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SEQUENTIAL TESTS FOR THE DRIFT OF A WIENER
PROCESS WITH A SMOOTH PRIOR, AND THE
HEAT EQUATION!

BY GORDON SIMONS,? YI-CHING YA0 AND X1zHI WU

University of North Carolina at Chapel Hill, Colorado State University
and University of California at Davis
Methods are described which permit one to work with continuous-time
optimal stopping problems, using the heat equation, even when the prior
placed on the drift parameter of a Wiener process is not normal. The details

of the method are worked out for Chernoff’s problem of testing the sign of
the drift parameter when the prior is “smooth.”

1. Introduction. Chernoff (1961, 1972) and others have shown how the heat
equation and associated free boundary problems arise naturally as mathematical
tools for approximating Bayes sequential procedures. Typical applications are
concerned with normally distributed observations which depend on an unknown
mean 6 and a normal prior for . The present paper has two objectives: (i) to
show, very generally, that the heat equation is still relevant when 6 is not
normally distributed and (ii) to investigate the problem of testing the sign of the
normal mean for smooth priors. A smooth nonnormal prior can be viewed as a
perturbed normal prior and it is possible to very precisely describe how the
perturbation affects the associated free boundary.

Since the subject of free boundary problems is fraught with technical details,
a conscious decision has been made here to emphasize exposition rather than
rigor.

2. Bayes problems and continuous-time approximations. Suppose
X,, X,,... are potential observations which are independent and N(#, o?),
where ¢? is positive and known, and 8 is unknown. Set S, = X, + --- +X,,,
n > 0, and, for definiteness, 62 = 1. We shall assume that we are dealing with a
concrete statistical problem which is expressed within a decision-theoretic frame-
work with a suitable loss structure and that § has a prior density g. The Bayes
sequential procedure is sought.

Let d(z, n) denote the posterior Bayes risk associated with stopping at time
n, with S, = z, and making an optimal terminal decision. The primary task, in a
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784 G. SIMONS, Y.-C. YAO AND X. WU

Bayes sequential problem, is to find the stopping time N, within {0,1,2,...},
which minimizes the expectation E{d(Sy, N)}.

We are only concerned here with the commonly used approximation based on
the replacement of {S,, n > 0} by a Wiener process X = {X(t), ¢t > 0} with
drift rate 6: Given 0, the differential dX(¢) has mean 6 - dt and variance dt. The
task is to find the stopping time 7 in [0, c0) which minimizes E{d(X(7), 7)}.
Such problems can be viewed as Markovian, with states (x, ¢), and the search for
optimality can be viewed as a search for an “optimal continuation set” C in the
(x, t) plane: The optimal stopping time 7 = 7(x, ¢) is the first time that X
reaches the boundary of C if (x, ¢) is in C and it is simply ¢ otherwise.

Let b(x, t) == E{d(X(7), )}, represent the minimal Bayes risk that can be
achieved by stopping optimally starting from state (x, ¢). The same argument as
that used by Chernoff (1972), page 92 can be used to show that it satisfies a
diffusion equation

(1) b, +2¢(x,t) b, +2b,=0, (x,t) e,
where

© Oexp{x6 — t02/2)g(0) db
@ o(x, t) = E{61X(2) = x} = ff"_° epr{Ec() - tt02//2}§(0))d0 :

With the possible exception of certain points of singularity, the boundary
conditions

(3) b=d, b =d, b=d,

hold on the boundary of C. Frequently, (1) and the first two conditions in (3)
jointly determine the function b and the set C. But these conditions do not
always guarantee a unique solution.

We note in passing that the ratio in (2) is meaningful for ¢ > 0 even when the
prior g lacks a finite first moment.

3. Chernoff’s negative s scale. It is a standard practice to assume that the
prior g is normal with some known mean p, and variance of. This makes the
marginal distribution of X Gaussian but something other than a Wiener process
with drift. It does not make (1) particularly attractive to work with. For this
reason, Chernoff (1972) and others have found it more convenient to work with
the posterior mean process Y = {Y(s), 0 < s < o2}, defined by

(4) Y(s) = E{01X(t)} = (X(¢) + po/05) /(¢ + 05%),

where s = 1/(t + o 2) is the posterior variance at time ¢. Then Y is a Brownian
motion evolving backward in time, as measured in s (hence the name “negative s
scale”) and b(x, t), when described as a function of (y, s), satisfies the much
. more familiar heat equation u,, = 2u, and boundary conditions comparable to

those in (3). A frequent additional advantage is that Y(s) is statistically more
relevant than X(t), i.e., d(x, t) is more naturally described as a function of -

(3, 8).



SEQUENTIAL TESTS AND THE HEAT EQUATION 785

If the prior g is non-Gaussian, the marginal distribution of X is non-Gaussian.
Moreover, the posterior mean is non-Gaussian and it no longer assumes the
simple linear form shown in (4).

The loss of the linear form is unfortunate, for it is the reason Y is a Brownian
motion. It will be seen in the next section that it is possible to continue to work
with a variant of this linear form. We will be content here with pointing out that
the posterior mean is approximately equal to a linear form when ¢ is large and
the prior g is sufficiently smooth: It can be shown that (¢ + ¢)E{0|X(¢)} —
(X(t) + a) is a convergent martingale, for arbitrary constants a and c, whenever
g is continuously differentiable, in which case the limit equals g'(8)/g(0) — a +
c0 as. A linear form will be used, as a mathematical convenience, when we
consider the problem of testing the sign of the normal mean. The results so
obtained will need to be restated in the coordinate system of the posterior mean
before meaningful comparisons can be made with Chernoff’s results for normal
priors.

4. Transformations. We are concerned here with transformations of b
which satisfy the heat equation u,, = 2u,. We start with a transformation which
satisfies the backward heat equation u,, = —2u,.

THEOREM 1. The function

(5) b*(x,t) = b(x,t) - Y(x,t)
satisfies the backward heat equation in C, where
(6) v(x,t) = foo exp{x0 — t92/2}g(0) dé.

It is easily seen that
bX + 2bX = (b, + 2¢b, + 2b,) Y

at any point (x, t) at which b,, and b, exist. The theorem follows immediately
from (1).
Now set
d*(x,t) =d(x,t) y(x,¢).

The functions b* and d* can be viewed as surrogates for b and d, respectively:
Instead of trying to solve the free boundary problem represented by (1) with
boundary conditions (3), one may solve an equivalent problem using the surro-
gates b* and d*.

What we have done can be understood from a probabilistic perspective as
well: The transformation corresponds to a change of probability measures with
¥(X(t), t) equal to the Radon-Nikodym derivative dP/dP* for the (current)
sigma-field o{X(u): u < t}. Under the new probability measure P*, X is a
Brownian motion, d* and b* are the proper analogues of d and b, respectively,
and the proper analogue of (1) is the backward heat equation.

To get from the backward heat equation to the heat equation, let y =
(x +a)/(t+c)and s=1/(t+c) (> —c), and let C’ be the image of C
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in the (y, s) plane, where, for now, a and c are arbitrary constants. Thus, x =
y/s —a and t=1/s— c. Further, let ¢ be the standard normal density
and n(y, s) = s7%(y/s'?).

THEOREM 2. The function
(7) b**(y’s) = b*(x, t) -n(y,s)
satisfies the heat equation in the variables (y, s) within C’.

Again the proof follows by direct calculations and again a probabilistic
interpretation can be given: Assume X = {X(t), t > 0} is standard Brownian
motion under the probability measure P* and ¢ > 0. Then the process Y =
{Y(s) = (X(t) + a)/(t + ¢),0 < s < 1/c} is Brownian motion in reverse time s,
under a probability measure P**, if for each s, the Radon-Nikodym derivative
dP* /dP** for the (current) sigma-field o{Y(u): s < u < 1/c} is proportional to
n(Y(s), s). (The coefficient of proportionality equals [c - n(a, ¢)]™1)

The transformation shown in (7) is not new with us and not even recent: Van
Moerbeke (1974) credits it to Appell (1892).

Theorems 1 and 2 together yield the formula

®)  88) =b(x 1) [Ty = 0,5) - e ig(0) .

Again, each solution of the original free boundary problem can be described,
equivalently, in terms of surrogates b** and

©  d*(y8) =d(x,t)- [ n(y-0,s)- e "/ %(8) do.

While a particular solution b, so found, may not be the solution sought for the
sequential Bayes problem, one of the obtainable solutions in the ( y, s) plane will,
necessarily, correspond to the sequential Bayes problem; there is a simple
one-to-one correspondence between solutions in the two spaces.

Notice that the original problem has been converted into an equivalent
problem in the context of Chernoff’s negative s scale described in Section 3. This
has several advantages. An obvious advantage is that the heat equation has been
widely studied by probabilists and statisticians. Many solutions are known, and
these can be used to obtain asymptotic expansions and other analytic approxi-
mations to the solution of the free boundary problem. Another convenience is
that Chernoff and Petkau (1984, 1986) have developed numerical algorithms for
the negative s scale which find ** and C’, for quite general functions d**. A
final potential advantage is that one is able to place a large family of optimal
stopping problems within a common context; each prior g contributes a member.
This invites new types of comparisons. An example of this is given in the next
section. '

It is now a quick matter to completely recover Chernoff’s framework when the
prior g is normal N(p,, of): Simply set a = po/0f and ¢ = 1/6Z. Then (8) and
(9) become b**(y,s) = n(pg, of) - b(x, £) and d**(y,s) = npo, o2) - d(x, 2),
respectively. The positive constant n(p,, 02) contributes nothing of significance
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to the problem and can simply be dropped. So, effectively, we are concerned with
the transformation d**(y, s) = d(x, t), where y = (x + po/02)/(t + 04 2) and
s = 1/(t+ o, %), and we seek a suitable solution b**(y, s) of the heat equation.
Chernoff, by focusing attention on the posterior mean process (4), reaches the
same context.

More generally, suppose, for now, the prior g is strictly positive and smooth in
the sense that log g(0) is expressible in a Taylor series expansion,

(10) logg(0) =ay,+ a0 + a,0%2/2 + a,0°/6 + --- .

It is convenient to think of @, and —a, as prior parameters with all the other
subscripted a’s held fixed except a,, which must be chosen to make the integral
of g = 1. Then the posterior density of g given X(¢) = x remains in the family
and it has posterior parameters x + a, and ¢ — a,. This is a generalization of the
normal family, which corresponds to a, = po/0f and a, = —1/0f, with a;, = 0
for k£ > 3. In general, the integrals in (8) and (9) take the form

(11)  exp(a,) - foo n(y—90,s)-exp{a;0°/6 + a,0°/24 + --- } df
when one sets @ = aloja.nd ¢ = —a,. This makes y = (x + a,)/(¢ — a,).
5. Testing the sign of the drift.
5.1. The function d**(y, s). Assume the cost of sampling is 1 per unit time

and the cost due to a wrong assessment of the sign of the drift rate 6 is 2&|0|,
where k& > 0. This leads to

) 14 2 ] S0 8(6)dO [0 |6lex! " %g(6) df
(x,t) = t+ 2k - min w© ox0-102/25(0) g’ [ e 17/23(0) db
/= e 8(0) J2e 8(0)

and

d**(y,s) = (3'1 + az)fco n(y-@, s)e‘“lo_a?oz/zg(ﬂ) dé

— o0

+2k - min{wa ‘n(y —0,s)e % /%5(9) do,
0

—fo 0-n(y—0,s)e “0—u"/2%g(9) dﬂ}.
— 0

Before proceeding, we shall find it convenient to subtract away a solution of the
heat equation [®_(a, + k|0))n(y — 0, s)e~4?~**/2g(8) d@ and then to divide
by the positive constant e%, which will not affect the boundary of C’. (This
particular solution is defined for 0 < s < o0 if @, > 0 and for 0 <s < —a; ! if
a, < 0.) Keeping the same notation, as a convenience, we obtain

d**(y,5) =57 [ n(y—0,5)e 0 0-"/%(p) df

(12) -
—k- ‘f 0-n(y—0,s)e o a-a"/25(9) dg|.
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Using the fact that the function y (x, t) = [*_0 - exp{x0 — t02/2}g(0) d6 is
monotone in x, one can show that the second integral in (12) vanishes along a
line ( y4(s), s). It is positive above the line and negative below. [Note, for each ¢,
that ¢ (-, t) assumes values on both sides of the origin, since, according to (10),
£ has its support on both sides of § = 0.] It can be argued, along the lines of
Sobel (1953), that the continuation region C’ assumes the form {(y, s): y 7 (s) <
y <y*(s), s >0} with (y(s), s) inside C’. One of our main objectives is to
describe the asymptotic form of the boundaries y*(s) as s goes to zero. It can be
shown that

ag(p) = —azp’/2 — az’/8 — (a; + 20a3a,)p’ /48 — O(p°) ass -0,

where ay(p) = y(s)s~ /2 and p = s!/2 This function is identically zero when
e~ %%(0) is an even function and, hence, for all normal priors.

5.2. Expansions of d**. Let a = ys~'/2 and let r!p () be the rth moment
of a standard normal random variable about —a, i.e.,

pole) = [ o(u)(u + ) du/r.

Thus po(a) =1, pfa)=a and p(a) = (p,_(a) +a-p,_y(a)/r for r=
1,2,.... It is useful to know that p,(a)p” satisfies the heat equation in the
variables ( y, s).

A preliminary step is to expand the function d** in terms of the p,(a)’s and
powers of p: For bounded «a, as p goes to zero,

foo n(y—0,s) e % a0-a8*/2. g(9)dg

— o0

~Jy pwn(y —0,s) e % al-a/2 . 5(9) do
=

_ n(y -9, s) . ea303/6+a404/24+ “ de

161<p/

= pvn(y— 0,s)-{1+a;0°6+a6%/24+---}db
16| <p'/?

~f°° n(y—40,s) - {1+a,6°/6+a8*/24+ ---}db

= copol@) + cypy(@)p + copa@)p® + capg(a)p® + -+,
where
¢ =1, c,=¢,=0, c3 = ag, cy = ay, C5 = as,
cg=ag+ 10aZ, ¢, =a,+ 35asa,, cg=az+ 35aj+ 56a,a;,
¢y = ay + 84aja, + 126a,a5 + 280a3,
Cio = @y + 120a,a, + 126a2 + 210a,a, + 2100aa,.
The deletion of the set {|0] > p'/?} from the range of integration and its
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subsequent reinsertion, contribute negligible terms of order e~!/“»’ Likewise,
one obtains

[0 n(y=-0,s) ewat-et/2. g(g) g

~ coty(@)p + 2¢,p5(a)p” + Beypg(a)p® + - -
and, hence,

(13) d**(y’ S) - ""O(a)p_2 + Z [cr+2,"'r+2(a) + rkcr—l”"r(a)] pr’
r>1

where the sum includes a finite number of consecutive terms. The upper and
lower signs in F are applicable above and below the line ay(p), respectively.

Note that the even and odd functions of « always.go with the even and odd
powers of p, respectively. The same must be true for the expansion of 5**, The
presence in (13) of a negative second power of p forces us to say something more
about solutions of the heat equation.

5.3. Special solutions of the heat equation. For any integer r, V(a)p" is a
separable solution of the heat equation (in y and s) if V, satisfies

(14) V(@) + - Vi(a) =r-V(a).
The even and odd solutions of (14) are, respectively,
r r(r—2)
= — e q?24 -7 4
G(a) =1+ g @t 54 a
r(r—2)---(r—2n+2
+ . ( ) ( ) carh 4o
(2n)!
and
r—1 (r-1)(r-3)
=g+ — g3+ —— 1~ 7 .5
H(a)=a i 190 a
.. (r—l)(r—3)~-~(r—2n+1).a2n+l+“.
(2n + 1) )

The function p,(a) is a multiple of G(a) when r is an even integer and a
multiple of H,(«) when r is odd (r = 0,1,2,...). For notational convenience, we
will let p_y(a) == G_y (@) =1-2a%/2+2-4a%/24 — --- and p_,(a) =
H_(a)=a—2d°/6+2-4a°/120 — - .

We shall seek an asymptotic solution for 5** of the general form
(15) b**(y,8) ~ X wp(a),

. r>-2
where, again, the sum includes a finite number of consecutive terms and the u,’s
are constants which are to be determined from the boundary conditions.

5.4. Four boundary conditions. Two boundary conditions are described by
equating the expansion of d** with the presumed form of the expansion of b**.
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This yields
(_gp_o(a) —1)p 2+ u_jp_1(a)p™ + uope(a)
(16) + % [(u, £ ke, (@) = ¢pgbrag(a)] @7 =0,

r>1

where + refers to the upper and lower boundaries y *(s), respectively. This is to
hold when a = a*(s) = y*(s)s~'/% The further requirement that d** and
b * should be equal on the boundaries can be incorporated by dlfferentlatlng
(16) with respect to a:

u_oplo(@)p 2+ u_yp’y(a)p™?

+ Z [(ur * rkcr—l)p';'(a) - cr+2lu',;'+2(a)] pr =0.

r=1
Since p!. = p,_, (r = —1,1,2,3,...), this becomes
u_op_s(@)p™? + u_ip_s(a)p?
(17) + Z [(ur + rkcr—l):”‘r—l(a) - cr+2l'l‘r+1(a)] pr = O’

rx1
where p_ (@) =p’ (@)= —2a +2-4a®/6 —2-4-6a°/120 + ---
5.5. The expansions of a*. Following Chernoff (1972), page 99, we anticipate
that the boundary functions a *(s) have a general asymptotic form
(18) a*(s) ~ bip® + bifp* + bip® + -

The constants b* and the coefficients u, are determined by the boundary
conditions. The details are messy but the idea is quite simple: One replaces «
everywhere in (16) and (17) by the presumed form of the asymptotic expansions
of a*(s) given in (18). This yields four series in p which can be viewed as being
identically equal to zero. By setting the coeflicients of the powers of p equal to
zero, one obtains a system of equations which can be solved to yield the
coefficients u,, r = =2, —1,0,..., and b7, j = 3,4,.... One finds

u_y,=1, u_,=uy,=0, u, = —ag/2, Uy, = au/4,
uy = —az/4, u,=(as— 2a2-12k?2)/6,
us= —(a, + 11a,a,)/6,  uz= (agz + 8aza; + 35a2)/8,
u; = —(ay + 36asas + 7243 + 78a,a;)/8 — 38k%a,,
ug = (a0 + 40a,a; + 66a2 + 210a,a, + 380aZa,)/10 — 108k%a,,
bif=bf =bi= --- =0, bf=—a,/2+k/2,
bi= —ay/8, bi= —(a;+ 20a,a,)/48 + ka,/4,
by= —(ay + 56a,a, + 96a,a; + 96a3)/384
+k(ag + 4a2)/16 + k%a,/24 F k*/6.
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REMARKS. It is not immediately clear why the above system admits a
solution. However, with some effort (and patience and care), one can show that a
matching of coefficients indeed takes place. We have verified the accuracy of
these results and of those in the next subsection by using a symbolic-math
computer program (Macsyma).

5.6. Expansions in the coordinate system of the posterior mean. In order to
clearly interpret (and simplify) the results described in the previous subsection,
it is necessary to change from the coordinate system based on the mapping
y = (x + a,)/(t — a,) to the coordinate system based on y = E(6|X(t) = x) =
Y.(x, t)/Y(x, t). It is easily checked that ¥ is a continuous and strictly increas-
ing function of x when ¢ is held constant. So, there is a well-defined one-to-one
mapping from (y, s) to (J, s). One obvious simplification is that the function
Yo(s) gets mapped into the s axis of the (J, s) coordinate system. The most
interesting question is “How are y *(s) mapped?” This is easily answered using
the information at hand: Let $*(s) denote the mappings of y*(s) The
asymptotic expansmns of 9%(s)s71/% as p goes to zero take the form b
bto® + b’ + bitp® + -+, where

b= +k/2, bi=0, t— tka,/?,

H+

>w°~

bi= tk(ag+ 4a2)/8 + k2a3/6 F E3/6.
Several observations can be made:

1. Chernoff’s expansion for a normal prior has the same first term [also obtained
by Bather (1962)]. Our second nonzero term does not show up in his expansion
since normal prlors have a, = 0. His second nonzero term is bJr FE3/6.
(Note that our % is one-half of Chernoff’s k&.)

2. The evidence for a nonsymmetric optimal stopping boundary, in the (3, s)
coordinate system, first appears in the formula for b9+, and then only if
a, # 0. Its effect is to shift the continuation region upward when positive and
in the opposite direction when negative.

3. The coefficients a, and a4 produce similar effects: When positive, each causes
the continuation region to be enlarged.

4. It seems somewhat surprising that a, shows up earlier than a; in the
expansions of §* and a4 earlier than a; (which presumably appears in bu)
It seems that departures from normality more readily affect the size of the
continuation region than the location of its midline, at least when s is small
(large t).

We are uncertain how to intuit observations (1)—(4).

It should be pointed out that we have assumed much more about the prior
density g than is necessary. Clearly, for the results we have described, one only
needs g to be positive and to have a suitable number of derivatives within a
neighborhood of zero. Presumably, one can work out precise theorems with
“stingy assumptions,” but this is not our intent here. It might be interesting to
investigate more severe departures from normality than we have considered. For
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instance, one should expect a double exponential prior [g(8) = e~ /2] to behave
quite differently. The optimal boundaries for one severe departure from normal-
ity are known: It is easily seen that two point prior distributions give rise to
sequential probability ratio tests.

It is tempting to speculate whether Chernoff’s (1965) theory for small ¢ (large
s) can be extended from the setting of a normal prior to the more general setting
of a smooth prior. We do not know whether this is feasible.

REFERENCES

APPELL, P. (1892). Sur I'equation 3%22/9x% — 3z/9y = 0 et la theorie de la chaleur. JJ. Math. Pures
Appl. 8 187-216.

BATHER, J. A. (1962). Bayes procedures for deciding the sign of a normal mean. Proc. Cambridge
Philos. Soc. 58 599—-620. .

CHERNOFF, H. (1961). Sequential tests for the mean of a normal distribution. Proc. Fourth Berkeley
Symp. Math. Statist. Probab. 1 79-91. Univ. California Press.

CHERNOFF, H. (1965). Sequential tests for the mean of a normal distribution. III (small ¢). Ann.
Math. Statist. 36 28—54.

CHERNOFF, H. (1972). Sequential Analysis and Optimal Design. SIAM, Philadelphia.

CHERNOFF, H. and PETKAU, A. J. (1984). Numerical methods for Bayes decision problems. Technical
Report ONR 34, Statistics Center, MIT.

CHERNOFF, H. and PETKAU, A. J. (1986). Numerical solutions for Bayes sequential decision prob-
lems. SIAM J. Sci. Statist. Comput. 7 46—59.

SOBEL, M. (1953). An essentially complete class of decision functions for certain standard sequential
problems. Ann. Math. Statist. 24 319-337.

VAN MOERBEKE, P. (1974). Optimal stopping and free boundary problems. Rocky Mountain J.
Math. 4 539-5717.

Y1-CHING YAO

DEPARTMENT OF STATISTICS
COLORADO STATE UNIVERSITY
Fort CoLLINS, COLORADO 80523

GORDON SIMONS

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HiLL, NORTH CAROLINA 27599

Xi1zH1 WU

DIVISION OF STATISTICS

UNIVERSITY OF CALIFORNIA AT DAvis
Davis, CALIFORNIA 95616



