) =0, 0 <
E¢%‘(X1) < 0, lI/F(x! y) = lI/F(y’ x)’ E‘PF(xi Xl) =0 fOI‘ any x, E‘P%’(XD X2) <
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oo and

7(G) ~ T(F) ~ Jor(x) dG(x) — [[¥r(x, ¥) dG(x) dG ()|
IG - F|I*

as |G — F|| - 0.

Note that neither of the definitions implies the other. Examples of T satisfy-
ing (i) or (ii) are given in Section 6. '

THEOREM 4. If § = T(F,) is strongly Fréchet differentiable with respect to
the supnorm|| ||, then for any bounded d,
(4.2) noyq — 0> =0 as.
If {(nr/dN)LU?} is uniformly integrable, then v, is also asymptotically

unbiased.

REMARK. Unlike the other results in this paper, the consistency in (4.2) is in
the strong sense.

ProOOF. By the strong Fréchet differentiability of T, for any ¢ > 0, there is a
6, > 0 such that

IRn s nI < £|IF - F "oo

for |F, ,— Fl, + |F, — Fll,, <38, where F,  is the empirical distribution of
X;, i € s. Note that ||F, , — F,||,, < d/n and ||F F||,, = 0 as. Hence there is
an integer n (w), where w = (X, Xz, .), such that

IR, ,— R, <élF,,— F,l, <ed/n
for any s € S, , and n > n(w). Therefore,

max (R, ,— R,)’=0(n"?) as,

ses’l,"
which with (3.1) implies
(4.3) W, = —ZU2 — mgx (R, ,—R,)?>=0(1) as.
seE

n, r

Then (4.2) follows from (3.6), (4.3) and the Cauchy-Schwarz inequality.

Note that under (4.3), {W,} is uniformly integrable iff EW, = o(1), which is
equivalent to (4.1) for bounded d and implies that v,,, is asymptotically
unbiased (Corollary 2). O

THEOREM 5. If T is second order Fréchet differentiable with respect to || ||,
then for any bounded d,
(4.4) nvyq, — 6° = 0 in probability.

If in addition (2.5) holds and Ey3(X,, X,) < oo, then v, is asymptotically
unbiased.
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ProoF. From the second order Fréchet differentiability of T, there are ¢
and Y satisfying the conditions in Definition 2(ii) and

0—0+—Z¢F(X)+ ~ > yr(Xi, X)) + T,

i, j=1
6-0+= T oe(X)+ 5 ¥ ve(X:, X;) + T, ,
T jes i, JEs
where max,cg, I‘ =o0,(n” %) by Definition 2(ii) and

d
max |IF, , ~ Fll, < — +||F, - Fll, = 0 as.
sE€S, ! n .

,r

Since Eyy(x, X,) = 0, by a similar proof to that of Theorem 3 of Arvesen (1969),
nr
=—Y(A. —-A)=
Gn dN ?( n,s An) Op(l)’

where A, = n7?E? ;_yp(X;, X;) and A, = r7?L, ;c Yp(X,, X;). Hence (4.4)
holds since ’

nr nr
45 —YU?<2(G,+ — rZ,
(45) oy LU <2|Gut g max I

If (2.5) holds, then following the same argument as in the proof of Lemma 1,
we have

(4.6) ET2 = o(n"?).

Decompose

1 » a n-—1
rl % ¢F(Xi’Xj)=;+Vn+ U,,

i 1

where a = Ell/F(Xl: Xl)’ Vn = n~22?[‘l/F(Xi’ Xl) - a] and Un =
n~Yn - 1)L, i¥p(X;, X;). Since U, is a U-statistic and Eyp(x, X;) = 0,

EU2=L+On‘3 and EUU=—p—+On"3,
n n2 rn m

where p = 2Ey%(X,, X,). From EV? = O(n"3?) and (4.6), we have

a+ a +
ER? = 2p +o(n"%) and ER,R,= - o(r7?),
n
where R, = n7 Y} _Wp(X;, X;) + I,. Hence from Lemma 2, (4.1) holds and
4y With bounded d is asymptotically unbiased. O

From (4.3) and (4.5) in the proofs of Theorems 4 and 5, either strongly
Fréchet differentiability or second order Fréchet differentiability implies
(nr/dN)L U2 = 0,(1) and therefore (1.4). Hence we have the following corollary.
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COROLLARY 3. If T is either strongly Fréchet differentiable or second order
Fréchet differentiable with respect to || ||,,, then vy, and ,;,, are asymptoti-
cally equivalent.

5. Extension to balanced subsampling. The computation of v, , re-
quires (Z) evaluations of 0; The computational complexity increases rapidly as d
increases. To circumvent this, 0; may be evaluated only for a collection of
subsets chosen from S, , in a systematic manner. We will show in this section
that all the results of Section 3 hold for one such scheme called “balanced
subsampling.”

Let B = {s,...,s,} be a collection of b subsets of size r satisfying the

following two properties:

(1) Every i, 1 <i < n, appears in the same number, denoted by f, of subsets
in B.

(2) Every pair (i, j), 1 <i <j<n, appears together in the same number,
denoted by A, of subsets in B.

If each subset is treated as a “block” and each i as a “treatment,” B is a
balanced incomplete block design (BIBD). Standard results for BIBD [John
(1971)] give the relations

(5.1) br = nf,
(5.2) (r=1)f=\(n - 1),
(5.3) b>n.

The relation (5.3) is called Fisher’s inequality in the BIBD literature. It
implies that the number of computations in balanced subsampling is at least n.
If b = n, such a plan is called a minimal balanced subsampling. The correspond-
ing design is called symmetric BIBD [John (1971)].

In a balanced subsampling scheme, 6, is evaluated only for those s in B.
Extensions for v, 4 and &, are, respectively,

r2

RO VRS VALY

and
2

- r . 1 A\
UBJd) = n(n—l)(f—h) Z (03‘—3 Zas) .

seB seB

They include v, 4, and &, as special cases since it is easy to show vg 4 = Uyq)
and ¥ 4, = 0,4, by taking b = (;), f= (" 4 1) and A = (";2). This scheme
was proposed by Mellor (1972) in another context.

When 6 is linear in the sense of (1.5), it can be shown by straightforward
algebra, (5.1) and (5.2) that

n

(6.4)  vpya) = Bryay = Vyay = ﬁ > (¢F( X;) - %‘;¢F(Xi))

1

2
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We now show that Theorems 1 and 3 for v, 4, (and therefore their consequences)
hold for vg, 4, for any choice of B defined above.
An analog of Theorem 1 is stated as follows.

THEOREM 1A. Under either (3.3) or (3.4), vp,,, is consistent and asymptoti-
cally unbiased.

Proor. Consider the decomposition
(5.5) Y (L+ T, a
5.5 no =c L,+ U, c= ,
Bl seB (n - 1)( f - 7\)

where L, and U, are defined in (3.5) and (3.1), respectively. From the definition
of BIBD cEse BL2 is identical to nogya) for linéar 4, which accordmg to (5.4)
has mean ¢% and converges to 62 a.s. From the exchangeability of U, in s and
(5.1) and (5.2),

E(c Y Uf) = @—_—Fr?f—_;\—)rmf = gf,.

seB

The rest of the proof is the same as that of Theorem 1. O
An analog of Theorem 3 is the following.

THEOREM 3A. Assume that (2.1) holds.

(i) Condition (3.4) is necessary and sufficient for the asymptotic unbiasedness

of VBJ(d)*
(ii) Condition (3.4) is sufficient for the consistency of vp; 4. It is also a
necessary condition if in addition {c¥, . g U?} is uniformly integrable, where c is

defined in (5.5).

ProoF. It is easy to show that

nt,
nEvgy ) = o + cE( Y LSUS) + —.
s€B d

Following the proof of Theorem 3(i), the proof of (i) is completed by noting that
Z Ls=0’ Z le]s= z LsRn,s
seB seB seB

and

o L Ly, ) = BE(LY,) - —E(qu(X )R,) = rE(6p(X,)R,) = o(1).

~ The proof of (ii) is very similar to that of Theorem 3(ii). O

The results in Theorems 1A and 3A also hold for &p,,, with the minor change
that U, is replaced by U, =R, ,— b"'Z,.gR, , and (3.4) is replaced by
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lim,_  d~'nf =0, #. = rEU2 From (5.1) and (5.2),

"(Lyg_g)
v =90 + == -0 .
BJ(d) BJ(d) d\b P s

Hence we have the following analog of Proposition 1. The proof is very similar
and therefore omitted.

PROPOSITION 1A. (i) Under (3.4), vpyqy and ¥4, are asymptotically equiv-
alent, i.e.,
(5.6) Oy = OBuay + 0p(n 7).

(ii) Under (2.1) and (3.7), (5.6) holds.

6. Some examples. Using the general results in Sections 3 and 4, we discuss
the consistency and asymptotic unbiasedness of v, in several situations.

EXAMPLE 1. Sample quantiles. Let § = T(F) = inf{x: F(x) > p} be the
p-quantile of F, 0 < p < 1. Suppose that the distribution F has a positive first
derivative at 0, ie, F'(6) > 0. Then by Ghosh (1971), the sample quantile
6 = T(F,) has the expansion

A 1z
(6.1) =6+ —2op(X) + R,y R,=0,(n""),
1

where ¢(x) = (p — I(x < 0))/F'(6) and I(A) is the indicator function of the
set A. Here
0% = E¢}(X) = p(1 - p)/(F(6))".
In Section 1, v,,, for the sample median was shown to be inconsistent.

To show that vy, is also asymptotically biased, first note that under (2.5),
nVar § — 2. On the other hand,

liminf E(nvy,,) > 02E(x§/2)2 =202 > o2,
n—oo

by following essentially the proof of Lemma 5.1.2 of Lehmann (1983). Inconsis-
tency and asymptotic biasedness for general p and bounded d can be shown by
a similar argument.

Theorem 3 can be used to explain the inconsistency of v,,. Let

R 1
R,=0_,-0—-—— Y o (X)
n—1 J*i P
Then for n =2mand i = 1,..., m,
o ~ 1 1
o = — - ) — X.
n(Rm Rn) n 0—; 0 + n¢F(Xz) n(n _ 1) Jgiqu( .I)
=nX(m+l)_X(m) 1/2-1(X;<0)
2 F'(9)

+0,(n"12).
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Since (; — I(X; < 0))/F'(0) is bounded and discrete and n(X,,.1) = X(;n))/2
converges in distribution to a random variable with a continuous distribution
(see Section 1), their sum does not converge to zero in probability. Thus (3.9) is
not satisfied. Hence v, is not asymptotically unbiased or consistent.

The previous argument shows that, in order for v,,, to be asymptotically
unbiased and consistent, d has to be unbounded. For d satisfying condition
(3.7), vy4y is asymptotically unbiased and consistent under conditions (2.2) and
(2.5) (Corollary 1 and Lemma 1). From (6.1), (2.2) is satisfied. Hence we only need
to verify (2.5). This can be done under the weak condition

(6.2) E|X,|® < oo for some § > 0 and F” exists in a neighborhood of 6.

In fact, under (6.2), the asymptotic unbiasedness and consistency of v, can be
achieved with a smaller d, since Duttweiler (1973)-proved that

2p(1 - p)
aF'(6)

Hence if d = d,, satisfies n'/?/d — 0 and r — oo, then (3.3) is satisfied and v,
is consistent and asymptotically unbiased from Theorem 1. A smaller d will
suffice if 7, in (3.2) can be shown to have an order smaller than that of §,, which
in this case is O(r~1/2).

Without condition (2.5) or (6.2), the consistency of v,,, with d satisfying
n'/2/d — 0 can be established by a different approach. See Shao (1988).

2
ER? = [ } n=%¥% + o(n~7/%%e),

EXAMPLE 2. L-estimators. Let X,..., X(,, be the order statistics of
X,,..., X,. Consider L-estimators of the form

n
0 = z CniX(i).
1

Parr and Schucany (1982) and Parr (1985) proved that for § with “smooth” Cpis
0yqy 18 consistent. On the other hand, for § with discontinuous c,; such as the
sample quantiles, v, is inconsistent as shown in Example 1. It was not known
whether v,,, works well in situations between these two extremes. In the
following we will show that Coroliary 1 can be used to handle a large class of not
very smooth L-estimators.

Most L-estimators can be written as T(F,), where T(F) = T(F) + Ty(F)
with

) k
T(F) = [+J(F(x)) dF(x) and T,(F) = La,F"(p),

where J(¢) is a function on (0,1), k is fixed, 0 <p;<1 and F ()=
inf{x: F(x) > t}. Note that Ty(F,) is a finite combination of sample quantiles.
- Since the sample quantiles were studied in Example 1, we need only consider
Ty(F,).

Parr (1985) showed that, if J(#) is bounded, continuous a.e. Lebesgue and a.e.
F~1, and zero outside a compact subset of (0,1), then T) is strongly Fréchet
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differentiable with respect to the supnorm|| ||,.. Hence v, 4, with bounded d is
consistent according to Theorem 4. If the derivative of J exists and is smooth
enough, T) is second order Fréchet differentiable (see Example 5) and therefore
Theorem 5 applies. If neither the support of J is compact nor J’(¢) is smooth,
the behavior of v, with bounded d remains unknown. However, the applica-
tion of our results for unbounded d requires weaker conditions on J. This is
stated and proved in the following proposition.

PROPOSITION 2. Suppose that § = T(F,), T(F) = [xJ(F(x)) dx and

0 < o2 = [ [J(F(x))I(F())[F(min(x, y)) — F(x)F(»)] dzdy < co.

(i) If J is bounded and continuous a.e. F~* and EX? < oo, then Oyqy With d
satisfying (3.7) is consistent and asymptotically unbiased.
(ii) Assume that J is Lipschitz-continuous on (0,1) and

(6.3) fF(x)[1 — F(x)] dx < co.
Then v, is consistent and asymptotically unbiased if both r and d — 0.

ProoF. In all cases, § has the expansion (1.7) with

¢r(x) = [[F(y) = I(y 2 x)] J(F()) dy

and
R, = [Wy p(x)[F(x) - F(x)] dx,

where W p(x) = [G(x) — F(x)] '[K(G(x)) — K(F(x))] — J(F(x)), K(t)=
J¢J(u) du if G(x) # F(x) and W p(x) = 0 if G(x) = F(x).

For (i), (2.2) and (2.5) follow from Theorem 1 of Stigler (1974). Hence by
Lemma 1, (2.1) holds and the result follows from Corollary 1.

For (ii), since o is Lipschitz-continuous, |W; p(x)| < c|G(x) — F(x)| for a
constant ¢ > 0. Therefore

ER? < ¢ [[B([F,(x) - F®)P[E(3) - F(»)I?) dxdy = O(n"%)

under (6.3). Then Theorem 1 applies since (3.3) holds when both r and d — .
O

Note that part (ii) ensures the consistency of v, for d - oo at any rate if JJ
is smoother. The conclusions of Proposition 2 may hold under other conditions
on J and F given in Stigler (1974), Boos (1979), Mason (1981), etc.
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EXAMPLE 3. M-estimators. We consider the M-functional § = T(F'), which
is a solution of

(6:4) J#(x,0) dF(x) =0,

and the corresponding M-estimator § = T(F,), where ¢ is a function from R? to
R. Here we assume that 6 is a unique solution of (6.4) and 0 < [y%(x, ) dF(x) <
oo. Examples of these estimators can be found in Serfling (1980), Chapter 7.

Reeds (1978) proved the consistency of v,,, by imposing some conditions on ¢
and F (see his Assumptions L.1-L.5). Some of his conditions are rather restric-
tive since they fail to cover some commonly used ¢ functions such as Huber’s
(1964), Hampel’s (1974) and that corresponding to the least pth power estimate
[Serfling (1980) Chapter 7]. Details can be found in Shao and Wu (1986).

It is generally unknown whether v, is consistent. For v, 4, with d satisfying
(3.7), its consistency and asymptotic unbiasedness follow from applying Corol-
lary 1, that is, to check conditions (2.2) and (2.5) for the remainder term R, of
the expansion,

6=0+ f¢(x,.,0)+R,,, o(x,0) =y(x,0)/1(0)

S|+

and
a
16) - ~E m(xl,e)].

Condition (2.2) was shown to hold under various regularity conditions on ¢ and
F in Shao and Wu (1986). The verification of (2.5) for general ¢ is more difficult.
For some specific ¢ functions, (2.5) can be verified. For example, when ¢ =
fo'(x)/f¢o(x), where fo(x) is the density function of X;, both (2.2) and (2.5) hold
[Ibragimov and Khas’'minskii (1972,/1973)] under some regularity conditions on
fo().

Clarke (1983, 1986) proved the Fréchet differentiability of T(F') in a variety of
situations. Since strong Fréchet differentiability can sometimes be obtained from
Fréchet differentiability [Parr (1985)], Clarke’s results may be useful in view of
Theorem 4.

ExXAMPLE 4. Bayes estimators. Suppose fy(x) is the density function of X,
and «(0) is a prior of 6. Ibragimov and Khas'minskii (1972/1973) proved that
the Bayes estimator §B satisfies (2.2) and (2.5) under their conditions 1-4. Hence
Corollary 1 can be used to obtain a consistent and asymptotically unbiased
variance estimator of 0.

ExXAMPLE 5. The case of bounded d.
(a) U-statistics. A U-statistic is defined to be

b (Z)*%h(xﬂ,..., X;),

where X, denotes summation over the (Z ) combinations of & distinct elements
‘i,...,1,) from {1,...,n}, & is fixed and h = h(x,,...,x,) is a symmetric
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kernel satisfying ER(X,,..., X;) < co. § is an unbiased estimator of 0 =

Eh(X,,..., X,). From Hoeffding (1948), § has the expansion (1.7) with

RX(k — 1)
n2

op(x) = RE[h(X,,..., X) —0|X,=x] and ER2= +0(n3?)

for some constant ¢ > 0. Here we only consider  with E¢%(X,) > 0. A straight-
forward calculation shows that A
R2(k - 1)% s
ER.R, - + 0(n3)

for any r = n — d with bounded d. Hence from Lemma 2, (4.1) is satisfied and
04y With bounded d is asymptotically unbiased and_consistent.

Consistency for the special case of v, was established by Arvesen (1969).

(b) Strongly Fréchet differentiable function. Several classes of strongly Fréchet
differentiable functionals are given in Parr (1985), Appendices (a)—(d). From
Theorem 4, v,,, with bounded d is strongly consistent.

(c) Second order Fréchet differentiable functional. Consider the L-functional
T(F) = [xJ(F(x))dx with continuously differentiable J(¢), ¢ € [0,1], where F
satisfies (6.3) and '

¢r(x) = [[F(u) = I(u > x)] J(F(u)) du

and
ve(x, y) = = [[F(u) = I(x 2 w)][F(u) = I(y > )] J'(F(u)) du

satisfy E¢%(X,) > 0,

(6.5) E¢%(X,) < 0 and Ey%(X;, X,) < co.

A sufficient condition for (6.3) and (6.5) is EX?2 < oo [Serfling (1980), page 288].
A similar argument to the proof of Proposition 2(ii) shows that T is second order
Fréchet differentiable. If in addition, Ey%(X,, X;) < o, then (2.5) holds. Hence
the consistency and asymptotic unbiasedness of v, with bounded d follow
from Theorem 5.

7. Concluding remarks.

Choice of subset size. For sufficiently smooth 0, the delete-1 jackknife v Ja1) 18
recommended because it has desirable asymptotic properties (Corollary 2) and is
computationally simpler. For nonsmooth 0, v say With d=2An, 0 <A <1, is
recommended because it has desirable asymptotic properties as long as condition
(2.1) is satisfied (Corollary 1). The jackknife histogram with this choice of d also
has desirable asymptotic properties [Wu (1987)]. If there exists a balanced
subsampling plan with the total number of balanced subsets much smaller than
(;), Opgcay Will be recommended because it shares the same asymptotic proper-
ties of v, and is computationally less intensive. On the other hand, a separate
software for enumerating the balanced subsets is required. If an economic
balanced subsampling plan is not available, or for other computational
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considerations, random sampling of subsets may be used. A corresponding theory
can be found in Shao (1989).

The condition (2.5): Var @ = ¢%/n + o(n™'). This condition requires
Var § < o, thus excluding some common estimators such as the ratio of means.
For the purpose of inference, one is often satisfied with estimating 02/n, the
variance of the limiting distribution of 0. It is not clear whether our approach
can be modified to handle this situation. Even when Var § < oo, verification of
(2.5) can be technically difficult. However, for some estimators such as smooth
functions of sample means (including the ratio of means), the sample quantiles
and M-estimators with some ¢ functions, by adopting different approaches, the
consistency of v, can also be established without checking (2.5). This will be
reported later.

Consistency of the grouped jackknzfe variance estimator. This method works
by dividing » into g groups each of size &, n = gh, and computing 6 ; with the
ith group of observations removed from the sample. The grouped _]ackknife
variance estimator is

g-1

I 4
1) = —
8J(h Z
) g -

(6_,—8).

It is obvious that, for the consistency of v,,, & should go to infinity as n — co.
If the group size A, which plays the same role as d in our v,,), remains bounded
and g — oo, it can be shown that v,,,, behaves asymptotlcally like vy
Therefore for nonsmooth § such as the sample quantiles, it is necessary for the
consistency of v,;,, that both g and % — oo, resulting in a more stringent
requirement on the sample size n = gh. Computational saving seems to be the
main reason for adopting this method. The same can be achieved by balanced

subsampling, which has better asymptotic properties.

Extension to the multivariate case. For vector = (01, ), Uyqy and
vpya) have the obvious extension with 6, and § meaning vectors instead of
scalars. The proofs of asymptotic unblasedness and consistency for each variance
or covariance component of v, are the same as before.
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