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INFLUENCE DIAGRAMS FOR STATISTICAL MODELLING

By J. Q. SmiTH

University of Warwick

A directed graph with identified nodes is defined to represent a set of
conditional independence (c..) statements. It is shown how new c.. state-
ments can be read from the graph of an influence diagram and results of
Howard and Matheson are rigorised and generalized. A new decomposition
theorem, analogous to Kiiveri, Speed and Carlin and requiring no positivity
condition, is proved. Connections between influence diagrams and Markov
field networks are made explicit. Because all results depend on only three
properties of c.., the theorems proved here can be restated as theorems about
other structures like second order processes.

1. Introduction. When eliciting the beliefs of a client about the basic
structure of a problem, a statistician will all too often use convenient but
unjustifiable modelling assumptions. These assumptions may concern the distri-
bution of pertinent random variables or the existence between these variables of
certain linear relationships. The assumptions will be made before the statistician
has thoroughly discussed the problem with his client, in particular before he has
ascertained which variables the client believes are related to each other and
which are unrelated. When such premature assumptions are made we often find:

1. A model is imposed on a client that implicitly states that variables are
unrelated when he believes that they are related (and vice versa). One
consequence of this is that probabilities subsequently elicited from the client
are contaminated and unreliable.

2. It is difficult for the statistician to distinguish which parts of his inference
depend on the genuine information about the process as stated by the client
and which depend on the convenient distributional assumptions he has
imposed. Here even a sensitivity analysis may not help him fully differentiate
these effects, since he can only perturb his model within a specified class of
larger models still contaminated with a “convenient” structure.

Eliciting and then analysing how variables in a problem are related before
imposing distributional assumptions is clearly desirable and allows the statisti-
cian or decision analyst not only to obtain direct information about the underly-
ing process which is distribution-free but also to see how his problem might be
decomposed into smaller component submodels which can be studied separately
and more easily.

Influence diagrams are now a well used practical tool for graphically repre-
senting and manipulating the relationships between a set of random variables
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[see, e.g., Howard and Matheson (1981), Agogino (1985), Barlow and Zhang
(1987), Barlow, Mensing and Smiriga (1986) and Rege and Agogino (1986)]. More
recently, attempts have been made to formalise the approach [see, e.g., Olmsted
(1984) and Shachter (1986a, b)]. The main difficulty with these authors’ ap-
proach stems from the fact that they try to prove their results about conditional
independence by manipulating the corresponding densities or mass functions.
This approach is inelegant and not simple to adapt when it is not known
beforehand that random variables are all discrete or all absolutely continuous.
Technical problems can also arise when it is possible that some of the random
variables in a model are functionally related. This will happen, for example,
when some of the variables in your model represent your beliefs about a client’s
decisions [see, e.g., Smith (1988a, 1989)]. In this paper, by manipulating condi-
tional independence statements directly we overcome these problems in a simple
and straightforward way. In particular a key theorem, Theorem 6.2, can be
proved whether or not functional relationships exist within the system.

The approach used here most clearly resembles that of Pearl (1986) on Bayes
networks. However, the results given in the paper are more general than his
because they do not require positivity conditions on random variables to hold.
Furthermore since we use just three properties of conditional independence in
our proofs we can obtain graphical representations of lack of influence not only
appropriate for depicting and manipulating conventional conditional indepen-
dence between random vectors but also for representing other types of lack of
influence relating to best linear estimates. So the results given here are relevant
not only to conventional Bayesian inference but other types of inference such as
those that will be mentioned in Section 3.

Some exciting new developments, based on an axiomatic system analogous to
the one developed here are reported in Pearl and Verma (1987). They assert that
conditional independences can be read from a graph by examining whether a
graphical property holds between all undirected paths between its nodes.

Another parallel area where graphs have been used to represent conditional
independence between random variables stems from Markov field theory
[Darroch, Lauritzen and Speed (1980), Wermuth (1980), Lauritzen, Speed and
Vijayan (1984) and Lauritzen and Wermuth (1984)]. Within this discipline a
directed graph can be defined which represents a set of conditional independence
statements which are similar but not identical to those of the influence diagram
[see Wermuth and Lauritzen (1983) and Kiiveri, Speed and Carlin (1984)].
Theorem 7.1 shows that a result by the last authors concerning these directed
graphs extends to a theorem about influence diagrams where none of the
awkward positivity conditions which they need to impose are necessary. Section
8 explores the relationship between influence diagrams and the type of graphs
these authors use. )

We begin our discussion by introducing the three properties that will be used
as a basis of our graphical representation of conditional independence.

2. Three important properties of conditional independence. Let A, =
{X,:1 < t < m} be a finite set of random vectors. Dawid (1979) showed that the
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following three properties hold for the tertiary operator : 1 - | - where X 1 Y|Z
reads “X is independent of Y given Z.” Let B be the power set of A,,.

PrOPERTY 1. Forall X, Y, We B, X1Y|YUW.

This reads “Once Y is known (together with anything else, W), X conveys no
further information about Y.”

PROPERTY 2. Forall X, Y, W e B, X1Y|W <& Y1X|W.

This reads “If X provides no further information about Y when W is known,
then Y provides no information about X when W is known.”

PrOPERTY 3. Forall XY,Z, W € B,

X1YZUW,

X1Z|W,

which reads “X is uninformative about both Y and Z given W, is equivalent to

saying that X is uninformative about Y given both Z and W, together with the
statement X is uninformative about Z given W.”

X1YUZW o {

Henceforth we shall write X 1Y as shorthand for X 1 Y|@, where @ is the
empty set, and abbreviate conditional independence to c.i. Sets which contain
only one element are written X rather than {X}.

In Section 4 it will be shown how sets of c.i. statements can be depicted and
then manipulated on a directed graph. First let us discuss why c.i. statements are
so important.

3. The manipulation of information assuming three c.i. properties. In
a Bayesian statistical or decision analysis it is common to be told that, given
certain information W, a variable X will have no bearing on another Y. It is
often quite easy to ascertain this type of information from a client for various
combinations of variables. Such information can be gathered before it is neces-
sary to quantify subjective probabilities which, in contrast, are often very
difficult to elicit with any degree of accuracy. By double checking a set of c.i.
statements given to you by a client at the beginning of the modelling procedure
you can ensure that you build a model which does not implicitly state that
variables are conditionally independent when your client states they are linked
(and vice versa). This checking procedure can be performed using the rules
Properties 1, 2 and 3 which must hold if your client is being logically consistent.
We will argue that this is most easily done using a directed graph. A case study
outlining how such model checking is performed is given in Smith (1989). Now it
" is extremely important at this stage to notice that we need not demand that A,
be a set of random vectors nor that - 1 - | - be the conventional c.i. Provided
that a tertiary operator satisfies Properties 1, 2 and 3 on a set A,, of “uncertain
quantities,” all the theory we develop about how “information” is transferred
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between those uncertain quantities will also hold on this new set A,,. So the
results proved here are not just valid in Bayesian problems. Whether you use
classical statistics, fuzzy probability, belief functions or linear inferences, a
tertiary operator - 1 - |- can be usefully defined on your client’s uncertain
quantities.

A simple example of such an alternative c.i. structure is given below.

ExAMPLE 3.1. Let A, be a set of random vectors and X 1 Y|W read “a best
linear estimate (under quadratic loss) of the components of X based on the
components of W and Y need only include components of W.” This relation
satisfies Properties 1, 2 and 3. To see this, first assume that X, Y and W are
jointly normally distributed. Then the statement above is equivalent to the
statement that X is independent of Y given W. So, by the properties of
conventional c.i.,, when A, contains only (jointly) normal variates, then Proper-
ties 1, 2 and 3 hold. But the formulas for best linear estimates of arbitrarily
distributed random variables always agree with those for normal variates with
the same covariance structure. So Properties 1, 2 and 3 must be satisfied.

It can also be shown [see Smith (1988a, 1989)] that a c.i. operator satisfying
Properties 1, 2 and 3 can be defined when the elements of A,, represent decisions

and utilities as well as random vectors.

In Smith (1988b), I argue that any sensible definition of information transfer
between variables should be expected to satisfy Properties 1, 2 and 3. In that
paper several examples are given of how the theorems proved here can be applied
to various non-Bayesian inference problems. Here, however, for the sake of
clarity, we will henceforth assume that A,, is a set of random vectors and that
-1 - | - represents conventional c.i.

4. The preinfluence diagram and its properties. A single directed graph
whose nodes label m random vectors A, = {X,,X,,...,X,,} can be used to
express m — 1 c.i. statements concerning the elements of A,, as follows.

Consider a pair (G, a) where G = (4,,, E) is a directed acyclic graph and
a: A,, = {1,..., m} is a numbering of the vertices of G which is compatible with
G,ie, «(X;) < aX,) for a directed edge (X;,X;) € E.

A pre-influence diagram (pre-1.D.) I on a set of random vectors A, =
{X,,...,X,,) is a pair (G, a) together with the following m — 1 c.i. statements
on A,:

(41) X, u{XjaX)) <aX)}IPX,), «X,)=23,...,m,
where P(X,) € {X;|a(X;) < «(X,)} is the set of nodes such that
Xi € P(Xr) < (Xiyxr) €E.
So P(X,) is just the set of nodes attached by an edge directed into X, in G.

(G, a) is called a numbered graph of I.
Note that properties (4.1) hold for any set of random vectors when

P(X,) = {Xja(X,) <a(X,)}, aX,)=23,...,m,
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by Property 1. So, given any set A,, of random vectors, there always exists at
least one pre-1.D. I (i.e., one whose graph is completely connected) whose c.i.
statements (4.1) are true for A,,. The most informative pre-I.D.’s are those whose
corresponding edge set E is small.

Before motivating the definition of a pre-1.D. it will be shown that, although «
was needed to formulate the statements (4.1), any other compatible numbering 8
would produce a set of m - 1 c.i. statements (4.1) implying and implied by the
original set of m — 1 ci. statements under «. Hence by knowing only the
directed graph G of a pre-I.D. I on A,, without knowing the compatible
numbering «, a statistical model is defined uniquely.

LEMMA 4.1. Let I, be a pre-I.D. on A, = {X,,...,X,,}] with numbered
graph (G, o) and I, a pre-1.D. on the same set of random vectors with numbered
graph (G, B), where B:=00a and o:{1,...,m} - {1,..., m} is the permuta-
tion with o(m — 1) =m, o(m) =m — 1 and o(i) = i otherwise. Suppose the
edge (X,,X,) is not in the edge set E of G, where a(X,) = m — 1 and o(X,) = m.
Then I, is a pre-1.D. on A,, iff I, is a pre-1.D. on A,,.

Proor. Note that the permutation ¢ only changes the c.i. statements (4.1)
for r = s or t. So by symmetry it is sufficient to prove that

(4.2) X, LA, N X, X }IP(X,),
(4.3) X, 14, \X,|P(X,)

imply

(4.4) X, LA, {X,,X,}|P(X,),
(4.5) X, 1A,\X,|P(X,).

By (4.1) on I,

(4.6) P(X,)c A, \ {X,,X,].
Also by (4.1) on I,, since (X;,X,) ¢ E,

(4.7) P(X,) cA,\ {X,,X,}.
By Property 3 (4.3) implies (4.4) and [with (4.7)]
(4.8) X, XA, \ {X,,X,}.

Statement (4.5) now follows from using Property 2 on (4.8) and combining it with
(4.2) using Property 3 and (4.6). O

THEOREM 4.2. Let I, and I, be two pre-1.D’s on A, = {X,,..., X} with
respective numbered graphs (G, o) and (G, B) where a and B are both compati-
ble with G. Then I, is a pre-1.D. on A,, iff I, is a pre-1.D. on A,,.

PrOOF. Go by induction on m. The statement is clearly true for m = 1;
suppose it is true for m = n. Let I, and I, both be pre-I.D.’s on {X,,..., X, ,}
with respective numbered graphs (G, «) and (G, B) where without loss we
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assume (X,,,) = n + L. If B(X,,,,) = n + 1, then the inductive hypothesis and
the last statement in (4.1) prove our required result holds for m = n + 1. If
B(X,..) # n + 1, then without loss assume B(X,) = n + 1. Because no edge
emanates from X, or X, ,, in G there is a compatible numbering y of G with
¥(X,) = n and yv(X,,,;) = n + 1. Again, by the inductive hypothesis and the last
statement of (4.1), I, isa pre-I.D.on A, ,, iff I; is a pre-I.D.on A, ,,, where I,
has numbered graph (G, y). Also by Lemma 4.1, I; isa pre-I.D.on A, , iff I, is
a pre-1D. on A, , where I, has numbered graph (G, o ° y) where ¢ is defined in
Lemma 4.1. A third use of the inductive hypothesis and the last statement of
(4.1) gives that I, isapre-1.D.on A, iff I, isapre-I.D.on A, ,. Hence I, isa
pre-1.D.on A, iff I, is a pre-ID. on A, _ ;. Hence the inductive step, and so the
theorem is proved. O

5. Influence diagrams and graphical representations of conditional
independence. By definition an influence diagram (1.D.) I on a set of random
vectors A,, = {X,,...,X,,} is an acyclic directed graph G = (4,,, E) together
with the set of m — 1 c.i. statements (4.1) for some (and hence all) numberings «
compatible with G. If X € P(X,), where P(X,) is defined in statements (4.1),
then X is called a direct predecessor (d.p.) of X, in I and X, is called a direct
successor (d.s.) of X in I. The set of all direct successors of X in I is denoted by
S(X). Henceforth G will be called the graph of I.

As for pre-1.D.’s, given a set of c.i. statements (4.1) there is at least one, and
usually many, I.D.’s I which are consistent with the statements (4.1) on a given
joint distribution on A,,. Again, those L.D.’s whose graphs have the least number
of edges tend to be the most useful. This definition of an I.D. agrees with one
originally given by Howard and Matheson (1981) and later by Olmsted (1984)
and Shachter (1986a, b) where {X,,...,X,,} are random variables with a joint
density /joint probability mass function which is strictly positive. By their
definition, for example, if X, X2, X,, X, have a joint mass function

p(x,, x5, X5, x,) which can be written in the form

(5.1) (%, Xg, X3, %) = P1(%1) Po(%5) P3(%3) Py(2.4) (%4 x5, %3),

then this can be represented by them by an influence diagram whose graph G is
given in Figure 1.

One compatlble numbering here is a(X;) = i which, with G, represents the
three c.i. statements on A, = {X,X,,X;,X,}

X, 1X,,
X, 1 {X,,X,},
X, 1X,|{X,,X;}.

These conditions imply and are implied by the mass function breakdown (5.1).
Another compatible numbering is a(X;) =4, a(X,) =2, a(X;)=1 and
a(X,) = 3. It is easy to check that the three c.i. statements corresponding with
this new compatible numbering also agree with (5.1).
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AN

Fic. 1. A simple influence diagram on four variables.

Why then is it necessary to create all this abstraction using the c.i. notation?
There are two answers to this:

1. It is much easier to prove theorems rigorously using the definition above. If
the density /mass functions definition is used, then it is necessary to distin-
guish between continuous discrete and mixed variables and also whether the
corresponding conditional densities dre degenerate. By using our c.i. proper-
ties directly all these technical difficulties are overcome.

2. Because we have used just Properties 1, 2 and 3 we know that our theorems
carry over to more general types of c.i. structure (see Section 3).

It is only fair to note that Howard and Matheson (1981) and Shachter
(19864, b) use influence diagrams to represent full decision problems rather than
just relationships between random variables. However, Smith (1988a, 1989)
shows how the c.i. structure above can be used to represent full decision
problems as well but with more rigor and in much more generality.

We now restate Theorem 4.2 in terms of 1.D.’s.

THEOREM b5.1. Let Q(X;) be the set of nodes X; such that there exists no
directed path from X, to X in the graph of the 1.D. Ion A,,,1 < i < m. Then
the m — 1 c.i. statements in I on A,, as stated in (4.1) imply (and are implied
by) the m c.i. statements

(5.2) ’ X, 1QX)PX;), 1<i<m,
where P(X,) are thed.p.’s of X; in I.

PrOOF. For each i we can find a compatible numbering of the vertices in the
graph of I which numbers each element of Q(X;) before X;. The result now
follows from Theorem 4.2. O

One advantage of using I.D.’s I rather than sets of c.i. statements (5.2) is that
it is very easy to identify from the graph of I, the sets @(X;) given above. Hence
with no algebra it is possible to invoke Theorem 5.1 to pick out useful implied c.i.
statements from the c.i. statements originally given in (4.1). Ways of deducing c.i.
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statements which involve the reversing of conditional statements are given in
later sections.

Another directed graph with numbered nodes which have been used to
represent a set of c.i. relationships between random variables is called the
recursive causal graph on endogenous variables [Wermuth (1980), Wermuth and
Lauritzen (1983) and Kiiveri, Speed and Carlin (1984)]. Within the terminology
developed above we can form the following definitions. Consider the pair (G, a)
where G = (A, E) is a directed acyclic graph and a: 4,, - {1,...,m} is a
numbering of the vertices of E which is compatible with G. A pairwise influence
diagram (P.1.D.) K on a set of random vectors A,, = {X,,...,X,,} is a pair
(G, a) given above together with the following set of c.i. statements:

When aoX;) <aX;), (X;,X;)2Eand1<i#j<m
then X, 01X |{X,ja(X,) < «(X;),X, # X,}.

G is then called a graph of the P.I.D. K.

A disadvantage the P.I.D. has over the LD. is that different compatible
numberings imply different sets of c.i. statements. So the index a on a P.I.D.
needs to be retained. ’

For example suppose X; = X, = X,. Then, under the compatible numbering
a(X;) = i, the graph of the P.I.D. is given in Figure 2.

However if an alternative compatible numbering a(X;) = 1, a(X,) = 3 and
a(X3) = 2 was used, then Figure 2 would imply X, 1 X, which is clearly false if
X, = X; unless X, and X, both have a degenerate distribution.

To obtain interesting results about P.I.D.’s it has been necessary to assume
that no probabilities in the joint mass function of {X,,...,X,,} are zero. This,
however, is a very strong assumption to make in practice. For example it is often
the case that variables are functionally linked [Spiegelhalter (1987)]. Problems
are amplified if we require decisions as well as variables to be represented in a
diagram [see Smith (1988a, 1989)] since by definition Bayes decisions will nearly
always be deterministic functions of random variables.

We will show in Sections 7 and 8 how theorems about P.I.D.s can be
reformulated and reproved as theorems about I1.D.’s with none of these uncom-
fortable side conditions. We will also see how I.D.’s and P.I.D.’s relate to one

Fic. 2.
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another. First we need to introduce some notation in order to prove some basic
results about 1.D.’s.

An I.D. I, on random vectors A,, is said to be implied by an I.D. I, on A,,
(written I, = I,) if all conditional independence statements contained in I; can
be deduced from the conditional independence statements in I,. Two I.D.’s I,
and I, onA,, are said to be equivalent (written I, = I,) if I, = I, and I, = I,.
Two 1I.D’s I, and I, on A,, having respective graphs G, :=(4,,, E,) and
G, = (A,,, E,) are called similar (written I, ~ I,) when

(X;,X;)or (X,,X;) € E, & (X,,X,) or (X, X,) € E,.
Note that both equivalence and similarity defined above define equivalence
relations of the class of all LD.’s on A,,.

The directed graph G = (A, \ X, E) obtained from an L.D. I with graph
G = (A,,, E) by deleting the node X, together with all edges into it is a graph of
an I.D. on A,,_, expressing the m — 2 c.i. statements

X, 1 {Xja(X)) <aX)}PX,), aX,)=2,...,m, aX,)*aX,),

where P(X,) is defined in (4.1); « is a numbering of the vertices of E which is
compatible with G and «(X;) = m. Let this I.D. on A,, \ X, be denoted by
I — X,. Note that I — X, is defined iff X, has no d.s.’s in I.

6. Bayes rule for influence diagrams. Very often our interest lies
in the statements we can make about a subset C of uncertain quantities
{X,,...,X,,} = A,. Before we try to make precise probabilistic statements of
one sort or another it will be important which quantities in C = A,, \ C might
influence statements we would like to make about C. This requires us to
introduce variables into an influence diagram in such a way that quantities in C
precede quantities in C. Unfortunately we often find that the most natural
representation of a problem introduces the quantities of interest first. For
example in most Bayesian models, prior distributions on the quantities affecting
predictive distribution (parameters) are introduced first and the distribution of
observations given these parameters second. This happens because it is often
easier to specify relationships between random variables in an order which
follows causality, but we are usually interested in an unobserved “cause” given
some observed “effects.”

In more classical inference about parameters we have the same problems. A
set of parameter 6 of interest is defined in terms of other hyperparameters .
Ideally we want to reverse this conditioning in order to distill information about
@ in our data without reference to .

For probabilistic c.i. on discrete variables, Howard and Matheson (1981) and
more formally Shachter (1986a) took the first steps by showing how an 1.D.
needs to be adjusted when an edge in its graph needs to be reversed. Here is the
formal proof of their theorem generalised to all I.D.’s on a set of quantities with
a c.i. structure defined by Properties 1, 2 and 3.

LEmMMA 6.1. Let G:=(A,, E) be the graph of an 1.D. I on A,, =
Xy, X, and (X, X)) € E fixed with (6.2). Let G, = (A,, E,) be another
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directed graph obtained by defining E, as
(6.1) E, =[EuU{(X,,X,)} UEB]\ {(X,X))},

where E = ((X,,X,),(X,,X,): k € K} where K = (1 < k < m|(X,,X,) € E or
(X, X;) € E}. Suppose that under some ordering a compatible with I,

a(xl) =m — 1,
Then I = I, where I, is the 1.D. on A,, whose graph is G,.

(6.2)

Proor. First note that, by (6.2), the graph G, defined above is acyclic. Also
by our construction

I-X,-X,=1 - X, - X,
So it is sufficient to prove that the remaining two c.i. statements in I,
(6.3) X, 1 A|P(X,),
(6.4) X, 1 AUXJP(X;)UX,

where A = A, \ {X;,X}}, P(Xj) is the set of d.p.’s of X; other than X; and
P(X,) are the d.p.’s of X, imply the remaining two c.i. statements are I, which
from (6.1) are

(6.5) X, 1 AIP(X;) U P(X)),
(6.6) X, LAUX X, UP(X;)UPX,).
Now if B == P(X,) U P(X,) C A, (6.3) and (6.4) imply by Properties 2 and 3,
(6.7) A1X,B,
(6.8) A1X|BUX,
which by Property 3 is equivalent to stating that
Au{X,X}|B
using Property 3. Then Property 2 gives us the two equivalent statements
(6.9) X 1LA|B
and
(6.10) X;1LAX;UB,

which, on using Property 1 on (6.10) are equivalent to (6.5) and (6.6) as required.
]

NoTe. We may lose c.i. information by this manipulation because (6.3) and
(6.4) imply but are not necessarily implied by (6.7) and (6.8).

THEOREM 6.2 (The Howard-Matheson theorem). Let G = (A,,, E) be the
graph of an I.D. Ion A,, and let G, = (A,,, E,) where E| is as defined in (6.1).
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Then, provided G, is acyclic, I = I, where I, is the 1.D. on A,, whose graph
is G,.

ProorF. Go by induction. The theorem is trivially true for m = 2. Assume
that it is true for all I when m = n. Let I, be an I.LD. on n + 1 varlables If
there exists a compatible numbering « of such that

(6.11) aX,)=n+1, r+j,

then because from G a(X;) < a(X;) the inductive hypothesis gives us that
I - X, = I — X, whence I = I, as required.

On the other hand if no numbering with property (6.11) exists for I, then X;
must be the only variable in I with no d.s. It follows that there exists a
numbering compatible with I which sets «(X;) = n. Otherwise G, would contain
a directed cycle consisting of a directed path from X to X of at least two edges
inherited from G and the edge (X, X,). Therefore (X ) = n + 1 and «(X,) = n.
The inductive step now follows from Lemma 6.1. So the theorem is proved. O

Shachter (1986b) shows that for probabilistic c.i. it is possible to use this
algorithm to reverse all edges from one node until it has no d.s.’s. However, his
method can be poor if used directly in the sense that many c.i. statements
originally made in I can no longer be read from I,. Theorem 6.2 is very useful,
however, as a stepping stone to more powerful methods of using I.D.s to
rerepresent sets of c.i. statements.

The following corollary is useful in the proof of a later result. It gives
conditions when the reversal of an edge in the graphs to an influence diagram
need introduce no additional edge in the graph of an implied influence diagram.

COROLLARY 6.3. Let I have the graph G = (A,,, E). Suppose two variables
X, X, € I, have the properties:

(1) X; € P(X,) where P(X) are the d.p’s of X, in I.
(i) PX;) = PX;) \ X, where P(X,) are thed.p.’s of X in IL.
(iii) Every directed path in G from X, to X; contains the edge (X;,X;).

Then I = I, where I, has the graph G, = (A,,, E,) where
E =(EN {(X.X)}) U {(X,,X,)}.

ProOOF. Property (iii) guarantees that the graph G,, derived from G by
reversing the edge (i, j), is again acyclic. The corollary now follows directly from
the Howard-Matheson theorem. O

7. A decomposition theorem for influence diagrams. A key theorem was
proved by Kiiveri, Speed and Carlin (1984) which made a vital link between
P.I.D.’s and undirected graphs of Markov fields as developed by Darroch,
Lauritzen and Speed (1980). A consequence of this theorem was (using the
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terminology developed here for I.D.’s) that if all the d.p.’s of each node X in a
P.LD. K, were connected and all the d.p.’s of each node X on a P.I.D. K, were
also connected, then, when K, ~ K,, K, = K,. This corollary is very useful. For
example, it indicates how information can be efficiently propagated through a
probabilistic system [see Spiegelhalter (1986)]. The undirected graphs formed by
deleting the arrows on edges on P.I.D.’s with this property were called “decom-
posable” by Darroch, Lauritzen and Speed (1980). This motivates the following
terminology. :

DEFINITION. An LD. I is said to be decomposable if the d.p.’s P(X) of any
node X in I have the property that X,,X, € P(X) = X, and X, are joined by
an edge in the graph of I.

Figure 3 illustrates four I.D.’s, two of which are decomposable and two which
are not. The following assertion is immediate from the definition above.

Decomposable I.D.'s I Non-decomposable I.D.'s

F16.3. Two decomposable and two nondecomposable 1.D.’s.
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ASSERTION. When ! is decomposable then I — X is decomposable where X
is any node in I with no d.s.

In this section we prove that the above mentioned corollary of the theorem of
Kiiveri, Speed and Carlin (1984) carries over to 1.D.’s but without needing any
restrictive side conditions concerning strict positivity of the variable’s joint
distribution. Again we only use Properties 1, 2 and 3 and so this thearem is again
true whenever a c.i. structure can be defined.

THEOREM 7.1 (Influence diagram decomposition). If I, and I, are two
decomposable 1.D.’s on the same set of m nodes and I, ~ I,, then I, = I,.

PRrROOF. Go by induction. Clearly the statement is true for m = 1. Suppose
that the statement is true for all I.D.’s on m — 1 nodes. Let X be any node with
no ds. in I. Let {X,,...,X,} be the d.p.’s of X in I,.

If X has no d.s. in I,, then by the assertion above, both I, — X and I, — X are
decomposable and clearly I, — X ~ I, — X. So by the inductive hypothesis
I, - X =1, — X whence I, = I,. So if I, # I,, X must have at least one d.s. in
I,. Label {X,,...,X,} so that {X,,..., X}, 1 < p <k, are the d.s.’s of X in I,.
Assume I, has the least number p of d.s.’s of X such that I, # I,. By the above
p=1

Any d.p. Y of X; € {X,...,X,} with X # Y in I, has the property
(7.1) Y e {(X,,....,X,},
for otherwise X and Y would be disconnected d.p.’s of X; contradicting the

decomposability of I,. In the graph of I, an edge connects each node
{X,41-++»X,} to each node in

(7.2) (X,,....X,).

This is because all nodes {X,,...,X,} are connected to each other by the
decomposability of I, and if node X; € {X,,...,X} were connected to a node
X; € ({X,,1---,X,}, then the graph of I, would exhibit a cycle (X;, X, X, X,).
Without loss let X, denote the first element from {X,,...,X } introduced into
I, with a compatible numbering of its nodes. Then by (7.1) and (7.2) the d.p.’s of
X, in I,
Py(X,) = {X,,1,..., X, X}

Since X and X, satisfy conditions (i), (ii) and (iii) of Corollary 6.3 in I,
(relabelling X as X; and X, as X;) we can conclude
I2 = I2(1)’

where I,(1) is the I.D. whose graph is obtained by reversing the edge from X to
X, in the graph of I,. So by our hypothesis I,(1) # I,. Clearly I,(1) is decompos-
able and has one less d.s. of X than I,. So, contrary to our hypothesis, I, does
not have the least number of d.s.’s of X with the property I, = I,. Our theorem is
thus proved by contradiction. O

There are two problems with using the Howard-Matheson theorem directly
to reverse the edges of the graph of an L.D. First, it can be computationally
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Fic.4. A Markov chain I.

costly to discover whether the edge reversal introduces a cycle. Second, unless
used with guile, it loses information in the system very quickly since more edges
may need to be introduced in the graph of the implied I.D. at each reversal.
Consider the I.D. I whose graph is given in Figure 4. You expect to observe X,
and want to make inferences about the other random vectors in your model. So
you want to find an I.D. I, implied by I with X, having no d.p.’s. Using the
Howard-Matheson theorem directly you would reverse the (X,, X;) edge intro-
ducing (X3, X;) edge. You would then need to reverse the (X3, X;) edge introduc-
ing the (X,, X;) edge and so on. Each time you have introduced a new edge you
have lost information. On the other hand it is easy to check that I is decompos-
able and is similar to the decomposable I.D. I, whose graph is obtained from the
graph of I by reversing the direction of all its edges. You can conclude from the
decomposition theorem that I = I, and no information has been lost. (Note,
incidently, that this shows that the decomposition theorem is a generalisation of
the result which says that the Markov property is preserved under time index
reversal.)

Now of course the decomposition theorem was proven using only the
Howard-Matheson theorem. In fact it reverses edges in the order (X,,X,),
X,, X,),(X5,X,), X, X;). What the decomposition theorem does do is make it
much easier to identify in which order edges need to be reversed so as to lose no
information when “conditioning out” random vectors.

To my knowledge it is an open question how to identify an order of edge
reversal which minimises the number of additional edges in the graph of an 1.D.
I, implied by an I.D. I when I, is constrained to have a graph with a set of
edges between nodes of a given direction. The following algorithm often appears
to achieve this minimum. .

Suppose we need to find an I.D. I; such that I = I, and a subset of edges £
of the graph G of I needs to be reversed in the graph G, of I, and certain others
kept in a way that does not create cycles. Let C denote the set of nodes attached
by edgesin E in G = (A,,, E).Let D c A,, denote the set of nodes Y for which
there exists a compatible numbenng of G w1th a(Y) > a(X) for all X € C.

Define G = (A, \ D, E) where E := {X,X;)€EX;¢D} and A, =

{Xy,...,X,,}. Let G = (A, \ D, E) denote the graph of a decomposable ID I
on A, \ D satisfying:
1. ECE.

2. There exists a graph G, = (4,,\ D, E,) of a decomposable 1.D. I ~ I (so
that I =1, by Theorem 7.1) where E, ¢ E, and where E, =
(X, X)IX,,X;) € E).

3. G is a graph of an I1.D. with the least number of edges satisfying (i) and (ii).
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Such a G and G, must exist since any completely connected acychc directed
graph is decomposable Finally let G, := (A,,, E;) where E, = E| U E and
where

= {(X,,X,) € E[X, € D}.

It is easily checked that if I, is the 1.D. with graph G,, then I = I,. Graph G,
also has all edges in E reversed.

The construction of G, from G is illustrated in Figure 5 where a(X,) = i,
1<i<6in I, andE-{(x3, X))

8. Some links between LD.s and P.I.D.s. Here we prove some new
results on the relationships between I.D.’s and P.I.D.’s.

THEOREM 8.1. The directed graph G of an I.D. I, implies the c.i. statements
of a P.I1.D. with the same directed graph G.

Proor. Without loss label the nodes of G such that a(X;) = i where a is a
numbering compatible with I. From the definition of a P.I.D. (see Section 5)
X, X can only be left unconnected when

X;1X A, N\ X, i<jwhereA; = {Xl,...,Xj_l}.
Well, under this labelling, X;,X; are not connected in the graph of I, i <},
implies
X;1LA; ,|P(X;),
where P(X) are the d.p.’s of X; and X; € 4;_; \ P(X)),
SX,uX|P(X;) UA,_ \ X,,

SX, X4, \ X,

as required. O

Note that the converse of this theorem is not true as is illustrated in the
example of Figure 2.

The next theorem gives a c.i. relationship between a particular node X; in an
LD. I and all the other nodes in the diagram. Theorem 8.1 shows that the c.i.
statements in an I.D. I imply those in the P.I.D. with the same directed graph
as I. Wermuth and Lauritzen (1983) and Kiiveri, Speed and Carlin (1984) prove
the result that if a P.I.D. K is decomposable (in the sense defined above for
1.D.’s), then we can conclude that for every node X; and X unconnected in K,

(8.1) X, 1X A, \ {X, X))
provided that the joint density (mass function) over A,, is strictly positive.

Theorem 8.2 gives an analogous result for I.D.’s when no positivity condition is
imposed. Its corollary may be particularly useful to those who work with P.I.D.’s.
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THEOREM 8.2. In a decomposable 1.D. I with nodes ordered (X, X,,...,X,,),
(8.2) X, 1 T(X,)|P(X,) U S(X,),

where P(X;) and S(X,) are, respectively, the d.p.’s and d.s.’s of X, and TX,)
is their complement in A,, \ {X,}.

PrOOF. Let L.D. I, have graph G, formed from the graph G of I by adding
(where necessary) edges from all the d p.’s and d.s.’s of X to each d.s. Y € S(X)
consistent with some compatible numbermg of I Clearly G, is acychc and
I = I,. The set of nodes P(X;) U S(X,) is completely connected in G, since the
decomposablhty of I at Y ensures that all nodes in P(X ) are connected to one
another. O

CLAM. I, is decomposable.

It is sufficient to check that if Y € S(X,) then any pair Z,,Z, of d.p.’s of Y is
connected by an edge in G,. Well, by the decomposability of I at Y;, X, is
connected to Z, and to Z, so

{Z,,Z,} c P(X;) U 8(X,).

Since P(X;) U S(X,) is completely connected in G,, Z, and Z, are connected in
G, as required.

Now define G, to be the directed graph formed by reversing all edges in I,
from X; to nodes in S(X). Clearly G, is acyclic. Let I, be an I.D. whose graph is
G,. Then I, ~ I,. In I, the d.p.s of X;, PyX,) == P(X;) U S(X;) where P(X,)
and S(X) are, respectively, the d.p.’s and d.s.’s of X; in I,. By our construction
of I, all nodes in PyX;) are connected in G,. It follows that I, is itself
decomposable. By Theorem 7.1 we therefore have I, = I, so in particular I = I,.
From I, we can read the c.i. statement

X, 1A, \XJ|P(X;) US(X;)
= X; 1 T(X;) U P(X;) U S(X;)IP(X;) U S(X,)

"X, L T(X,)P(X,) U S(X,)

as required.

COROLLARY 8.3. In the notation of the theorem above, when X, is uncon-
nected to X ; in the graph of a decomposable 1.D. I, then

X, 1X 1A, \ {X,,X;}.

Proor. This is immediate from Theorem 8.2 on conditioning out T(X;) 1L X;
using Property 3. O
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What we have proved here is that provided at least one of the “decomposable”
P.I.D.’s K,, which is similar to K, can be interpreted as an 1.D. as well, then no
positivity conditions are necessary for Kiiveri’s corollary, given in the last
section, to hold. This is particularly useful since it is often the practice to elicit
the I.D. rather than the P.I.D. from the client. In addition we have shown that
their results emanated from Properties 1, 2 and 3 defining c.i. and so essentially
holds for other structures such as those mentioned in Section 3.

Acknowledgments. I am indebted to the referees for their helpful and
constructive comments both on the substance and the presentation of this paper.
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