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RIGHT CENSORING AND MARTINGALE METHODS
FOR FAILURE TIME DATA

BY MARTIN JACOBSEN
University of Copenhagen

Statistical models are considered for (partial) observation of indepen-
dent, identically distributed failure times, subjected to censoring from the
right. A minimal class of censoring patterns is determined under the assump-
tion that the failure intensities are as they would have been without censor-
ing. This class is then used to discuss the statistical models for right censored
survival data, where, e.g., the Kaplan—Meier estimator exploits all available
information about the failure time distribution. The counting process descrip-
tion of survival data is used throughout. *

1. Introduction. When Kaplan and Meier [9] introduced the product limit
estimator for an unknown survivor function based on observation of a sample of
failure times subjected to right censoring, they primarily had in mind the
situation where the censoring times are stochastically independent of the failure
times. They included however ([9], Section 3.2) a brief discussion of what may
happen if this independence is not valid, and in particular they stress the
dangers of using the product limit estimator in such cases.

Of course later a host of nonparametric models were introduced, with depen-
dence between failures and censorings, where it is still natural to use the
Kaplan—Meier estimator or its twin, the Nelson—Aalen estimator, when estimat-
ing the integrated hazard rather than the survivor function (Nelson [11]; Aalen
[1]). Discussions of these models may be found in Kalbfleisch and Prentice ([8],
Chapters 3 and 5) and Gill ([4], Chapter 3). The common structure pertaining to
all these models is that the dependence between failures and censorings must be
such that, phrased quite informally,

S) past observations do not affect the probabilities of future
failures

where “observations” mean observed failures and observed censorings.

A breakthrough in the conception of models for censored survival data came
with Aalen’s [1] formulation in terms of counting processes and his demonstra-
tion that the classical models had the multiplicative intensity structure intro-
duced by him. Using counting processes and their compensators (intensity
processes), one is provided with an ideal tool for formulating rigorously what is
meant by the informal statement (S) above. Gill [4] in particular used this
framework for his study of censoring patterns, and it is also the backbone of the
present paper.
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1134 M. JACOBSEN

Following [8, 4], the basic assumptions made here are (i) that the failure times
are independent and identically distributed and (ii) that the distribution of
observed failures and censorings is such that the intensities for individual
failures have Aalen’s multiplicative structure. These conditions of course only
partially specify a model for the observations: What is lacking is precisely a
description of the interplay between failures and censorings. The main results
below now characterize a minimal class of censoring patterns, which are compati-
ble with (i) and (ii). Formally, the class is described using conditions on the joint
distribution of all failure times (observed or not) and observed failures and
censorings. The class is then shown to be minimal in the sense that there is a
one-to-one correspondence between these joint distributions and the class of all
(marginal) distributions of the observations alone that agree with (i) and (ii). The
class appears to contain all censoring systems studied in the literature.

In Section 2 we introduce the counting process setup used throughout the
paper and also formalize the problems to be solved in the following sections.
Section 3 contains the definition of the minimal class of censoring patterns and a
number of distributional results, valid for every member of the class. Based
on the concept of informative versus noninformative censorings (see [8], page
121), the results are used in Section 4 to characterize the statistical models for
which the Nelson-Aalen estimator exploits all information about the failure
time distribution available from the observations.

2. The counting process description of right censored data. Consider
the usual setup for observing independent and identically distributed failure
times (lifetimes) subject to censoring from the right. More precisely, let
X,,..., X, be iid. and let U,,...,U, be the censoring times with all X, U,
strictly positive. Then the observations consist of the pairs

(T‘,:,Si), i=1,...,n,

where T, = X; A U; and §; = 1x .y, is an indicator showing whether T; is the
failure time X; (§; = 1) or the censoring time U; (§; = 0).

The statistical problem is to estimate the unknown distribution of the X; on
the basis of the observations (7}, §;) alone.

For all censoring patterns to be considered in this paper, it will be assumed
that the distribution of the observations must be compatible with the assump-
tion that the X; are independent and identically distributed. In doing this we are
making at least some assumptions about the distribution of the unobserved
lifetimes. On the other hand, the unobserved censoring times (corresponding to i
with §; = 1) we shall consider irrelevant, and to avoid any confusion about what
they might or might not have been, we shall henceforth make the following
assumption, which we list together with the above condition on the X;:

The failure times Xj,..., X, and censoring times U,,...,U,

(D) are strictly positive, possibly infinite, random variables such
that U; = o whenever U, > X;, and such that the X; are
independent and identically distributed.
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Note that with assumption (D) in force, we may write
(8;=1) = (U;= »).
From now on we shall assume the unknown distribution of the X; to be
absolutely continuous with unknown hazard p, i.e.,

P(X,>t) = exp(—fO‘p(s) ds).

For simplicity we write G, or just G for this survivor function and F=1-G,

for the distribution function. Also, for s < ¢ we write

G,(2) ‘
= exp| — u)du
ey~ | ) e
for the conditional survivor function P(X; > #|X; > s) and denote by Q, or @
the joint distribution of X,..., X,,

Q.B) = P((X,,..., X,) € B).

It will be convenient for us to assume that [fu(u)du < co for all ¢ [This is
not essential, but if ¢*= inf{¢: ffu = 00} < oo, much of what is said below will
be valid only on the time interval [0, t*).] We shall however not assume that
fr = oo, so the X, are allowed to take the value +oco. Apart from the
conditions 0 < U, < X; or U, = o no restrictions whatever are placed upon the
possible values for the censoring times; in particular, two or more of them may
coincide or coincide also with one of the failure times. (Of course, with a
continuous distribution for the X, all finite X, are distinct.) Notice that the
model with i.i.d. failure times and no censoring is obtained by defining U, = o
for all i.

The statistical problem to be discussed is that of estimating the integrated
hazard [ju or the survivor function G,. More specifically, we shall discuss
censoring patterns that allow one to use the Nelson—Aalen estimator as estima-
tor of the integrated hazard and the Kaplan-Meier estimator as estimator of G,.

Recall that with N the counting process

G,(ts) =

(2°1) N(t) = Z l(X,«st, 5;=1)
i=1
and |R(¢ — )| the number of individuals at risk immediately before ¢,
(2°2) |R(t ")| = Z l(T,zt),
i=1

the Nelson-Aalen estimator (Nelson [11]; Aalen [1]) is given by the stochastic
integral

2.3) ﬁm=&ma%wm“)

and the Kaplan—-Meier estimator [9] by the product integral

@4 6= TI (1-f@) - TI (1 Ws))

0<s<t O<s<t |R(s )]
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The simplest situation where it is reasonable to use the estimators (2.3) and (2.4)
is the model for random censorship where the X, are i.i.d. with hazard p and the
U, are mutually independent and independent of (Xj,..., X,). [With (D) in
force, the description is different, but still very simple.]

On the other hand, it is easy to construct formal censoring patterns, where it
is absurd to use the estimators (2.3) and (2.4): If U, < X for all i, (2.3) and (2.4)
degenerate since no failures are observed. As a concrete example, consider
U, = 1X,, in which case it is of course obvious which estimators should replace
(2.3) and (2.4). Clearly, the censorings in an explicit manner anticipate future
failures and this is precisely what must not happen if (2.3) and (2.4) are to make
sense.

We shall now describe how the observations (T),$9,),...,(T,,5,) may be
viewed as a multivariate counting process and how the distribution of the
observations is given in terms of the corresponding intensity process (compensa-
tor).

This counting process approach was initiated by Aalen’s [1] definition of the
multiplicative intensity model and his observation that some relevant models for
right censoring appear as special cases. This in turn led to Gill’s work [4], which
is a main reference for counting processes and censoring and the main reference
for this paper.

Consider a collection of failure times X, ..., X,, and censoring times U,, ..., U,
satisfying (D). In particular it may be assumed that all finite X; are distinct.

To observe (T}, §,), . ; . » is equivalent to observing the occurrence in time of a
sequence of events. The possible events consist in either a failure simultaneously
with a number of censorings or in the occurrence of one or more censorings (but
no failure). We shall give each event a name (mark) and collect the names in the
type set (mark space)

E={(i,A):1<i<n, Ac{l,...,n}\ {i}}
U{(e,B): @ #* BC {1,...,n}}
with (i, A) the name of the event “failure for i, all j € A censored” and (¢, B)

the name of the event “no failures, all j € B censored.” For each y € E we
define K(y), the set of individuals involved in y, by

o (i

In finite time a random number (< n) and a random selection of events are
observed. Let 7, be the time of occurrence of the £th event and let Y, be the
name of the event. If precisely m events, 0 < m < n, are observed on (0, o0), we
have 0 <1 < -+ <1, < 0. Define 7,,,= -+ =1,=o00 and leave
Y, ..., Y, unspecified.

Let N” be the counting process which at time ¢ equals 1 if the event with
name y has occurred in (0,¢] and O otherwise. Then N =(N”), .y is a
multivariate counting process and with %, the o-algebra generated by (N(s)); -,
we may write in an essentially unique fashion

NY = M7 + A,
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where M7 is a right continuous #,martingale for each y and A” is predictable,
right continuous and increasing, A%(0) = 0; cf. Jacod [6] or, for the special case
of absolutely continuous compensators, Jacobsen ([5], Section 2.2). [Some proofs
below will use the following definition of predictable processes: A process (Z,), o
is predictable if it is measurable and for every t > 0, Z, is %,_-measurable, where
Fo_=%, and ZF,_= o(N(s))y < <, Otherwise, any standard definition will do.]

Occasionally it will be convenient to view each A” as a positive random
measure on [0, ), identifying for each ¢ the measure of the interval [0, ¢] with
the process value A”(t).

The distribution of N is uniquely determined by the compensator A =
(A?),cr as may be seen from the following expression (cf. [5], Proposition
2.5.13): Introduce the total intensity

A= Y A
yeE
and consider the infinitesimal event that on (0, ¢] precisely m jumps occur at
times in dt,, ..., dt,,, the kth jump occurring in component y,. The probability
of this event is

P(redt,Y,=Y,.c., T, € Atpy Yoo = Vs Tiy1 > L)

m
(2.6) = TI (1 - A(ds,w)) [T A*(dt,, w),
O0<s<t k=1
s#1,
where w is any sample path for N which on [0, ] jumps at the time points
ty...,t, in components y,..., ¥,. [Because A is predictable, the infinitesimal

neighbourhoods dt, should be thought of as intervals (¢, — dt,, ¢,] to the left
of t,.]

NoTE. Adding up infinitesimal probabilities like (2.6) shows in particular
that for any F € %, P(F) is determined by the behaviour of A on F.

As a multivariate counting process, N has a special structure. More specifi-
cally, each component has at most one jump and if jumps in components y, y’
are observed, then K(y) and K(y’) are disjoint. Defining W as the space of all
sample paths w for N with these properties and defining N,(w) = w(¢) and
F, %, F#,_ as o-algebras of subsets of W, we introduce

2.7. DEFINITION. A (canonical) failure-censoring process is a probability on
(W, #).

In the sequel, failure-censoring process is abbreviated FC-process.
We shall need some more notation:

Ni — ZN(i, A)
A
registers the failure of i, the sum extending over all A c {1,..., n}\ {i}, and

N= Y N
i=1
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counts the total number of failures; cf. (2.1). The compensators for N, N are
A=Y A A=Y A
A i

With the standard convention inf @ = oo, introduce the observed lifetimes
X* = inf{t: N(¢) = 1}

and note that because of convention (D), the censoring times U, themselves may
be given a similar description. In particular all X* and U, are stopping times
with respect to the filtration (.%,).

At each time point ¢, the collection (1,..., n} of individuals splits into three -
disjoint sets, the risk set R(t — ), the censoring set C(¢ — ) and the observed
failure set D(t — ), where .

R(t=)={i:U>t, X* > t},

C(t-)={i:U<t},

D(t-) = {i: X;* < t}.
Each of these random sets is %, _-measurable, for instance R(¢ — ) is the set of
individuals at risk immediately before ¢ For ¢ = 0 we obtain the set of

individuals always at risk R(c0), the set of censored individuals C() and the set
D(o0) of individuals observed to fail. Occasionally we shall use

R(t+)={i:U>t, X*>t}

and the analogues C(¢ + ) and D(¢ + ).

Note that observing N on [0, ¢) is equivalent to keeping track of R(s —),
C(s—)and D(s — )for0<s <t

Henceforth we reserve the letter P for denoting FC-processes. A FC-process is
given by its compensator A and it is useful to summarize the structure of those
compensators that yield FC-processes.

2.8. Fact. Let A = (A )y e & be a collection of processes A”: [0, c0) — [0, )
defined on W and consider the following conditions. For all y € E:

(i) A” is right continuous and increasing with A%(0) = 0.
(ii) A%(t) is &,_-measurable for all 2.
(iii) AA(¢) < 1 for all ¢.
(iv) AX(t) — A(s) = (AX(t) — A(8)1(k(y)c rs—) forall s < ¢

Then:

(a) For any FC-process P there is a version of its compensator that satisfies
@)-(iv).

(b) Any predictable A satisfying (i)—(iv) is the compensator for a uniquely
determined FC-process P.

The first three conditions are satisfied by all compensators, while (iv) reflects
the special jump structure of FC-processes. In (iii) above as elsewhere, A is the
notation for the size of a jump of a process or function.
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With the concept of canonical FC-processes introduced we can define statisti-
cal models for the observation N by giving a family of compensators satisfying
(i)—(iv). But at the same time the model should allow for the observed failure
times to be interpreted as coming from an ii.d. sample with some hazard u.
Therefore we must discuss not only a model for the distribution of N, but a
model for the joint distribution of X and N, where X = (X,,..., X,) is the
vector of all failure times (observed or unobserved).

The basic assumption we shall make about the model for the observation N, is
that fori =1,...,n,

(2.9) AX(dt) = p(t)I(¢) dt,
where
Ii(t) = l(ieR(t—)),

ie, we assume that the model for the observed failures is a multiplicative
intensity model as introduced by Aalen [1].

This condition, which we shall refer to as the martingale condition, was
introduced by Gill [4], but is also the same as (5.5) of Kalbfleisch and Prentice
[8]. As a consequence of the condition, if P has compensator A satisfying (2.9),
then the processes M'= N'— A’ are orthogonal martingales and the
Nelson-Aalen estimator is a martingale estimator of the integrated hazard, i.e.,

A t
B(e) = [(w(s)I(s)ds
0
is a martingale, where £ is defined by (2.3) and

I(s) = 1(R(s—)¢121)'

With (2.9) and the preceding remarks in mind, our main purpose is to discuss
the following three problems:

1. With the X; i.i.d. g, what kind of structure must be imposed on the censoring
pattern for the marginal distribution of N to satisfy (2.9)?

2. (The embedding problem.) Supposing the distribution of N to satisfy (2.9) for
some p, is it always possible to obtain this distribution as the N-marginal
distribution of a pair (X, N), where the X; are i.i.d. p?

3. What must be the structure of statistical models for the distribution of N,
satisfying (2.9) for all g, in order that no essential information about u is lost
when using the Nelson-Aalen estimator?

When answering problems 1 and 2, it is enough to fix an arbitrary u at a time,
while 3 involves the structure of the complete model obtained when p varies.

Gill [4] gave several examples of censoring patterns, where (2.9) is satisfied,
including random censorship and progressive type 2 censorship. Also, for the case
of ii.d. pairs (X, U;) studied by Williams and Lagakos [12], it is easily checked
that the constant sum condition from [12] as reformulated by Kalbfleisch and
MacKay [7] is precisely (2.9). (See Example 3.31 below for further remarks on
this case.)
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The solutions we shall give of the three problems are presented in detail in the
following two sections. But already at this stage we find it important to indicate
what the solutions look like and what is achieved by obtaining them.

First a condition is introduced on the structure of the conditional distribution
of the observations given all the failure times. In a precise dynamical manner
this condition states that “present censorings depend only on past observations,
but not on unobserved failures.” It is then shown that with i.i.d. failure times
and this type of conditional distribution, the martingale condition holds.

Thus a collection of censoring mechanisms has been delimited, which fits with
the assumptions from problem 1. It is next shown that this collection is minimal
in the sense that not only does the embedding problem always have a solution,
but the solution is unique within the above mentioned collection. A number of
distributional results about this minimal class of tensoring patterns are next
developed, which because of the answers to the embedding question, one can
always assume to be true, as long as one knows the failure times to be i.i.d., (2.9)
to hold and is otherwise interested only in the marginal distribution of the
observations.

For statistical inference, we consider a model which is a given family of
marginal distributions for the observations satisfying (2.9) with p unknown.
Assuming also that the failure times are i.i.d. we need only consider the minimal
class of censoring systems from above, and are thereby able to write down the
total likelihood for all observations, on a given interval of time, and thus it
becomes possible to discuss the structure of those models where only the
observed failures contribute to the inference about u.

As stressed above, it is necessary to study the joint distribution of X and N,
and we shall now introduce the notation and formal apparatus needed to do this.

Let L c (0,00]" denote the space of vectors of possible failure times, i.e.,
vectors x = (x,,...,%,) with 0 < x; < oo and such that no two finite x; are
equal. Also write X,(x) = x,, define #= o(X;),.,., and let J, =
0( X1 x <1)1<i<n be the o-algebra measuring all failure times less than or equal
to t, whether observed or not. Note that (X; > ) € /.

A realization of all failure times and the observations is a point & = (x,w) €
L X W such that x and w are compatible, i.e., » belongs to @ defined as the
space of pairs (x,w) € L X W with x; = X;*(w) for i € D(c0, w), x; > U(w)
for i € C(o0, w) and x; = oo for i € R(c0, w).

On Q we use the o-algebra ¥=Q N (#® F) with the filtration ¥, =
QN (& F).

With this setup the joint distribution of (X, N) is a probability on (£, ¢),
which we denote by P. [Recall that P(Q,) is the notation for the marginal
distribution of N(X).]

We shall say that x € L and w € W are t-compatible if x;, = X;*(w) for
i€ D(t— ,w), x;,> U(w)forie C(t— ,w)and x;, >t if i € R(¢ — ,w). Thus
x and w are ¢-compatible simply if x is a vector of failure times consistent with
the observation of w on [0, £).

Given x € L, denote by W, the space of w compatible with x: W, = {w € W:
(x,w) € Q}.
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Any function defined on W (or L) may be viewed as a function on £,
e.g., define NY(¢,(x,w)) = NX(t,w) and X,(x,w) =x;. A set F €% may be
viewed as the set F = {(x,w) € @ we F} € 9; aset HE€ ) as theset H =
{(x,w) € Q: x € H}. Then also J,, #, may be considered sub-o-algebras of ¢
and then ¥, = #, vV %,, the smallest ¢-algebra containing both 5#, and %,.

We shall construct probabilities on @ by letting the X; be ii.d. p (the
distribution of X is @ = @,). Then consider the conditional distribution of the
counting process N given X.

So for every x € L, let P, be a probability on (W, #) with P(W,) =1 and
such that x - P(F') is measurable for all F' € #. Then [see (2.11)]

(2.10) P = [PQ(dr)

defines a probability on . By standard results about regular conditional proba-
bilities, any PP making the X, ii.d. with hazard p has this structure. If f >0
defined on  is measurable, then by (2.10),

(2.11) [tdP = [Q(dx) [f(x,w)P,(dw).

Each P, is a FC-process, hence is specified by its intensity process A,, formally
defined on all of W. In order that P(W,) = 1, A, must satisfy (i)—(iv) from Fact
2.8 plus some extra conditions that we now list.

Forall @ # BC {1,...,n} and all i,

(2.12) AN B(x,) =0 on (i€ R(x;—))

and for all (i, A) € E, the intensity measure A4 is concentrated at x; with
(2.13) ANGD(x;) = AA(;"A)(xi)l({i)uAc_:R(x,—))-

Finally,

(2.14) AN (x;) =1 on (i€ R(x;-))

because, with respect to P,, i must fail at time x; if still at risk.
It is not necessary for A, to satisfy (2.12)—(2.14) on all of W; it is enough that
these conditions hold on W,.

2.15. LEMMA. Let x € L and let A, = (A}),cp be the intensity for some
FC-process P, If (2.12)-(2.14) hold for the restriction of A, to W,, then
P(W,) =1L

For the proof one builds the P,-process step by step: the time of the first
jump, the type of the first jump, the time of the second jump, etc. One then
checks at each step that almost all paths for the part of the process constructed
so far belong to W,, and that only knowledge of A, on W, is required for the
construction. We omit the details.

3. Main results—problems 1 and 2. We shall begin by quoting Gill’s [4]
answer to question 1. With our notation Gill’s basic condition, which is a
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condition on the joint distribution P of (X, N) may be phrased as follows:

(G) For any ¢t > 0, given #, the X, for i € R(t + ) are i.i.d. on
(¢, co] with hazard .

3.1. THEOREM (Gill [4], Theorem 3.1). If the joint distribution of (X, N) is
such that (G) is satisfied, then the martingale condition (2.9) holds.

If (G) is true, taking ¢ = 0 shows all X; to be i.i.d. with hazard p. Also given
%, with t> 0, in particular the risk set R(¢+ ) is known and for each
i € R(t+ ) we have X; > ¢. So the condition states that given %, the X, for
i € R(t + ) are i.i.d., each following the same distribution as X, given the event
(X, >1t).

We shall present a new condition (C) below. To formulate it we use the
construction of a probability P on Q described in the previous section: Start with
the X; ii.d. u, then use P,, the conditional distribution of N given X = x. (C)
will be phrased as a condition on the intensity process A, for P, x € L
arbitrary.

From a probabilistic point of view, using conditional probabilities is certainly
the most natural way of constructing the joint law P, when the marginal
distribution of X is prescribed. But from a statistical point of view the idea of
conditioning of all failure times, whether observed or not, appears quite unnatu-
ral. However, if the conditional distribution of N given X depends on the failure
times only through what is observed about them, not only does this make sense
statistically, but as we shall see, it also captures the structure we are looking for.
This then is the essence of condition (C):

For any ¢ > 0 and w € W, A (¢, w) is the same for all x € L
(C) which are #-compatible with w and satisfy that x; > ¢ for
i€ R(t—,w).

Recall that the definition of ¢-compatibility between x and w only involves
the behaviour of w on [0, ¢), which, since A, is predictable, also determines
A (t,w). Because of (2.14) it is essential that in (C) an x t-compatible with w is
required to satisfy x; > ¢ for i € R(¢ — , w) rather than x; > ¢.

Because each A (¢, w) is right continuous in ¢, one verifies easily that (C) is
equivalent to the following, seemingly stronger condition (C’) and implies an-
other condition (C”).

For any ¢ > 0 and w € W, the function s = A (s, w) on [0, ¢]
(c) is the same for all x € L which are ¢-compatible with w and

satisfy x;, > ¢ for i € R(t — , w).

For any t>0, we W and i € R(t — ,w), A (¢ w) is the
(c”) same for all x € L which are ¢-compatible with w and satisfy

that x, =t and x; > ¢ for all j € R(t — ,w), j+i.

In the sequel, when applying (C), we allow either of (C), (C’) or (C").

Note. Of course, since (C) is a condition on conditional probabilities, it may
be relaxed, allowing for exceptional sets of w’s and x’s. For instance one may
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always ignore x belonging to some given set A with @(X € A) = 0. Also, it must
be remembered that A, as a function on W (or W,), is determined only up to
P -indistinguishability.

Apart from conditions (G) and (C) we shall introduce a third condition on the
structure of P. Recall that #, = o(X1 x .y)i<;<, and introduce ‘=
0(Xl(x.>¢)1<i<n the o-algebra spanned by those X;> ¢ Now consider the
following condition:

(M) For any ¢ > 0, the o-algebras %, and J#’ are conditionally
independent given %,

If (M) holds, then for ¢, > ¢,
(3:2) P(X;>t,i€89,) = [1G(tt)
ies

on the set ({i: X, > t} = S) € #}: By the conditional independence, P(H|¥9,) =
P(H|#,) for H € #* and (3.2) follows because the X; are i.i.d. p. (3.2) should be
compared to (G). [The notation G,(-| - ) used in (3.2) was introduced early in
Section 2.]

Writing the conditional independence as

(3.3) P(Fi¥) = P(Fit), Feg,

we can give yet another version of (M). It is standard terminology to call a
random time 7 a randomized stopping time for the filtration (%)), if for any ¢,
P(7 > t}5#) = P(7 > t|5¢,). Taking 7 = U, (3.3) shows that each censoring time
is a randomized stopping time for the filtration induced by the failure times.
Furthermore, conditioning on # (i.e.,, X) leaves only the U, as random and
hence (3.3) holds for all F € %, iff it holds for all F € %, = o(Uly, <) <i<n
Thus (M) is equivalent to the statement that (U,,...,U,) is a multivariate
randomized stopping time if by this (nonstandard) statement, we mean that (3.3)
holds for all ¢ and all F € %,. Finally, note that since P(-|5#) = P, on (X = x),
(3.3) is a condition on the P..

In a competing risks setting, conditions of a nature similar to (G), (C) and (M)
have been proposed by Arjas [2].

3.4. ProposITION. (C) = (M) = (G) and neither implication can be re-
~ versed.

PRroOF. Suppose (C) holds. Let ¢ > 0 and let x, x” € L satisfy that for each i
either x; = x/ or x; > ¢, x/ > t. In particular, any w ¢-compatible with x is also
t-compatible with x’ and from (C) it follows via (C’) and (C”) that for all such w,
A (s,w) = A (s, w) for s < t. In other words, the intensity processes for P, and
P_, agree on [0, t] and hence P, = P,, when restricted to %, But conditioning on
¥, amounts precisely to specifying for each i the value of X; if X; < ¢ and the
event (X; > t) otherwise. Thus we have shown that (3.3) and hence (M) holds.
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That (M) implies (G) is easy to see. For an arbitrary subset R of {1,..., n} we

must show that for ¢, > ¢, i € R,
P(X,>¢,i€R%) =[] G,(t]t)
i€ER

on the set F = (R(t + ) = R) € #,. Conditioning first on ¥, and noting that on
F, R C {i: X, > t}, this follows from (3.2).

That the implications cannot be reversed will be shown in Example 3.33
below. O

We shall later use the following consequence of (M).

3.5. LEMMA . Lett> 0 and let x, x’ € L satisfy that for all i either x; = x!
or x;,, x/ > t. If (M) holds, then P, = P, on %,_.

Proor. Because for any s < ¢, x; = x{ or x;, x/ > s, condition (M) tells us
that P, = P, on %,. Since #,_ is the o-algebra spanned by (.%,), . ,, the lemma
follows. O

Our first main result gives the structure of the intensity process A for N,
when (C) is satisfied, and in particular, it follows that the martingale condition
(2.9) holds. Of course this fact alone follows directly from Gill’s theorem and
Proposition 3.4, but with the restrictive condition (C) much more can be said.

In the sequel, if x € L, ¢t > 0, we write x|i, ¢ for the vector (x,,...,x,_,¢t,
Xii1s+-+5X,). Note that x|i, t € L except if ¢t = x;, for some j # i.

3.6. THEOREM. Let P be a probability on @ such that the X, are i.i.d. with
hazard p and the intensities A, for the conditional probabilities P, satisfy (C).
The compensator for the counting process N is then indistinguishable from
A = (A”), c g, where

(3.7) ACAD(de) = p(t) AN () (2) dt,
(3.8) A B = A B)

fori=1,...,n, AC{L,...,n}\{i}, 9 # BC (1,...,n}. In particular A as
given by (3.7) and (3.8) and viewed as a function of (x,w) € Q depends on w
alone, each M? = N” — A is a (P, %#,)-martingale and (2.9) holds,

(3.9) A(dt) = p(t)I(t)dt.

REMARKS. In the proof we show that each M” is a (P, 4,)-martingale.

Equation (3.7) is best understood recalling that the measure A>4) is concen-
trated at x,. Also note that because of (2.13), the factor I,(¢) may be omitted
from (3.7).

PROOF OF THEOREM 3.6. We begin by showing that A, which formally
depends on both x and w, is determined by w alone, i.e., that whenever



RIGHT CENSORING AND MARTINGALES 1145

(x,w) € @ and (x',w) € @, the paths for A evaluated at (x,w) and (x’,w)
agree. But x and x’ are both compatible with w, therefore x|, ¢t and x’|, ¢ are
t-compatible with w for all ¢ such that I,(f, w) = 1, and from (C) it then follows
easily that

ANEA (8, w)L(8, w) = AAGA(E, w) (¢, w),

x|i, t x'|i, t
A BY(t,w) = NG B(¢t, w)

for all ¢ not equal to some x; or x;. Clearly then the Lebesgue integrals defining
AG A agree, when evaluated for (x w) and (x’,w). That the censoring compo-
nents A“® agree, even at the exceptional time points ¢ = x; or x/, follows, e.g.,
by right continuity.

Thus we may write A(¢, w) = A(¢,(x, w)) and shall now proceed to show that
the process A4 is predictable. Following Jacobsen [5], we do this by showing
that for all ¢, if w, w’ € W satisfy w ~,_ w’, i.e., w(s) = w'(s) for all s € [0, t),
then AG4(t, w) = A®4(t,w’). But

AGAY(g) = fot“ )AA‘;‘:f)s(S)Ii(S)dS

and it follows from the fact that any A, is predictable that the integrands
evaluated for w, w’ are the same, except possibly at finitely many time points s.
Thus A% 4 is predictable.

The next step consists in showing that a modified version of A5 is
predictable in the same sense. Fix some § > 0 and define

(3.10) AeB = AeB 4+ ) AAxp X+8(X )fx ;

1€ D(0)
so the measure A ® differs from A(>® only by point masses at the observed
failure times X;, i € D(c0). First, using (C) it is easy to see that each term in the
sum evaluated at (x, w) € Q depends on w only. Next, let w ~,_ w’ and choose
arbitrary x, x’ € L such that (x, w) € Q and (x’, w’) € Q, in particular x, x’ are
t-compatible with both w and w’.

If for all i € R(¢ — ,w) = R(t — ,w’) = R we have x; = x/ or x;, x{ > t it is
immediate from (C”) that A©B(¢, w) = A© B)(t w’). Therefore suppose that,
e.g., for some i € R, t = x; < x/, that is, x; is the observed failure time for i
based on the path w, while for w’, the failure time x! > t. Then A®B)(s,w) =
Ao B)s, w') for s < t and it remains to show that

AREB(t,w) = AN B(t, w).
By (2.12), AN BY(¢, w) = 0, so the left-hand side equals
(3.11) AANG st w).
To evaluate the right-hand side (RS), we must distinguish between two cases
and shall use that for all j € R with j # i we have x; > t. The first case is that
for all such j, xj > t. Then (RS) equals AA B)(¢, w’) and (C) shows this to be

the same as (3. 11) For the second case, assume x} = ¢ for some j € R, j # i.
Then (RS) becomes AA(: ?), (¢, w’) and again by (C) this equals (3.11).
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The last assertion (3.9) in the theorem follows immediately from (3.7) and
(2.14). So the remainder of the proof is concerned with showing that each M is
a martingale and that A©® and A¢® are indistinguishable.

We shall show that each M” is a (P, 4,)-martingale, which certainly renders
M? a (P, %,) — martingale. Recalling that ¥= Q N (#, ® %#,) the martingale
property amounts to
(3.12) P(N>(t) — N*(s); G) = P(A(t) — A(s); G)
for all ye E, s<t, G=QN(HXF) with He ¥, Fec%, But because
M} = N? — A} is a (P, #,)-martingale, using (2.11) we see that

P(N() = N%(s); G) = [ B(N(2) = N*(s); F)Q(dx)

(3.13) - prx(A;(t) — A(s); F)Q(dx)

= P(A%(t) — A%(s); G).

Considering the censoring intensities first, let y = (c, B). That AeB) jg the
compensator for N5 will follow from (3.13) if we show that A(>® is indistin-
guishable from Ag®) i.e., looking at (3.10) it is enough to show that for all i,

(3.14) P(AAG P .o(X,); X, < ) = 0.
For every x € L, the function
w = AAGR) 5(x;, w)

is % _-measurable. Hence by Lemma 3.17 below the integral from (3.14) equals

X, c
P [0 A5 L20a(0) .

By (C), ANG P, 5(t) = AANG P(¢t) for ¢ < X,. Since the measure A ™ has at
most countably many atoms, the Lebesgue integral is 0 and (3.14) follows.
To prove the martingale property (3.12) for y of the form (i, A), note that

w - AA(;" A)(xi’ w)lg(x, w)l(s, t](xi)
is %, _-measurable. So by Lemma 3.17,
P(AAEGY(X,); G,s < X; < t)

= p(foxt'u(u)AAg'(’ﬁ).l(u)lG(Xﬁ, u; N1, o(u) du).

Now
16(X|i, u; N) = 14(X]i, u)1x(N)
and since the Lebesgue integral extends over u € (s, t] only and H € £, it is
seen that this indicator is constant in u, and hence the Lebesgue integral may be
written
EAX, ;
(3.15) [ () ANG(u) dul iy, s -

s
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Here we may throw in for free the factor I () in the integrand, and since
I(u) = 1 implies X, > u, it is clear that (3.15) reduces to

(ASD(e) = AED(s))1g
and we have shown that
(3.16) P(AAEG(X,); G,s < X, < t) =P(AED(¢) — AGA(s); G).
But because A4 is concentrated at X,
AAG (X)L < x, <0 = A D(t) — AG2(s).

Inserting this in (3.16) and comparing with (3.13), (3.12) follows. O

In the proof the following observation was used.

3.17. LEMMA. Suppose that P satisfies (M) and let f; = f(X, N): @ > R be
P-integrable. If for every x € L, w — f(x, w) is %, _-measurable on W,, then

(3.18) P(1i X, < o) = [ [0 6 N) ]

Note. Since f;(x,w) depends on w only through the behaviour of w on
[0, x;), fi(x,w) is well defined whenever x and w are x,-compatible. Thus, if
(x,w) € Q and t < x,, since x|i, t and w are t-compatible, f,(x|i, t; w) is defined
for the all but finitely many ¢ < x; for which x|i, ¢ € L and hence the integral in
(3.18) is well defined.

ProoF oF LEMMA 3.17. By (2.11),
P(f; Xi<w) = [ B f(x, N)Q(dr).
x; <00
Because f(x, -) is &%, _-measurable, Lemma 3.5 implies that
'Px|i,tfi(x’ N) = I)xfi(x’ N)
for all ¢ > x,. Hence

P(f; X; < )= [

x, <

LRGN x) [ Py ofi(x, N)F(db).

(Recall that F = F, =1 — G is the distribution function for X;.) Relabelling x,
into ¢, ¢t into x; and using that @ is a product measure and Fubini, reduces this
to

X . X, .
J@tas) [[woP. a6 N) de = B [Tu(o)f(Xi, & V)
by another application of (2.11) and Fubini. O

Viewing probabilities on £ as the joint distribution of the random elements X
and N, we have so far determined these probabilities from the distribution of X
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and the conditional distribution of N given X. The next result, which provides
the basis for our solution to the embedding problem, goes the other way, yielding
in particular in part (b) the structure of the conditional distribution of X given
N for probabilities satisfying (C). Proposition 3.19 should also be compared to
(G) and (3.2).

3.19. PROPOSITION. Suppose that the X; are i.i.d. p and that P satisfies (C).

(a) For any t, given %, the failure times (X;);c c(t+yu re+y @re independent
such that for i € C(t + ), X; has hazard p. on (U, o) and fori € R(t +), X,
has hazard p on (¢, ).

(b) Given Z, the failure times (X,);c ¢(o) @re independent such that X; has
hazard p on (U, o). .

Proor. Since (b) is a consequence of (a) for ¢ » oo, we only consider (a) and
argue that for F € %, of the form

F=(C(t+)=C,R(t+)=R,U;€duy;,i€C, X,€ds;,i €D),

where ¢ > 0, C, R are disjoint subsets of {1,...,n}, D= {1,...,n}\ CU R and
u; for i € C, s; for i € D belong to (0, t], it holds that

(3.20) P(X;>x,i€sCUR,F) = I;[G(xilui)I;[G(xAt)P(F)

for all x; with x; > u;,, i€ Cand x; > t, i € D.
On F, D(t + ) = D, and using (2.11) the probability above becomes

[1F(ds;) ‘ P(U,edu;,icC,
(3'21) D s,>x,, i€CUR
R(t+) =R, D(¢t+) = D) [] F(ds,),
CUR

where s = (sy,..., s,,). The integrand is the P,-probability of an event F’ in %;
hence by the note following (2.6), it is determined from the behaviour of A, on
F’. Using (C), it is then clear that the probability does not change if s is replaced
by any z = (z,...,2,) such that z;,=s;, i€ D, z;>u;, i€ C and z;,> ¢,
i € R. Thus the integrand can be replaced by

T )16 &) [  P(F) [ F(dz)
C R z,>u;, teC CUR
2,>t,i€R

not depending on s and it is an easy matter to reduce (3.21) to

TG (xdu)TIG(x)OIF(ds,) [ PAF) [ F(dz,),
C R D :'ZZ';;GRC CUR

which by (2.11) is precisely the right-hand side of (3.20). O
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The solution to the embedding problem is provided by the next result.

3.22. THEOREM. Let A be the intensity for a FC-process P and suppose that
fori=1,...,n,t>0,

(3.23) A(dt) = p()I(¢) at,

with p some hazard function. Then there is exactly one probability P on
which satisfies (C) and is such that it renders the X; i.i.d. p and gives N
intensity A.

Proor. Proposition 3.19 shows that there can be at most one P meeting the
requirements and part (b) even tells us what it must look like. It does not appear
to be easy to show that this candidate makes the X; i.i.d. p and satisfies (C), so
we shall use a different approach. Given A satisfying (3.23) we shall solve (3.7)
and (3.8) for the conditional intensities A,, show that they satisfy (C) and then
define P by assuming the X, to be iid. p with A, the intensity for the
conditional distribution of N given X = x. From Theorem 3.6 it will follow that
N has intensity A and the proof will be complete.

With A given such that (3.23) holds, solving (3.7) and (3.8) for the A, suggests
that :

(3.24) ASB) = A B
and that the point mass for A% ought to be

. (i, 4)
(3.25) AAG D(x;) = (x:)I(x;),

dA!
where dA® 4 /dA! is the (pathwise) Radon-Nikodym derivative of A% 4) with
respect to A'.

The A, must satisfy (2.12)-(2.14). Defining A ® by (3.24) gives a problem
with (2.12), while of course (3.25) as it stands is useless, since globally the
derivative is uniquely determined only A’ almost everywhere, with A’ absolutely
continuous, and we are interested in its value at one particular point.

To solve the first of these problems, modify A ® and define

A(c’ B) _ A(c’ B) _ Z AA(C, B)(Xi*)lixl*,
i€ D(o0)

i.e., the discontinuities at the observed failure times are removed. We claim that
if P is the FC-process with intensity A, then A(>®) is P-indistinguishable from
A B) je., the AP are also censoring intensities for P. This assertion amounts
to showing that

(3.26) P(AANB(X*); X* < o0) = 0.

But it is even true that AA(X*) = 0 P-as. on (X;* < c0): If finite, X* is a
jump time 7, for N and the jump Y, is of the form (i, A). For every n,

P(AN(7,); Y, = (i, A), 7, < ) = P(AN*4(1,); 7, < 00)
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as is seen using, e.g., the construction of multivariate counting processes pre-
sented in [5], Chapter 2. Since by assumption, A’ and, a fortiori, A®4) is
absolutely continuous, (3.26) follows.

As the final definition of A ® we now use

(3.27) AeB = JB),

To pick out the correct value of the derivative in (3.25) we proceed as follows:
By assumption, for any w € W the measures A®4(-,w) and A{(-,w) are
absolutely continuous. Hence defining for any x € L,

AA(:, A)(xii w)
(3.28) A (x,w) = AED(x; — (1/R),w)
= liminf

k= oo A(x;, w) — N(x;, — (1/k), w)
if A # &, with the limit 0 if the denominator is 0 for % large and

(3.29) AN (x,;, w) = (1 - Y AA(i’A)(xi,w))Ii(xi,w),

A+@

Ii(xi’ w)

it is clear that with w, i fixed, for A¥(-, w)-almost all x;, (3.25) holds for all A.
Adding the requirement that A{*#) be concentrated at x;, (3.27)—(3.29) pro-
vides an explicit definition of A, on all of W. While obviously each A¢4) is
predictable on all of W, A(® is predictable only when restricted to W,. But on
W,, certainly A, satisfies (i)-(ii) of Fact 2.8 and (2.12)-(2.14). Invoking Lemma
2.15, this ensures that A, is the intensity for a uniquely determined FC-process
with paths in W,. Since A>®) does not depend on x the censoring intensities
obviously satisfy (C). To check that (C) holds for A4, fix ¢, w and con-
sider x, x” € L both ¢-compatible with w and such that x;, x; > ¢ for all j €
R(¢t — ,w). Then AQ (-, w) and A%4)(-, w) are both 0 on [0, ¢], unless, say,
x; <t and i € R(x; —,w). Here x, = t is impossible by assumption, and then
x, x' t-compatible with w forces x/ = x,. Since A®“(A%4)) depends on x
through x; (x!) only [see (3.28) and (3.29)], AY (¢, w) = Ay 4)(¢, w) follows.
Now consider the FC-process N constructed from X; which are ii.d. p and
with the intensity for N given X = x equal to A,. The intensity for N is given
by Theorem 3.6, and we must show that the A ® in (3.8) equals A‘>® which is
just (3.27), and that the A%“ from (3.7) equals the A4 for the P we started
off with. Here we give the proof if A #+ &, the case A = @ being an easy
consequence. But by the remarks above, for any w € W, x € L and almost all ¢,
AAG At w) is a derivative with respect to A* and, using (3.23), then
S S d A(i’ 4) .
[ r() AMGOUOI(2) dt = [ ———(£)A(dt) = A“(s). o
0 ’ o dA

- The basis for all results in this section is the crucial condition (C). In view of
its importance, we shall now indicate how an equivalent version of (C) may be
obtained, which also shows how to simulate FC-processes with the martingale

property (2.9).
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Any observation of N starts with a number of censorings preceding the first
observed failure. As long as only censorings occur, by (C) the specific values of all
the failure times are immaterial except of course that they are known to exceed
the corresponding observed censorings or the right endpoint of this initial
interval of observation. This means that to begin with, the censorings are
independent of the failure times, and we arrive at the following simulation
procedure, which is updated at each observed failure:

STEP 0. Generate X; which are i.id. p.

STEP 1. Generate a vector (U®Y,...,U®) of possible censoring times, 0 <
U® < oo, stochastically independent of X and with an arbitrary distribution.
Find the smallest X;, X; say, such that X; < Uf M. This X; is to be the first
observed failure time. On [0, X, ) at times U U“) those ] are censored for
which U® < X; . Call C, the set of these J All i equal toa je€ C; and zl have
now been removed leaving a set R, of individuals. The unused U®, j € i, U R,
are discarded.

STEP 2. Generate a vector (U®), . r, of possible censoring times, X; <
U® < oo, using an arbitrary distribution depending on iy, X;, C, and (U)jcc,
but independent of (X;);c g - Find the smallest X; for i € R, X say, such that

< U®. This X; is to be the second observed failure time. On [X;, X;) at
t1mes U u® those J € R, are censored for which U® < X, . Call C, the set of
these J. All i equal toa j€ C2 and i, have now been removed from R, leaving a
set R, of individuals. The unused U®, j € i, U Ry, are discarded.

It should be clear how the simulation proceeds. The kth vector of possible
censoring times (U®), . R,_, are chosen from an arbitrary distribution depending
oniy...,ip_y, Xipooos Xi , Cpyeet; Gy and (Up)jequ - ug,_, 1€ everything
observed on [0, X; )and i,_;, X; ,butindependent of (X;);cp, ..

3.30. ExaMPLE. Consider the scheme for progressive type 2 censorship, where
at the time of the kth observed failure a fixed number r, of individuals are
chosen at random from those still at risk and censored concurrently with the

failure. Thus X, = min X; is the first observed failure time, |R,| =
|R( X(l) +)=n- 1 - r1 and the size of the risk set just after the Zth observed
failureis |R, | =n—k — (ry+ -+ +rp).

Choosing X; i.i.d. ,u, the conditional intensities A, are specified by A& ® =0
and

1
(lR(x. =) - 1) livacRre-)
12

ANG D) =
TRz, —)+1

for all subsets A of {1,...,n}\ {i} of cardinality 7y, )., and equal to 0
otherwise. It is immediate to verify that the A, satisfy (C).



1152 M. JACOBSEN

Alternatively, going through the first two steps of the simulation procedure, it
is also clear that all U{" = oo, while given that the first failure occurs for i, at
x;, r of the j # i, are selected at random and U = x; for these j, U® = oo,
for the remaining ;.

3.31. EXAMPLE. Suppose first that n = 1 and consider a FC-process satisfy-

ing the martingale condition (2.9). We only have the two intensities

AT(dt) = p(8)I(2) de,

AeD(dt) = v(dt)I(t),
for the failure, respectively, censoring of the individual 1. The failure intensity is
prescribed by (2.9) and in order to be predictable, the censoring intensity must
necessarily be of the form above with » some hazard measure on (0, c0). The
description of the simulation above, shows that the distribution of the FC-pro-
cess may be obtained by choosing X, and U, independent, X, with hazard g,
U/ with hazard » and observing the failure time X, if X, < U/ and the
censoring time U/ if U/ < X,. Equivalently, the observed failure time, respec-
tively, censoring time, is
X7 = {X1 %le <Uy, U - {U{ %f X, > Uy,

o if X, > Uy, o if X; < UY.

Now consider the case of independent pairs (X, U;/), discussed, e.g., by
Williams and Lagakos [12], Kalbfleisch and MacKay [7], with observed failures
X;* and censorings U, defined in analogy with (3.32) for each i. (One may allow
the hazard for U, to depend on i.)

By the independence, (2.9) holds iff it holds separately for each i and, as noted
in Section 2, is then equivalent to the constant sum condition from [12] as
reformulated in [7]. Thus it emerges, that as long as only the distribution of
observed failures and censorings is of interest, and Lagakos’ constant sum
condition holds, it may always be assumed that in addition to the independence
of the (X,, U/), X; and U}’ are independent for each i.

(3.32)

We shall conclude this section with the counterexamples showing that the two
implications in Proposition 3.4 cannot be reversed.

3.33. EXAMPLE. Suppose n = 2 with X,, X, iid. p and consider A, with
only the components A? for i = 1,2 and A? for i = 1,2 not identically 0
and of the form, with a # 0 a given constant and x = (x,, x,), ¢ > 0,

(3.34) AGOdE) = e (d)lgere s =12
(3-35) A(xc’l)(dt) = dtl(lER(t—),x,>t)’
(3-36) A(xc’2)(dt) = 8x1+a(dt)1(N(C"’(t~)=l,QER(t—), Xy > 1)*

- Here (3.34) comes from (2.14), while (3.35) shows that individual 1 is censored at
an exponential time, independent of everything else, provided this time is less
than x,. Finally (3.36) shows that individual 2 can only be censored at time
x, + a (provided of course that x, + a > 0), and then only if the failure time x,
is not observed.
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This dependence on an unobserved x; shows that the A, do not satisfy (C).
We shall now argue that for all a # 0, (G) holds, while (M) holds if a > 0 but
not when a < 0.

As already used previously, (M) essentially amounts to the following: For any
t> 0, if x,x’ € L are such that either x; = x/ or x;,,x! > ¢, then A, = A, on
[0, ¢]. By inspection it is clear that (3.34)—(3.36) imply this and (M) if @ > 0, but
not if @ < 0, not even when allowing for a @, -null set of exceptional x, x’.

Now suppose that a < 0. To show that (G) is satisfied, consider the following
condition on the conditional intensities:

For any ¢> 0 and any w € W, A (t,w)= A, (t,w) when-
(&) ever x, x’ are t-compatible with w and satisfy that for all i
either x; = x/ or i € R(¢ + ,w) and x;, x{ > ¢.

Trivially (3.34)-(3.36) imply (G’): The only problem is the (c,2)-intensity, where
the dependence on x, is ruled out since the intensity vanishes if 1 € R(¢ + ).
The proof that (3.34)-(3.36) imply (G) is completed by observing that (G) =
(G). This may be argued along the lines of the proof of Proposition 3.19. We omit
the details.
Tedious but straightforward calculations yield the following expression for the
marginal intensity A for N:

NCO(d) = p(OL() dt,  i=1,2,

(3.37)
AD(dt) = I,(¢) dt,
[l(t - a)IZ(t)l(Ul<t_a) dt
if a > 0,
(3.38) A“?(dt) = G(t - a)
- 1
p(t—a) G(t—a)+ G(U) - G(U, - a)Iz(t) W, <o 9,
if a < 0.

By Theorem 3.22 there is a unique embedding of this FC-process such that (C)
holds for the joint distribution of X and N. Performing this embedding leads to
conditional intensities given by (3.34), (3.35) and replacing (3.36) by letting A(>?
be given by the right-hand side of (3.38); cf. (3.8).

In conclusion it should be mentioned that the results of this section, with
some obvious changes, remain valid if only the X, are independent, but not
necessarily identically distributed.

4. Statistical models—problem 3. We shall discuss models for right cen-
sored survival data, where each member of the model is a FC-process, derived
from i.i.d. failure times with an unknown hazard p and satisfying the martingale
condition (2.9).

Formally the model is a family of distributions for N and evidently, the model
is only partially specified by allowing an arbitrary p in the description above.
Indeed, as shown in Kalbfleisch and Prentice ([8], Section 5.2), the likelihood for
observed failures and censorings splits into a product of a factor where p appears
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in a natural manner [(4.1) below] and a factor due to the censorings [see [8],
(5.6)].

In [8] the censoring is called informative if this extra factor depends on g,
noninformative otherwise. With this in mind, the point to be made here is the
following: By the results of Section 3, each distribution for N derives in a unique
manner from a joint distribution of X and N which satisfies condition (C) and
makes the X; i.i.d. In particular the model for N can be specified by considering
an arbitrary hazard p and considering for each p and failure time vector x, some
family of conditional intensities A, all satisfying (C). Expressing the likelihood
in terms of p and the A, enables us to characterize the structure of those models
where only the observed failures contribute information about p. We shall refer
to the models built in this manner as FC(C)-models.

Suppose N is observed on [0, ¢] and following [8], consider the condition that
the censorings on [0, ¢] are noninformative, i.e., that the likelihood L(#) has the
form

() L(e) « exp|~ [(s)R(s -)ds) TT u(x)
apart from factors not depending on p (see also, e.g., Lagakos [10]).

The structure (4.1) is also the natural one to assume for the Nelson—-Aalen and
Kaplan—-Meier estimators to exploit all information about p.

Our characterization of FC(C)-models with noninformative censoring involves
in particular the concept of noninnovation as introduced by Arjas and Haara
[see [3], condition (A)].

4.2. THEOREM. For a FC(C)-model the following three conditions are equiv-
alent:

(i) For all t, the likelihood function for observation of N on [0,t] is
proportional to

(49) expl - [W()R(s —)ds) TT p(X2).
0 i X*<t

(ii) For all x, the family of conditional intensities A, may be chosen not to
depend on p.
(iii) Al censorings are noninnovative in the sense of Arjas and Haara.

REMARK. The qualification “may be chosen” in (ii), is the necessary safe-
guard against p-dependent choices of A, for an exceptional set of x-values.

Proor oF THEOREM 4.2 The likelihood function for observation of N on [0, ¢]
is [cf. (2.6)]
_ N(t)
(44) 1 (1 - A(ds) [T A% (),

O<s<t
SH# T,

with d7, an infinitesimal neighbourhood to the left of and including 7,.



RIGHT CENSORING AND MARTINGALES 1155

Since we are dealing with a FC(C)-model, Theorem 3.6 applies and yields an
expression for the likelihood in terms of the A,.
In particular

A(ds) = p(s)IR(s —)|ds + %A(;%’B’(dS),

with the first term absolutely continuous. Thus the product integral in (4.4)
becomes -

IT (1 - R(ds)) = exp| ~ ['u(s)R(s ) s

O<s<t
S#ET,

(4.5)
x TI (1 - ZA(;"B)(ds)).
0<s<t B
S#ET,
By (3.8) and (3.7), the contribution to the likelihood from the observed events
takes the form

(4.6) A B)(d7,)
for pure censorings and, with 7, = X;*,
(4~7) N(Xi*) AA()i(’ A)u, X,*(Xi*) dX;*

for the observation of a failure.

Combining (4.4)—(4.7) it is seen that the likelihood may be written as (4.3)
times a factor determined exclusively by the A, and that this factor does not
depend on p iff (ii) holds. Thus (ii) and (i) are equivalent.

In [3] the type set (mark space) E is split into two parts E’ and E” of
innovative, respectively, noninnovative marks. In our case

E'={(,A):1<i<n, Ac{1,...,n}\ {i}},
E”"={(c¢,B): 8 #+ BC {1,...,n}}.

Recognizing that because the intensities A®>4 are absolutely continuous, the p,
defined in ([3], page 198) vanishes, it is easy to see that condition (A) of [3] for
the censorings to be noninnovative amounts to the condition that for all
probabilities in the model, the following is true: For all i, A, dA®“ /dA* and for
all B, A“B® must not depend on p. But by (3.7) and (3.8),

dAG4
dA
A B) = A B)

(5) = AAG(s)L(s),

and it should be clear that (ii) and (iii) are equivalent. O

For FC(C)-models not satisfying the conditions of the theorem, even though
the Nelson—Aalen estimator is still a martingale estimator, one can do better by
using also the information about p provided by the observed censorings. The
classical example is the Koziol-Green model obtained from i.i.d. censoring times
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also independent of X and with a hazard proportional to u. Another example is
provided by considering (3.37) and (3.38) with arbitrary p and a given or
unknown.
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