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ASYMPTOTIC EXPANSIONS OF. SOME MIXTURES
OF THE MULTIVARIATE NORMAL DISTRIBUTION
AND THEIR ERROR BOUNDS

BY YasuNoRI FuJikosHI AND RYOICHI SHIMIZU

Hiroshima University and Institute of Statistical Mathematics

This paper deals with the distribution of X = S!/2Z, where Z: p X 1 is
distributed as N,(0, 1,), £ is a positive definite random matrix and Z and =
are independent. Assuming that = = I, + BB’, we obtain an asymptotic
expansion of the distribution function of X and its error bound, which is
useful in the situation where = tends to I,. A stronger version of the
expansion is also given. The results are applied to the asymptotic distribution
of the MLE in a general MANOVA model. .

1. Introduction. We are concerned with asymptotic expansions for the
distribution of

(1.1) X = 3V?%Z,

where Z: p X 1is distributed as N,(0, ), 2 is a positive definite random matrix
and Z and X are independent. The random vector X in (1.1) is said to be a scale
mixture of Z with the scale factor /2. Fujikoshi (1985) has obtained an
asymptotic expansion of the distribution function of X and its error bound in
the case where p = 1 and the scale factor ¢ > 1, by expanding the conditional
distribution of X given o. The result is useful in the situation that ¢ tends to 1.
Expanding the conditional characteristic function of X given o. Shimizu (1987)
extended Fujukoshi’s result to the case of o > 0.
In this paper we make the following assumptions.

ASSUMPTION 1. The scale factor 3'/2 has the structure
(1.2) S =1 + BB,

where B is a p X q random matrix.

Under Assumption 1 we can express X as
(1.3) X=17Z- BU,

where U is distributed as N,(0, I,) and is independent of Z and B. We note that
under Assumption 1, the two expressions (1.1) and (1.3) are equivalent. As a
realization of (1.2), we deal with the case where B is determined by the following
assumption.
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AsSUMPTION 2. The random matrix B in (1.2) has the structure
(1.4) B=1,® LW /2
where the elements of L: g X r are independently distributed as N(O0,1),

W: r X r is distributed as the Wishart distribution W,(I,, n) and L and W are
independent.

We note that under Assumptions 1 and 2, = tends to I, as n — 0. In Section
2 we state the motivation of the distributional problem, which is based on the
distribution of the maximum likelihood estimate under the general MANOVA
model due to Potthoff and Roy (1964). In Section 3 we obtain an asymptotic
expansion of the distribution function of X and its error bounds, which is useful
in the situation where = tends to I,,. In Section 4 we give an uniform bound for
|IP(X € A) — P(Z € A)|, where A belongs to the set of all Borel measurable
subsets in R”. We also give some applications in Section 5 assuming Assump-
tion 2.

2. The motivation of the distributional problem. We consider the gen-
eral MANOVA model due to Potthoff and Roy (1964). Let Y be an N X m
observation matrix whose rows have independent m-variate normal distribution
with unknown covariance matrix ¥ and
(2.1) E(Y) = AEA,,
where A, is a known N X b matrix of rank m < n=N - b, A, is a known
& X m matrix of rank g < m and = is a b X g matrix of unknown parameters.
Let = be the maximum likelihood estimate of = and let V = (V{,..., VYY), where
V=(V,...,V,Y = (A4A)"? (& — E)(A,¥ 'A})"/2 Then it is known [Gleser
and Olkin (1970)] that the distribution of V is the same as that of X with
p=2>bg q=0br, and r=m — g, under Assumptions 1 and 2. Let X =
X,.., X)), Z=(Z,,...,Z,y and U = (U,,...,U,), where X = (X{,...,X}),
X;:gx1,2Z=(Z....,2,),Z;: gx1,U=(U,...,U)) and U;: r X 1. Then
(1.3) can be expressed in a matrix notation as
(2.2) X=Z-UwW 2L,

Since the rows of X are independently distributed as N0, I, + LW~ 1), we
can write the probability density function of X as

R By w(@m) AL, + LW
2.3
xexp(— 4 tr X'X(I, + LW™'L) “}].

Gleser and Olkin (1970) gave an integral expression for (2.3), which can be also
expressed as

L(3n+g)T(3(n+b+g-r))
T(i(n+g—r)L(i(n+b+g))

(2'77')_‘7"”/2
2.4
(24) 1 1 1
xlFl(E(n +b+g-r); —2—(n +b+g);— §X’X),



1126 Y. FUJIKOSHI AND R. SHIMIZU

where T(¢) = 8@~ V/4TI8_T(¢ — 3(j — 1)) and ,F, is the hypergeometric func-
tion of matnx argument [see, e.g., Muirhead (1982)] Expanding the gamma
functions in (2.4) and , F, [see, for example, Muirhead (1982), pages 347-350], we
obtain

f(X) = (2m) %7 exp(—%trX’X)
(2.5)
X[l (XX - bg) + O(n-Z)].

A formal asymptotic expansion of the distribution function of X is obtained by a
formal integration of (2.5). The expansion in the vector notation is given by

p | p®
(2.6) P(X <x)=0(x) + Z [ (I>(( )) }‘(D(x) + 0(n™2),
where ®(x) = 1~ ,®(x,) and ®V )(x) denotes the jth derivative of the distribu-
tion function ®(x) of the standard normal variable. However, we note that this
approach does not guarantee the validity of the expansion. The purpose of the

present paper is to derive a general result so that we can give an error bound and
thereby the validity of the expansion (2.6) as well.

3. Asymptotic expansion for the distribution function of X. In this
section we derive an expansion of the distribution function F(x) of X around
that of Z, by extending Fujikoshi (1985) to the multivariate case. Using (1.3) we
can write F(x) as

(3.1) F(x) = EU,B[(D(x + BU)].
By Taylor’s theorem, we can expand ®(x + BU) as
2k—1 1 . 1
®(x + BU) = ®(x) + Y. j—'(U’B’a)’dJ(x) @ (U'B%)*®(x + 6BU),
=17 !

where 0 < 8 <1 and 8 = (3/9x,,..., 3/dx,). Noting that U ~ Ny(0, I,), we
have

‘]! ’ ’ j/2 3 3
EU[(U'B’G)’Q(x)] _ ———‘—2172(]./2)! (9’'BB9)”“®(x), if jiseven,

0, if j is odd.
Inserting these results into (3.1) we hence obtain
(3:2)  F(x) = @4(x) + Eg[A4(x, B)],
where
(3.3) @,(x) = ®(x) + 2 EB[(B’BB’a)’dJ(x)]
‘and

(3.4) A(x, B) = Ey| —— (U'B3)**®(x + 6BU) |.

1
YUl 2Ry
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Now we define
2k

dxot -+ dxl

p

(3.5) M,,= sup sup

P,
|| =2k x

o(x)|,

where a = (..., a,)" and the a;’s are nonnegative integers. Then we have

(3.6) 1A,(x, B)| < M, p*Ey[(UB'BU)*|.

(2k)'
We then obtain from (3.2) and (3.6) the following theorem.

THEOREM 3.1. Under Assumption 1

(3.7) sup|F(x) — ®,(x)| < My, p*Ey B[(U’B’BU)k]

(2k)'
where ®,(x) and M, ,, are defined by (3.3) and (3.5), respectively.

COROLLARY 3.1 (The cases k£ = 1 and 2)

(3.8) s1ip|F(x) - 0(x) < E[tr (=-1 )]

2¢_
and

1.39 . \
(3.9) s1}1‘p|F(x) — Dy(x)| < mE[{tr(Z - Ip)} +2tr(= - 1,) ]

PrROOF. The formulas (3.8) and (3.9) can be obtained from (3.7) by putting
k =1 and 2, respectively, and noting that

2
M= s sup| 200 = spIO(2) = 7
34
M, ,= i,’?’a;zlslip W‘I’(X)‘
138 -
= sgpl<1>“’(x)l -
Ey[(UB'BU)*| = (tr BB')® + 2tx( BB')". O

When p = 1, the results (3.7), (3.8) and (3.9) agree with the known results due
to Fujikoshi (1985). For example, letting = = 62, (3.7) is expressed as

sup|F(x) — ®(x)| <
(3.10) x

1
9kR1 sup|Hy,_y(x)p(x)|E(0® - 1)

< —E(a2 - 1)* [Fujikoshi (1987)],
2k
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where (x) is the probability density function of the standard normal variable
and

k=1 1 .
(3.11) Ou(x) = 0(x) - X 2Tj!sz_l(x)qv(x)E(62 - 1),

and where H,(x) is the Hermite polynomial defined by (d’/dx’) @(x) =
(—1)’H(x)p(x).

4. Uniform upper bound for |P(X € A) — P(Z € A)|. A stronger version
of (3.10) is given by
2 k
(4.1) sup < —E(s*-1),
AeC T

P(x€A) - fAdm(x)

which is obtained as a special case of Shimizu (1987), where C is the set of all
Borel measurable subsets in R!. However, it seems difficult to apply the method
used in the case of p = 1 to the case of p > 1. We only consider the quantity

(4.2) sup |P(X € A) - P(Z< A)|,
AeC

where C is the set of all measurable subsets in R”, and we give its upper bound
by adopting a different method. Since the conditional distribution of X given =
is N0, Z), we have

P(XeA) = fA Es[es(x)] dx

-5 [ruwas)

where @s(x) = |Z| %p(27/?x) and ¢(x) = (V27 ) Pexp(— 1x'x). From this
expression we obtain

IP(X < 4) = Pz € 4) = |Es] [ (03(x) — 0(x) dx]

(4.3) < Ez[fR,J‘Pz(X) —o(x)] dx]'

We derive an upper bound by evaluating the last expression of (4.3).

THEOREM 4.1. Let C be the set of all Borel measurable subsets in R?. Then
under Assumption 1

(4.4) sup |P(X € A) — P(Ze A) <E[(IZV2-1) + 4=|"2(tr = - p)].
AeC

Proor. We can write

(4.5) ps(x) — @(x) = [1 - |E|exp{ —%x’(Ip - E_I)X}].
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By Taylor’s theorem, we have
exp{ —%x’(Ip - E_l)x} =1- %x’(Ip - E_l)xexp{ —éﬁx’(Ip - E_l)x},

where 0 < # < 1. Substituting this equality into (4.5) and noting that I, -
2! > 0, we obtain

lpx(x) = @(x) < [(Z1V2 - 1) + 3=12x/(1, - = )x] px(x)

and hence

[ Jox(®) - e(®)dx < |SV2 - 1+ YjS2(tr S - p).
RP
The desired result is obtained by using (4.3). O

It may be noted that the result (4.4) in the case of p = 1 is not the same as
the result (4.1) with & = 1.

5. Applications. Consider the distribution of the standardized statistic V of
the maximum likelihood estimate = in the model (2.1). We have seen in Section 2
that under Assumptions 1 and 2 the distribution is the same as that of the
random vector X in (1.1). It is hence enough to consider reductions on what we
have obtained in Sections 3 and 4, assuming that B has the structure (1.4).

LeEMMA 5.1.  Suppose that B has the structure (1.4). Then:

Q) Ifn-r—-1>0,

r
(5.1) E(BB) = ——1,.
) Ifn-r-3>0,
(5.2) E[(tr BB')* + 2tz(BB')| = bgrB(n, b, &, 1),
where
B 1
Bln. b, g,r) = (n=r)n-r—-1)(n-r-23)
(56.3)

X[{(bg +2)r+2(b+g+1))n

—(bg+2)(r+2)r+2(b-1)(g-1)].
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Proor. (i) follows from BB’ = I, ® LW~'L’and E(W™Y) = (n—r - 1)"1,

[see, e.g., Muirhead (1982)]. The left-hand side of (5.2) is equal to

Ep w|b%(tr LW + br(LLW-1)]

= bgE [(bg + 2)(tr W) + 2(b + g + Der W2,

The desired result is a consequence of

o [(tr aw-1)*| 1

w 12| (n-r)(n—-r-1)(n-r-3)

(5.4) tr(QW-1)

«[rorz ][(Wy}

1 n—r-—1 tr 02
which is obtained from (10) in Constantine (1966). O
Using Lemma 5.1, we can insert the results (i) and (ii) into Corollary 3.1 as
follows:

@O Ifn-r—1>0,

2
pir

. F(x) — .
(5 5) Sl;p| (x) tI)(x)| < ZW(n L 1)

i) Ifn-r-3>0,

.39

(5.6) SIiplF(X) — 0y(x)| < m mparﬁ(n, b,g,r),
where

(5.7) y(x) = O(x) + — il 3 [w)(x")

2 |3 }‘I"")'

r-1,5
Next we consider a further reduction for (4.4) under Assumption 2.

LEMMA 5.2. Supose that = = I, + BB’ and B has the structure (1.4). Then,
ifn—-b—-—r—-—1>0,

(5.8) E[|21'?] = a(n, b, g),
pra(n,b, g)
1/2 _ - 27
(5.9) E[lZ]V(tr S - p)] = ————,
where

r T[j(n+g-j+ DT [3(r-b—j+1)]

«(n. b.6) = 11 F[3(n-j+ DIT[3(n-b+g~;+1)]
_ET[in+eg-j+)|T[in+g-b-r-j+1)]
CjmiT[Hn+g-r—j+DT[i(n+g-b-j+1)]"

(5.10)
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Proor. We prove (5.8) and (5.9) for the case g > r. Letting H =
(W + L'L)"Y?>W(W + L'L)"'/2, we have

IZ|=|H|"% tE2-p=>b(trH'-r).

Noting that H is distributed as the multivariate beta distribution B,(3n, 3g), we
have
E[12"?] = E[|H"*?] = a(n, b, 8).
Similarly
E[12[V*(tr = - p)] = bE[|H|"**(r H™* - r)]
= ba(n,b,g)E[trH ' - r]
n-b+g-r-1
= ba(n, b, g)r R a— - 1|,

where H is distributed as B.(3(n — b), 1g). For the last reduction, see, for
example, Constantine (1966). Similarly we can get the same result for the case
r>g. 0O

Using Lemma 5.2, we can write the result (4.4) as

bgra(n, b,
(511) sup|P(X€A)—P(Ze€A) <a(n,b,g)-1+ gre(n, b, g)
AeC 2(n—-b-r-1)

if n—b—r—1>0.1Itis easy to see that the right-hand side of (5.11) can be
expanded as

pr

5.12 —_—
( ) n—-b—-—r-1

+ 0(n2)

and hence the asymptotic bound in the case of b=g=1is r/(n—r — 2).
On the other hand, the right-hand side of (4.1) with 2 = 1 is equal to (27~ ')r/
(n — r — 2). It will be interesting to derive another error bound whose special
case of p = 1 agrees with (4.1).
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