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LACK-OF-FIT TESTS BASED ON NEAR OR EXACT REPLICATES

BY RONALD CHRISTENSEN

University of New Mexico

This article shows how to modify an approximate lack-of-fit test pro-
posed by Neill and Johnson (1985) to obtain an exact F test. The modified
test is shown to be consistent and to yield uniformly most powerful invariant
tests for two specific types of lack of fit. Pure types of lack of fit are (1) lack
of fit that exists between clusters of near replicates and (2) lack of fit that is
contained within clusters of near replicates. Lack of fit that is a mixture of
these two types can be difficult or impossible to find depending on the nature
of the mixture.

.~

1. Introduction. Neill and Johnson (1985) studied a lack-of-fit test based on
near replications. They established the asymptotic distribution of the test and
obtained results on consistency. Their test has also been discussed in Neill (1982)
and in a review article, Neill and Johnson (1984a).

The Neill-Johnson (NJ) test is based on modifying a regression model in
which near replicates have been identified so that the classical lack-of-fit test
based on exact replication can be used. To do this, Neill and Johnson estimate
the parameters of the regression model prior to performing the classical lack-of-fit
test. This prior estimation invalidates the usual distribution theory.

In this article it will be shown that the prior estimation is not necessary and
that an exact F test is available. This exact F test is related to work by
Shillington (1979) and Tsiatis (1980).

Section 2 sets the notation to be used, discusses the NJ test, gives the exact
test procedure and discusses its relation to other work. Section 3 examines the
types of lack of fit that can be detected by the exact test, establishes the
consistency of the test and discusses power.

2. Lack-of-fit tests based on near replicates. A regression model with
near replicates can be written as

(1) yU=x,'JB+eU, i=1,...,c,j=1,...,ni.

The number of groups of near replicates is c, there are n; near replicates in the
ith group. The dependent variable is y,;, the vector x,; is a vector of indepen-
dent variables, B is a vector of regression coefficients and the e;;’s are indepen-
dent N(0, 62). In matrix notation model (1) can be rewritten as

(1) Y=XB+e, e~ N(0,o%).
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674 R. CHRISTENSEN
Let

n;
x,.= E xX;/n;.
Jj=1

A model similar to (1) but which contains exact replicates is

(2) Yij = (%.)B + e;;.
Model (2) will be written in matrix notation as
(2) Y=XB+e.

If x;; = %; for all i and j, then models (1) and (2) are identical and contain
exact replicates. The classical lack-of-fit test based on exact replications is to test
model (2) against a larger model, namely the one-way analysis of variance
(ANOVA) model

3) Yij = Mt ey
In matrix notation model (3) is rewritten as
(3 Y=12y+e.

It can be shown [cf. Christensen (1987), Section VI. 6] that model (3) is in some
sense the largest model that subsumes model (2).

A naive lack-of-fit test based on near replicates [cf. Draper and Smith (1981),
Section 1.5] is to test model (1) against model (3). Models (1) and (3) are not
hierarchical models so an exact F test is not achieved. Moreover, Neill (1982) has
shown that this test does not approximate its nominal size.

Neill and Johnson have improved on the naive test in the following way. Let
A = X — X,,. Model (1) can be rewritten as

Y=XB+AB+e
or
(4) Y-AB=X,B+e.

The right-hand side of (4) involves exact replicates. The classical lack-of-fit test
is to test model (4) against

(5) Y-AB=2Zy+e.

The only problem with this test is that since B is unknown, the left-hand sides of
both equations (4) and (5) are also unknown. Neill and Johnson avoid this
problem by substituting 8 = (X’X)~'X"Y for B on the left-hand sides and then
doing the test. They establish that the test based on this substitution has nice
asymptotic properties and in Neill and Johnson (1984b), they examine the test’s
small sample properties.

. In fact, to test model (4) against model (5), it is not necessary to estimate .
Models (4) and (5) can both be rewritten in forms that allow an exact F test. Let
M, = Z(Z'Z)~Z' be the perpendicular projection operator onto the column space
of Z [denoted C(Z)]. Note that since Z is the design matrix for the one way
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ANOVA model (3), X, = M,X. Thus, model (5) is equivalent to
Y=Zy+AB+e
=Zvy+(X-X,)B+e
=Zy+(X-M,X)B+e
=Zy+ (I - M,)XB + e.
Because C(Z,(I — M,;)X) = C(Z, X), model 5 is also equivalent to
(6) Y=XB+Zy+e,

where the y’s in (5) and (6) will typically be different. Recall that model (4) is
equivalent to model (1) so the test of model (4) versus model (5) is identical to
the test of model (1) versus model (6). In other words, an exact F test for lack of
fit is available by testing model (1) against model (6). Note that if all near
replicates are exact replicates, then this is precisely the classical test.

In testing for lack of fit, the sum of squares for error in model (6) is analogous
to the sum of squares for pure error. The difference in the sum of squares for
error between models (1) and (6) is analogous to the sum of squares for lack of fit.

Tsiatis (1980) and Fienberg and Gong (1984) have proposed similar tests for
logistic regression. Landwehr, Pregibon and Shoemaker (1984) used the linear
structure XB + Zy to estimate pure error in logistic regression. This linear
structure is also implicit in the exact F test for lack of fit proposed by
Shillington (1979).

Shillington’s test procedure is considerably simplified if presented in terms of
models. Shillington’s test uses the mean squared error from model (6) as a mean
square for pure error. However, Shillington’s test uses the difference in the sums
of squares for error between models (2) and (3) as a sum of squares for lack
of fit. Because C(X,) c C(Z) c C(X, Z), it is a simple matter to check that
Shillington’s procedure gives an exact F test. On the other hand, a direct test of
model (1) versus model (6) is more appealing. .

3. Models for the alternative and consistency. This section begins with a
discussion of the types of lack of fit that can be detected by tests based on near
or exact replicates. Lack of fit can be described as a continuum from existing
between clusters to existing within clusters. In the middle of the continuum
there is little hope of detecting lack of fit. However, for either of the pure types
of lack of fit it is shown that the test presented here is consistent. We begin by
discussing the continuum of lack of fit for the classical test based on exact
replicates.

The classical lack-of-fit test is closely tied to one-way analysis of variance in
which clusters of replicates are identified with different treatment groups. The
classical test is designed to identify lack of fit that exists between clusters.
Somewhat surprisingly, the classical test can also be used to identify lack of fit
that exists within clusters. What the test has problems with is lack of fit that is a
combination of between-cluster and within-cluster lack of fit.
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Between-cluster lack of fit is the kind typically associated with the classical
lack-of-fit test. It is assumed that all observations in a cluster have exactly the
same mean and some model is postulated (e.g., a line) for the relationship
between the means. If the postulated model does not adequately describe the
relationship between the cluster means we have a between-cluster lack of fit.

Within-cluster lack of fit is a more unfamiliar idea. Consider a simple linear
regression with replication

Yij=Bo+ Bix; + e,

where there are two observations for each value x; (i.e., j = 1,2). Now suppose
that the lack of fit is contained within the clusters. For example, suppose that
the mean of the first of the two observations is always » units greater than the
mean for the second observation [i.e., E(y;) = E(y,5)'+ v]. Although the classi-
cal lack-of-fit test is not designed to detect such a phenomenon, it is capable of
doing just that. As will be seen below, such a phenomenon will cause the F
statistic for lack of fit to be unusually small.

The test presented in this article and other tests based on clusters of near
replicates share these characteristics of the classical test. They can detect lack of
fit either between or within clusters. This will be shown explicitly for the test
presented here. Since the classical test based on exact replicates is a special case
of the test presented here, the arguments given for the new test also apply to the
classical test.

In the test based on exact replicates, it is traditionally assumed that E(y;;) is
the same for all j. In other words, it is assumed that there is no lack of fit within
clusters. The only lack of fit considered is that the current model does an
inadequate job of explaining the relationship between the different clusters
(i=1,...,c)of E(y;,)s.

Lack-of-fit tests using near replicates behave similarly. These tests are based
on the hope that, within each cluster, E(y;,) will be nearly the same. If this is
true, the F statistic will be large when there is a lack of fit between clusters.
However, the F statistic will be small if the lack of fit exists within clusters. If
both kinds of lack of fit are present, the F statistic will lean toward the
predominant type of lack of fit. If the two types of lack of fit cancel each other
the F statistic will be unable to detect lack of fit.

Lack of fit within clusters can be illustrated for near replicates with the
following example. Consider a simple linear regression on the four (x, y) pairs
(—2,1), (-1, -1), (1, —1), (2,1). These form a perfect V shape with a vertex at
(0, —3). If we cluster points based on their x values, it is natural to form two
clusters. One cluster consists of the points with negative x values: (—2,1) and
(—1, —1). The other cluster contains (1, —1) and (2,1). The downward trend on
the left-hand side of the V is contained entirely within the first cluster and the
upward trend on the right-hand side of the V is entirely within the second
claster. The lack of fit is contained entirely within clusters. For this example, the
proposed lack-of-fit test yields a mean square lack of fit which is zero. As
indicated, the test picks up lack of fit that exists only within the clusters by
having an F statistic of zero.
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One characteristic of the exact replicate lack-of-fit test is that it is hard to see
its deficiencies. In a simple (x, y) plot it is impossible to see lack of fit within
clusters. The lack of fit must depend on some variable that distinguishes
observations within clusters. With exact replicates this variable must be some-
thing other than x. Thus the lack of fit cannot show up in an (x, y) plot.

On the other hand, with near neighbors, the x variable still distinguishes
observations within a cluster. Thus the lack of fit can depend on x and may be
apparent in an (x, y) plot. The example given above with the V-shaped data
illustrates this point.

To investigate consistency properties of the test presented here, we need to
specify a true model that contains lack of fit, say

(7) Y= W6+ e, where C(X)c C(W).

With the condition that C(X) c C(W), model (7) may not be the most
succinct version of the true model but any true model can always be enlarged to
another true model that has the property that C(X) c C(W). Now take a
matrix W, with the properties that C(W) = C(X, W,) and C(X) L C(W,). We
can rewrite model (7) as ’

(8) Y=X8 + W, +e.

Thus the lack of fit of model (1) consists of not accounting for the term W,9,.
If model (8) is true, the test statistic proposed in this article typically has a
doubly noncentral F distribution. The expected value of the mean square lack of
fit is
E(MSLF) = E[Y'(My; -~ M)Y/(c + p’ - p)]
=02+ 8'W(My, — M)W3/(c+p’ —p)
=0® + §Wy(My, — M)W;d,/(c +p' — p)
=o® + §;Wy My, W,8,/(c + p’ — p),
where M and My, are the perpendicular projection operators onto C(X) and
C(X, Z), respectively, ¢ + p’ = r(X, Z) and p = r(X). For tests based on exact
replicates, typically p’ < p. For tests based exclusively on near replicates, typi-

cally p’ = p.
The expected value of the mean square pure error is

E(MSPE) = E[Y'(I — My,)Y/(n — ¢ — p')]
62+ 8'W'(I— My,)Ws/(n — c—p’)
o® + 82’“’2’(1 - MXZ)Vstz/(n -C _P'),

wheren=n,+ --- +n_

By analogy with one-way analysis of variance, effects that are between
clusters exist in C(Z) and effects that are within clusters are orthogonal to C(2).
If the lack of fit is between clusters, then Wyb, € C(Z). If it is within clusters
then W,8, L C(Z). If the lack of fit is between clusters, then (I — My,)W,8, =
E(MSPE) = 02 and the F statistic has the usual noncentral F distribution
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(under normality). If the lack of fit is within clusters then W5, L C(Z),
My ,W,8, = 0, E(MSLF) = 0 and the F statistic has an inverted noncentral F
distribution. (An inverted noncentral F is compressed toward zero so the test
should be rejected for small F values.) If the lack of fit is some mixture of these
archetypes, then the F statistic has a doubly noncentral F distribution. In
general, rejection of the F test depends on the relative sizes of the two
noncentrality parameters. It is also of interest to note that (a) based on the
expectations of the numerator and denominator, the tendencies for the F
statistic to become either large or small under the alternatives hold even for
nonnormal data and (b) the NJ test and Shillington’s test behave similarly.

For asymptotic results we assume that (1) the total number of observations
n — oo, (2) that as n becomes large, the number of clusters is ¢, = o and (3)
that the relative rate of convergence is ¢,/n — 1, where 0 < n < 1. This allows
the special case where all clusters are of the same size, say n; = N > 1. It also
allows some or all of the n;’s to approach infinity. Model (8) can be rewritten as

9 ¥ij = x{8; + wy; ;625 = e;;.

While the parameter vectors 8, and 8, and the ranks of X and (X, W,) are
assumed fixed, the structure of Z and the rows of X and W, depend on ¢, and n.
This dependence will be supressed in the notation but should not be forgotten.
Finally, we assume that the e;;’s are independent and that for all { and j
E(e;;) = 0, Var(e; ;) = o’ E(eisj) = pg and E(efj) = Py

3.1. Between-cluster lack of fit. First we consider the case in which, asymp-
totically, the entire lack of fit lies between clusters. For this to happen we need
the within-cluster lack of fit to approach zero. The within-cluster lack of fit is
(I — M,)W,3,. For fixed §,, this vector gets progressively larger as the sample
size increases because the dimension of the space increases. However, on the
average this vector can approach zero. Technically, we take the statement that
“asymptotically the lack of fit lies between clusters” to mean that

(10) (I = Mz)Wyd,||?/n — 0.
PROPOSITION 1. If condition (10), holds, then MSPE -, o>.

PROOF. As seen earlier
(1)  E(MSPE) = o® + (I - Myg) WAsl|*/(n = ¢, = D).
Note that, since C(I — My,) € C(I — M), we have
(I = Myz)Wibsll> < (1 — Mz) Wid,)|®
and
(I = Myz)Wyb,||?/(n — ¢, — p) = 0.

Therefore E(MSPE) — o2
We now show that Var(MSPE) — 0. Let m, be a vector consisting of the
diagonal elements of (I — Myy). The variance depends on m, so we begin by
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establishing some inequalities relating to m,. Recall that the diagonal elements
of projection operators lie between 0 and 1. If J is a column of ones, we have

mimy < J'my=1tr(I — My,) =n—c,—p'.
Also note that by the Cauchy—-Schwarz inequality
185Wy' (I — Myz)mo| < (I — Myz)Wbs|l [|m,|

<|I(I- MXZ)W282||Vn -c¢,—p.

From these results, the idempotence of projection operators and taking absolute
values of any negative terms in Theorem 1.8 of Seber (1977) we get

Var(MSPE) < (n— ¢, — p") *[In, — 30%(n — ¢, — p)
(12) | +204(n — ¢, — p') + 402|(I — My;) WS ||?

+ 4|l (I — Myz) Wbyl — ¢, — P’ .

The upper bound converges to zero so Var(MSPE) does also. By Chebyshev’s
inequality

MSPE - ¢2. O

P

Similar arguments lead to a result for MSLF.

ProPoOSITION 2. If |(Myx, — MYW,5,|%/(c,+ p’ —p) >y where 0<4,
then MSLF —_ ¢% + y.

P

Proor.
13) E(MSLF) = E[Y'(My; — M)Y/(c, + p' - p)]

= 02 + 82/‘4,2/(MXZ_ M)WIZSZ/(CY! +p, _p)’

Var(MSLF) < (¢, +p' —p)~°
X[Ins — 304(c, + ' — p) + 20*(c, + P’ — p)
14
(14) +40%|( My, — M)Wy5,|?

+4|y| [( Mz — M)Wi,llfc, +p" —p|.

Since E(MSLF) - o2 + y and Var(MSLF) — 0 the proposition holds. O

Note that even if |(My, — MYW,8,|>/(¢c, + p’ — p) = o, the rate of conver-
gence of E(MSLF) is greater than that of Var(MSLF) so MSLF will converge in
. probability to infinity.
The condition |(My, — M)W,8,||2/(c, + p’ — p) — v is rather artificial. We
now relate this to a more intuitive idea of lack of fit. If lack of fit exists, the
vector W,8, is nonzero. For asymptotic results, we need this vector to remain



680 R. CHRISTENSEN

substantial as the models change. A reasonable assumption is that

(15) IWidyli2/n = y > 0.
A possibly weaker assumption is that
(16) IW8,l|%/¢c, = v > 0.

If ¢,/n > 1 >0, these assumptions are equivalent. If ¢,/n — 0, then the
assumption (16) implies comparatively less lack of fit.

Assumption (16) taken with a (possibly) stronger version of (10), the assump-
tion that the lack of fit exists between clusters, ensures the consistency of the
test. The (possibly) stronger version of (10) is that

(17) (I — M) Wyd,1/c, = 0.
Again, if c,/n — 0, this is a stronger assumption about the lack of fit. If
c,/n = n > 0, then this condition is equivalent to (10).

THEOREM 1. If (16) and (17) hold, then MSLF/MSPE — , 1 + v/02 and
the lack-of-fit test is consistent.

Proor. If (17) holds, then (10) holds and Proposition 1 applies. If Proposi-
tion 2 also holds, the result is proven.

To see that Proposition 2 holds, note that c¢,/(c, +p’—p) = 1 so it is
enough to show that || My, — M)W,5,||%/c, — y. Using the multidimensional
version of the Pythagorean theorem,

Wadall? = [IMWodo|? + (Mxz — M)Wodyl1® + (1 — Myxz) Wod,|?
= ||(sz - M)"V282||2 + ||(I - MXZ)VV282”2
and clearly
(Mxz — M)W,||%/c, < ||[Wobyl|*/c,,
= (Mxz — M)Wd,||*/c,, + (I — Mxz) WadolI*/c,..
Note that if ||(I — My,)W,8,||%/c,, — 0, then (16) implies that
I(Mxz — M)Wadoll?/c, = v.
By (17), (I = Mxz)Waba|*/¢, < (I — Mz)Wyb,||* /¢, — 0, and we are done. O

Allowing for division of positive numbers by zero, we also get

THEOREM 2. If (10) and (15) hold, then MSLF/MSPE - , 1 + y/0%n and
the lack-of-fit test is consistent.

" PROOF. The proof is similar to that of Theorem 1. Proposition 1 holds
because (10) holds. MSLF — , ¢ + y /7 because (15) implies that ||[Wy5,||>/c, —
Y/7. O
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Finally, we take a closer look at condition (10). Since M, is the projection
operator for a one-way ANOVA, we can use model (9) and the Cauchy—Schwarz
inequality to get

— ve 12
(I — Mz)Wyd, || = Z Z [(w2ij — W) 82]
i
< X [llws; — @ ? 18112]
171
Since &, is assumed fixed, the condition (10) will be satisfied if

¢, n;
Z Z l|lws; ; — E’zi.”Z/n - 0.
i=1j=1
In particular, think of each cluster as being contained in a hypersphere
centered at w,; with radius r;. Then

Cn

n; ¢,
XX l|lwe;; — Wy |I>/n < Y n;r?/n.
i=1/=1 i=1
Clearly, the r;’s depend on n and if max,_;_.{r;} = 0, then condition (10)
holds. Moreover, for any finite number of clusters such that n,/n — 0 we can
allow the r;’s to remain bounded away from zero and condition (10) still holds.
Of course, the r;’s for these clusters must remain bounded above.

It is important to note that the size of clusters is defined in the space C(W,).
Since W, is unknown, we cannot ensure that the cluster sizes are getting small.
Typically, we choose clusters of small volume in the space C(X) and hope that
they are small in C(W,). It is possible to choose clusters with zero volume in
C(X) (i.e., exact replications) and still have clusters of substantial volume in
C(W,). This is precisely what occurs when the lack of fit exists within clusters.

3.2. Within-cluster lack of fit. Restricting the lack of fit to be within clus-

ters, is the restriction that
Z’Wy8, = 0.

If this is true, the lack-of-fit test will be consistent. A more appropriate
asymptotic result might be based on assuming that Z'W,6, is converging to zero,
for example, ||Z'W,5,||?/c, — 0. However, because of possible collinearity in
C(X, Z), this condition is not enough to ensure consistency. If W,8, L C(X) and
W,d, L C(Z), then Wy, L C(X, Z). However, if Wy, L C(X) and W6, is
almost orthogonal to C(Z) we have no assurance that W,8, is nearly orthogonal
to C(X, Z). The condition that W8, is nearly orthogonal to C(X, Z) is the
condition required for consistency.

THEOREM 3. If ||Wy8,||%°/n > v and ||Mx,W;8,|%/(¢c, + D) = 0, then
MSLF -, ¢*, MSPE -, o® + v/(1 — 1) and the test is consistent.
Proor.

"MXZvV282“ = “(MXZ - M)VV282||
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SO
(Mxz — M)WP,|1*/(c, + p’ — p) = 0.

From (13) and (14) E(MSLF) — 62 and Var(MSLF) — 0. The Pythagorean

theorem and arguments in the previous subsection lead to |[(I — My,)W,8,||2/

(n—¢,—p) = v/(1 — 7). Thus from (11) and (12) EMMSPE) - o2 + y/(1 — 1)

and Var(MSPE) —» 0. O

Although mathematically the results on within-cluster lack of fit are as
general as the results on between-cluster lack of fit, they do not apply in the
usual paradigm of taking more and more clusters in which the volume of each
cluster is getting progressively smaller. This is an appealing paradigm but it is
not the only one of interest. Another possibility is to consider a sequence of
clusters with each cluster retaining some kind of intrinisic structure. The
lack-of-fit test can be viewed as testing for treatment effects in a one-way
analysis of covariance. To do this, one thinks of the clusters as being treatments.
If the “treatments” seem very different, there is a between-cluster lack of fit. If
the “treatments” seem too similar, it may be because there is structure within
the clusters causing the “pure error” to be overestimated. Suppose that the
clusters have some sort of intrinsic structure, for example, they are observations
taken on the same day. Then it makes sense to think of a sequence of “treat-
ments” (clusters) in which the volume of the clusters is not getting arbitrarily
small. The concept of an asymptotic within-cluster lack of fit only makes sense
when the sequence of clusters retains some sort of physical meaning. If the
clusters become arbitrarily small, it is unreasonable to imagine that they will
retain the lack of fit within them.

3.3. Power. Assuming normal errors, the power of tests based on comparing
models (1) and (6) can be computed exactly because the distribution under the
alternative is a doubly noncentral F. While programs for computing the neces-
sary probabilities are not readily available, the formulas in Bulgren (1971) are
easily programmed.

From standard linear model theory, it is known that no uniformly most
powerful or uniformly most powerful unbiased test exists for testing lack of fit.
However, the test proposed here (if rejected only for large F values) gives a
uniformly most powerful invariant (UMPI) test against the alternative that the
lack of fit vector can be written as the sum of a vector in the between clusters
space C(Z) and a vector in the space determined by the projection of X onto the
within clusters space. Moreover, the test (if rejected only for small F values)
gives a UMPI test against the alternative that the orthogonal lack of fit W9, lies
within clusters. To see this note that the alternative model for lack of fit within
clusters is
(18) Y=XB+ (I-My,)y +e.

It is easily seen that rejecting for small values of F as described above gives the
likelihood ratio test for testing model (1) against model (18) and the likelihood
ratio test is known to be UMPI.
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