The Annals of Statistics
1989, Vol. 17, No. 3, 1157-1167
UNIFORM CONSISTENCY OF THE KERNEL CONDITIONAL
KAPLAN-MEIER ESTIMATE!

By DoroTA M. DABROWSKA

University of California, Los Angeles

We consider a class of nonparametric regression estimates introduced by
Beran to estimate conditional survival functions in the presence of right
censoring. An exponential probability bound for the tails of distributions of
kernel estimates of conditional survival functions is derived. This inequality
is next used to prove weak and strong uniform consistency results. The
developments rest on sharp exponential bounds for the oscillation modulus of
multivariate empirical processes obtained by Stute.

~

1. Introduction. Let T be a nonnegative random variable (rv) representing
the survival time of an individual taking part in a clinical trial or other
experimental study and let Z = (Z,,..., Z,) be a vector of covariates such as age,
blood pressure and cholesterol level. The survival time T is subject to right
censoring so that the observable rv’s are given by Y = min(T, X), D = I(T < X)
and Z. Here X is a nonnegative rv represeriting times to withdrawal from the
study. Denote by F(t|z) = P(T > t|Z = z), H(t|z) = P(Y > t, D = 1|Z = z) and

Hy(t|z) = P(Y > t|Z = z) the respective conditional survival functions and let

(1.1) Atjz) = — fo 'F(s — |z) " dF(s|z)

be the conditional cumulative hazard function associated with F(¢|z). In terms of
the cumulative hazard function we have

(1.2) F(t|z) = s];[t{l — dA(s|z)}.

This is the well known product-integral representation of distribution functions;
see for instance Gill and Johansen (1987), Gill (1980) and Beran (1981). To avoid
trivial cases it is assumed throughout that p = P(D = 1) satisfies 0 <p < 1.
Furthermore, it is assumed that 7' and X are conditionally independent given Z,
which is a sufficient condition to ensure identifiability of A(f|z) and F(¢|z).
Specifically, for any ¢ such that Hy(¢|z) > 0 we have

A(tz) = = [ (Hy(s = 12) " dHy(s12).

Let (Y;, D,,Z)), j , n, be a sample of ii.d. rv’s each having the same
dlstnbutlon as (Y D Z) To estimate the subsurvival functions H(¢|z) we use
Nadaraya-Watson type kernel estimates of the form H, (tz) = 8(z)” 1A, (L, 2)
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1158 D. M. DABROWSKA

where

1(Y;> ¢, D, = 1)K (a; (z - 2;)),

ﬁl(t’z) = (nag)_l

n
j=

Hy(t,2) = (naf) ™" ¥ I(Y; > )K(a;'(z - Z,))
J=1
and g(z) is the Parzen-Rosenblatt [Pérzen (1962); Rosenblatt (1971)] density
estimate

4(z) = (nag)™" éK(a;‘(z -Z))).

Here K is a kernel function and a, is a band sequence. These estimates were
extensively studied in the literature; Nadaraya (1964), Watson (1964),
Rosenblatt (1969), Collomb (1981), Devroye (1981) and Mack and Silverman
(1982) are some references. Following Beran (1981), A(¢|z) and F(t|z) are esti-
mated by

(1.3) A(Yz) = — 0’%
and
(1.4) F(tz) = TT{1 - dA(s|z)}.

s<t

Both A( t|z) and F( t|z) are right continuous functions of ¢ with jumps occurring
at discontinuity points of ﬁl( t|z). Note that in the homogeneous case, (1.3) and
(1.4) are simply the Aalen-Nelson [Aalen (1978), Nelson (1972)] and
Kaplan-Meier (1958) estimates.

We develop an analogue of the Dvoretzky-Kiefer—Wolfowitz (1956) inequal-
ity providing an exponential bound for the tails of the distribution of the
estimate F(¢z). This bound is next used to establish weak and strong uniform
consistency of this estimator. The results rest on sharp exponential bounds for
the oscillation modulus of univariate and multivariate empirical processes ob-
tained by Stute (1982, 1984a).

For uncensored data, conditional empirical processes were studied among
others by Stute (1986a, b) who considered pointwise consistency and weak
convergence results for estimates based on kernel and nearest neighbour weights.
Horvath and Yandell (1988) obtained functional laws of the iterated logarithm
and rates of Gaussian approximation. For censored data, the conditional Aalen—
Nelson and Kaplan-Meier estimates were discussed by Beran (1981) and
Dabrowska (1987a), who showed their pointwise consistency and, respectively,
weak convergence to a time transformed Brownian motion.

2. Main results. In what follows, for any rectangle I = I19_, [a,, b;] in RY,
I denotes a (small) 3-neighbourhood of I of the form I; =T19_, [a; — &, b; + 8].
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Further, we write || f||5 = sup{|f(¢,2)|:0 < t < 7,z € I} for any real function
f(t,z) = (¢, z,,..., 2,) on [0, 7] X I, where 7 < oo.

To obtain an exponentlal bound for the tails of the distribution of F(t|z) we
shall use a variance-bias type decomposition

F(tiz) - F(tlz) = [F(tz) — F(t]2)] + [F,(t]2) - F(¢]2)],
where F,(t|z) is defined by (1.2) with A(#|2) replaced by

¢ dHy,(s|z)
A0 = = [ (e - )

Here H, (t|z) = g,(z) 'H,,(¢,2), i = 1,2, and

H,(t,2) = ¢, [H(tw)K(a;'(z — w)) dG(w),

g.2) = a;% [K(a;'(z — w)) dG (w),

with G being the joint cdf of Z. The functions H,,(¢|z) and F,(t|z) are determin-
istic and can be thought of as smoothed versions of the original subsurvival
functions H,(t|z) and F(¢|z). Theorem 2.1 below provides an exponential bound
for distributions of the random term F(t|z) — F, (tzZ).

Throughout we require the joint distribution of Z,’s to have a density g
with respect to Lebesque measure. The marginal cdf’s and densities are denoted
by G; and, respectlvely, g, J=1,...,q. Further, let Cy(u,,...,u,) =
P(G,; (Z) <uj, j=1...,9). G is a cdf with uniform marginals satlsfylng
CO(GI(zl), s Gy(2y) = G(zl, , 2,) and its density is given by

q
(2.1) co(u) = g(Gfl(ul),...,Gq_l(uq))/j];Ilgj(Gj_l(uj)).
The following assumptions will be needed.

AssuMPTION A. (i) If I=T119_,[a,, b;] is a rectangle contained in the sup-

port of g, then
0 <y = inf{g(z), g,(z,):z € I;} < sup{g(z), g;(z,):z€L;} =T < 0

for some 8-neighbourhood of I. Moreover, 0 < 8T < 1 and sup{c,(u):u € I} =
T, < oo, where I§ is a 8T-neighbourhood of I¢ =T1;_,[G/(a;), G(b))]. For
O<t<m, 1nf{H2(fr|z) zel} >0>0.

(ii) For z € I; the functions g(z) and H,(t|z), i = 1,2, have bounded continu-
ous first partial derivatives with respect to z; and the derivatives of g(z) are

bounded away from zero.
(iii) The same conditions are satisfied by the second derivatives.

Condition A(i) will be used to develop exponential bounds for the tails of the
distribution of F(#|z) — F,(t|z). This condition says that essentially we consider
only the central portion of the distribution of Z’s. The assumption that Hy(7|z),
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z € I, stays bounded away from zero is imposed to avoid problems with the
tails of the conditional subsurvival functions. Conditions A(ii) and (iii) will be
needed to ensure asymptotic unbiasedness of the estimator in consistency results.

As for the kernel K, we assume that K is a density with bounded support and
is a function of bounded variation in the sense of Hardy and Krause [see, e.g.,
Hildebrandt (1963)]. Without loss of generality we assume

AssUMPTION B. (i) K is a density vanishing outside (—1,1)? and the total
variation of K is less than A, A < co.
(ii) The kernel K satisfies [u;K(u)du =0, j=1,...,q.

The assumption that K is a probability kernel implies that H(tz) and F(t|z)
are proper (sub)survival functions, i.e., nonnegative and nonincreasing in ¢.
Condition B(ii) will be needed in the strong uniform consistency result to ensure
asymptotic unbiasedness of the estimator.

THEOREM 2.1. Suppose that the conditions A(i) and B(i) hold. Let 0 <
a,<1 and 0<e<1 satisfy 0<a,<8min(1,1,/T), 216 < e8°naly/\ and
eo = 0%y(L,I'IN) ™! for some finite e, > 0. There exist constants d,, d, > 0 [not
depending on n, a,, ¢ or the distribution of (Y,, D, Z;)] such that

P(nﬁ - E|7> s) < dla;"exp{ —d282nag} .

Note that if log a,, 9/nag — 0, then for n > 0 such that d, — n > 0 there exist
constants d{, dj > 0 such that for n sufficiently large

d,a; 9 exp{ —ne*0%nal}exp{ — (d; — )e*0®nal} < dy exp{ —d3e?0%°nag}.

This shows the connection with the Dvoretzky-Kiefer—Wolfowitz (1956) in-
equality even better.
Theorem 2.1 can be used to derive uniform consistency results.

COROLLARY 2.1. Suppose that the conditions A(i)) and B(i) hold and let
a, = 0 and nal - .

@) If a,%exp{—pnal} - 0 for all p > 0, then \F - Fli—, 0.
(i) If in addition Ta, 9 exp{—pnad} < oo for all p > 0, then |F — F,||; - 0
a.s. -

(iii) If A(ii) holds, then ||F, — F||5— 0.

The first two parts follow directly from Theorem 2.1, whereas part (iii) follows
from a one-term Taylor expansion of H,(¢|z) — H,(¢|z), i = 1,2, and integration
by parts applied to F,(t|z) — F(¢|z). Note that condition (i) is satisfied if
na?*t > 0 for some & > 0. Condition (ii) holds if log n/na? — 0.
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COROLLARY 2.2. Suppose that the conditions A(l) and B(i) hold and let
a, — 0 and nal - .

i) If b, =loga, "/na" - 0, then ||F — F,||7= Op(b}/?).
(i) If in addition £ a% < oo for some &> 0, then |F — F,||7= O(bY?) as
n — oo with probability 1.
(iii) If A(iii) and B(i) hold and nad** — 0, then b;/?||F, — F||; - 0.

This follows from Theorem 2.1 applied to e =¢,={b,(1 + &)/d,}'/? for
arbitrary £ > 0 in part () and & = ¢ in part (ii). Part (iii) follows from a
two-term Taylor expansion of H, ((t|z) — H(t|z). If we let a, = n™* for some
a > 0, then the condition for weak and strong uniform conSIStency with rate b./2
isl/(g+4) <a<l/g.

Corollaries 2.1 and 2.2 can be used to derive consistency results for functions
that are supremum norm continuous. In particular, assume Condition A and
consider the truncated mean m(r;z) = [J F(t|z)dt. If m(r;z) = [ F(t|z) dt,
then, uniformly in z € I, m(7;z) — m(7;z) = o(1) as. if logn/nag —» 0 and
ru(r;z) — m(t;z) = O(b/?) as. provided nal** — 0 and loga,9/nag — 0.

For uncensored data, the results of Theorem 2.1 and Corollaries 2.1 and 2.2
remain valid when the survival time assumes values on the whole line. In
particular, the probability bound of Theorem 2.1 is d{a;?exp{ —d4e’nal} for
some d;, dj > 0 provided 0 < a, < dmin(1,1/T) <1,0<e<1,4 < enalyA™!
and e, > ey(T,;y?\) ! for some e, > 0. If T has a finite 7 th moment, r > 1, then
a truncation argument similar to Mack and Silverman (1982) can be used to
establish conditions for uniform consistency of the mean regression.

A drawback of kernel smoothing is that it requires absolute continuity of the
distribution of the covariates. If instead we assume only that the joint distribu-
tion of Z’s is continuous, then we can resort to Stute’s (1984b, 1986b) nearest
neighbour estimates. Analogues of Theorem 2.1 and Corollaries 2.1 and 2.2 are
given in Dabrowska (1987b). In practice we often have to deal with discrete
covariates such as sex or type of treatment among m possible treatments. If
the covariates assume say !/ values, then F(|z;) is an ordinary Kaplan-
Meier estimate based on the n; observations for which Z; =z, j=1,...,L
Assuming inf; Hy(|z;) > 6 > 0, the Bonferroni inequality implies that given
the numbers n,

o~

sup |F(t|z;) — F(t|z;) > e/l)

J=1 (Osts-r

A
o
N

P( max sup |F(t|zj) — F(tz;) > e) <

J O<t=<r

L
Y d, exp{ —d282025l'2nj}

=1

IA

<, exp{ —d,e%0%172 minnj}
J

for some constants d,, d, > 0. Here the second inequality follows from the
Dvoretzky-Kiefer—Wolfowitz (1956) inequality and (4.1) and (4.3).
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3. Preliminaries.

3.1. Local deviations of empirical processes on the unit cube. Our proofs rest
on finite sample tail estimates for the oscillation modulus of univariate and
multivariate empirical processes developed by Stute (1982, 1984a).

Let C(v,u), v = (v,,..., g,) and u = (y,,..., Ug,) q1 20, g, > 1, be a cdf on
[0,1]% "9 with uniform marginals and let C, be the empirical cdf corresponding
to a sample of size n from C. For any rectangle T c [0,1]%*%, let C(I) and
C(I) denote the C — and the C, — measure of I and let a,(I) = C(I) — C(I).
Given 0 <v;<1,i=1,. ,ql,and0<u1<uj2 L j=1...,q9let I, =
Iy, [0, 1] X T192,[u ), uﬂ] For a = (ay,...,a,) €[0,1]% deﬁne the oscilla-
tion modulus N

wn(a) =n!/ Sup{la ( u)l 0< v; <1, |uj2 - ujll =< aj},

where i =1,...,q, and j=1,...,9,, ¢, 20, g, > 1. Set p(a) =supC(], ,)
where supremum extends over the rectangles involved in the definition of w,(a).
If no assumptions on C are made, the bound p(a) is equal to min a;. If the last
g, marginals of C have a bounded joint density c,(u) with respect to Lebesgue
measure on [0,1]%, then p(a) = [I1%2, a,, where T, = sup cy(u). The following
lemma will be useful.

LEMMA 3.1. Let s satisfy 2 < sn*/? and e,n*/?(a) > s for some finite e, > 0.
There exist constants e,, e, > 0 (not depending on n, a, s or the distribution C)
such that P(w,(a) > s) < e,(min a;)~ % exp( —e2sz/p(a)}.

For g, = 0, the result corresponds to Theorem 1.7 in Stute (1984a). For
g, > 0, a simple modification of the proof of this theorem is needed; see Section
5. Further, note that a variant of the lemma remains valid when the supremum
in the definition of w,(a) is restricted to rectangles I, , contained in some fixed
rectangle I c [0,1]%" %2,

3.2. Copula functions. We return to the framework of Section 2. Let

Mx, t,z) = P(D; = x,Y, < t,Z; < 2), M(t,z)=P(D;=1Y,<¢Z < 1),
My(t,z) = P(Y, < t,Z; < z) and let Ml,,, M,, and M,, be the corresponding
empiricals. (Here Z; < z means Z;; < z,, j=1,...,q.) Under Assumption A(i)

the marginals of Z,;’s are continuous. The first marglnals of M, and M, are
arbitrary, while the ﬁrst marginal of M is purely discrete assigning mass 1 — p
tox =0and p tox = 1, where p = P(D = 1), 0 < p < 1. Note also that M, is
a subdistribution function. We shall find it convenient to replace these cdf’s by
continuous cdf’s. The idea is to spread the jumps uniformly over intervals that
will be inserted at each jump point [see, e.g., van Zuijlen (1978) for the discussion
'of the technique involved].

Let {£,: m =1,2,...} be the set of discontinuities of H, and let {p,: m =

2,...} be the corresponding heights of jumps, ¥ p,, < 1. Define transforma-
tions ¢¥(x) =x + (1 — p)I(x > 0) + pI(x > I) and ¢3(t) =t + X p,I(¢t > §,,).
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Furthermore, let {U,:m =1,2,...,i=1,...,n} and {V,:m = 1,2,
i=1,...,n} be mutually independent sets of uniform (0,1) rv’s independent
of the sample (D, Y;,Z;), i=1,...,n. Define new variables D* =

(D) + A = p)Vyy(1 = D)) + pVy,D; and Y;* = ¢3(Y) + L pUpnil(Y; = £,0)-
Let M* and M,* be the joint cdf’s of (D, Y;*,Z;) and (Y;*,Z,), respectively,
and let M;* and M be the corresponding empiricals. Clearly, M;* and M
have continuous marginals and it can be easily verified that My(x,t,z) =
MX*(o¥(x), ¢3(t),z) and My(¢,z) = M,*(p35(t),z), and with probability 1, the
same relationship holds among the empiricals.

Following Stute (1984a), we shall use a representation of M* and M,* in
terms of the so-called copula or dependence function. Let H* and H,* be the
first marginals of M;* and M,*, respectively. The copula functions pertaining to
M* and M,* are cdf’s C, and C, defined on [0,1]7"? and [0,1]9*", respectively,
satisfying M *(x*, t*, z) = C,(H*(x*), H¥(t*), G(z)) and M*(t*, z) =
Cy(H*(t*), G(z)) where G(z) = (G(2y),.-., G (2,)). Furthermore, if C,, and C,,
are empirical cdf’s corresponding to C, and C,, then with probability 1,
Mi(x*, t*,2) = C,(H¥(x*), H¥(t*),G(z)) and M%(t*,2) = Cy,(H(t*), G(2)).

Let us return now to the original processes M; and M,. Let B, = M,, — M,
and a,, = C,, — C;, i = 1,2. It follows now that if I = [¢,, t,] X I19_,[2,, 2,,] is
a rectangle in RY*!, then with probability 1,

(3.1) Bin(I) = ay,(Jo X J) and By, (I) = ap,(J),
where
Jo = [H*(1(1 -)), H*(¢7(1))]

and
J = [Hp (3(6, -)), Hr(93(83))] X rI (6,2, 6,(2,2)].

In conjunction with Lemma 3.1, this representation will be used to compute the
oscillation modulus of B,,, i = 1,2.

in’

4. Proof of Theorem 2.1. Let ©,, be the event Q,, = {inf Hy(t — |z) >
0/2,0 < t < 7,z € I}l. Under Assumption A(i), we have

P(Q5,) < P(SUP(ﬁz(t — |2) — Hy,(t - |z)) > inf H,,(t — |z) — 0/2)
< P(|\H, — Ha,ll; > 6/2).

Further, for 0 <t <rand z € I,

F(tlz) = T1(1 - dA,(s]z))

(4.1)

(4.2) - dH,,(s|z)
> :3[;[:(1 + m) = H,,(t|z) > 0.

The second equality follows from the product-integral representation of survival
functions given in (1.1) and (1.2). Proposition A.4.1 in Gill (1980), page 153,
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integration by parts [see Shorack and Wellner (1986), page 305] and (4.2) yield
on the event Q

1n
IF = F,ll; <9607 A — A3
< 180 *(|| H, — Hy,|I} + 2I1H, — H,,|I7}.
Combining (4.1) and (4.3), we get
P(IF ~ F,I7 > €) < 2P(|H, — H,,||; > e6°/54) + 2P(|| Hy — H,,||} > ¢0°/54)

and clearly it is enough to consider the subsurvwal functlons only.

For this purpose set A,(t,z) = H, (t,z) — H,(t,z), i=1,2, and A, (z) =
A, ,(0,2) = g(z) — g,(z). Under Assumption A(1), 8,.2) = vy for z € I and all n.
Consider the event Q,, = {inf 2(z) > v/2,z € I}. We have P(Q5,) <
P(||A,,|l7 > v/2). Further, on the event Q,,,

I1H; = Holl; < v~ (1AM + 1As017) < v (1A05 + | Agall7)-
Combining yields
P(||H, - Hy||7 > 8°/54) < P(||A;ll7 > e8%Y,/108) — 2P(||A,,[I7 > e8%y,/108).
Define

(4.3)

q
I(t,z,u) = [t,0] x || [min(uj, z;), max(u;,z;)].
J=1
Integration by parts [Hildebrandt (1963)] yields, after some algebra,

Ain(t,2) = a9 [1(y > £)K(a, (2 = ) dB,(y,u)

(4.4)

=q 9
=a,

JBulX(t,25w)) dK (a; (z — w)) |,

where integration is restricted to those u-values for which zi—a,<u;<
z;ta, j=1,...,q9. Set

q
J(s,v;w) =[s,1] x ]—[ [v; + min(0, w;), v; + max(0, w;)]

and let J; be defined as in (3.1). If s = Hy*(¢3(t — )) and v; = G(2,), then, after
a change of variable in the right-hand side of (4.4), we obtam from 3.1),

Ain(t,2)] < a3 flagu(y X I(s,v; W)l [dg(w)] if i = 1

< a, flaga( (s, v; W)l [dy(w)] if i = 2.
Here integration is restricted to those w-values for which
G(z;—a,) —G(2) <w;<G(z;+a,) - G(z;), Jj=1,...,q.

Further, y(w) = K(W) and w/ = (z; - G; Nw; + G(2))))/a,, j=1,...,q.
Under Assumption A(i) by the mean value theorem G (2, + a,) — Gi(z;) <
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Ta, and Gi(z; - a,) - G(Z)) > —va,, so that |w| <Ta, j=1,...,q.
Moreover, the density cy(w) given by (2.1) is bounded on the rectangle
IT9_,[G{(a;) — 8T,G,(b;) + 8T] by I,. Lemma 3.1 applied with ¢, = 2, ¢, = g,
a=(a,...,a,), a;=Ta, and s = ¢0°yA"'n'2a2/108 entails
P(]|A,,]l7 > €857,/108) < e,T %, 9 exp{ —e,y2A 2T 1T ~%20%nag,/11664 }
for some constants e, e, > 0. The same choice of g,, a and s but ¢, = 1, yields
P(||A,,lI7 > e0%7/108) < e,I'~%a;, 9 exp{ —e,y>A\ 2T, 'T ~%20%nag)

for some e;, e, > 0. The conclusion of the theorem follows by setting d, =
12T ~?max(e,, e,) and d, = min(e,, e,)y?A\ 2T, 'T'~7/11664.

5. Proof of Lemma 3.1. The proof rests on a modification of arguments
used in the proof of Theorem 1.7 in Stute (1984a). We consider first the case of

g, =1
Choose 0 < § <  and let b,,..., b,, a < } be such that C(1, ,) < 8/4, where

) ql’
vV =(0y...,0,) and I,  =T1% ,[v;,1] X [0, u]. By Lemma 1.2 in Stute (1984a),
there exists ¢ = ¢(8) such that for all s >0, 2 <sn'/?C(I,_, )% 1—-b=
(1= by,...,1 — b,) and 32 < s28%(1 — 28)%,
Psup 'l (1, )| > s(C(1-1,0)) ")
< o(8)P(n e, (I, _y, o)l = s(1 = 28) " 1C(1, 4, ,)%).

The supremum on the left-hand side extends over v such that 1 — b, < v, < 1,

i=1,...,q, and 0 < u < a. It can be verified that this inequality remains valid
for b;= --- = b, = 1. Replacing s by s(C([0,1]% X [0, a])"'/?) = sa™/* we
obtain

P| sup n'?a,(I, )| >s| < c(8)P(n'2a,(1,...,1,a)| > s(1 — 26)**")
0< ,'Sl
OsZsa

provided 2 < sn'/?, 32a < s28%(1 — 28)% and a < 1. By Bernstein’s inequality,
the right-hand side is bounded from above by
2¢(8)exp{ —s2(1 — 28)**%/2a(1 + e(1 — 28)**"/3)} < ¢{ exp{ —ess%/a)

for some e{, e > 0 depending on 8§ and e,.
We proceed next in a fashion similar to the proof of Lemma 2.4 in Stute
(1982). Let R be the smallest positive integer satisfying §%a/4 > 1/R. Then

R-1
P(wn(a) > S) =< Z P( sup n1/2|an(Iv,u+i/R) - an(Iv, i/R)l > S/(l + 8)

i=0 O<p;<1
O<u<a
R-1
1/2
+ 2 P| sup n' |0‘n(Iv,u+i/R) - "‘n(Iv,i/R)I
i=0 0<y<1
O<u<1/R

>s8/(1+ 8))
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Since 1/R < a < §/4, we can apply the exponential bound to both sums to
obtain

P(w,(a) > s) < Re{ exp{ —ess2/a(1 + 8)2} + Re; exp{ —e§s282/(4a(1 + 8)2)}
< 2e] exp{ —e3s%%/(4a(1 + 8)2)}

provided 2 < sn'/2, 32a < s26%(1 — 28)% and a < §/4. Under assumptions of the
lemma, since e, and e, are left unspecified, we can assume without loss of
generality that the last two growth conditions are satisfied. The conclusion
follows by setting e, = 2e{ and e, = e4862/(4(1 + 8)?).

For g, = 2, the proof is similar to that of Theorems 1.5 and 1.7 in Stute
(1984a). An induction argument shows that the lemma remains valid for arbi-
trary q,. :
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