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DISCUSSION

LEO BREIMAN
University of California, Berkeley

After finishing the ACE paper [Breiman and Friedman (1985)] I hoped that
others would tie up some of the significant loose ends. The work under discussion
does a good part of that admirably.

But is it interesting that since that time both Friedman and myself have
veered off in the direction of using splines for additive and more general models,
thus circumventing the problem of convergence of iterated smooths which
occupies much of the present paper.

I think it would be useful, in the context of the present paper, to give the
itinerary of my journey from smoothers to splines. In addition, another problem
that has occupied me is the incorporation of bivariate interaction into the model
and I will also comment on that below.

Bivariate smoothers, in and of themselves are not of undying statistical
interest. The interest in them developed because of realization, in the ACE
paper, that additive models could be fitted through an iterated sequence of
bivariate smooths. Now additive models are very interesting, since they form a
useful and often revealing extension to linear models.
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Thus, most of my thinking about where to go with smoothers has taken place
within the context of additive models.

With additive models and numerous predictor variables it is imperative to
keep control over the number of degrees of freedom being used in the fitting.
Suppose there are 10 predictor variables and each one is fit using a smoother
with five degrees of freedom. Assuming additivity in the number of degrees of
freedom, then 50 degrees of freedom are being used in the fit.

This will usually result in “overfitting—too many parameters being esti-
mated, and an inflated variance. Control over this was exercised in the original
ACE algorithm through the use of supersmoother. This is an elaboration on
running linear smoothers deviced by Friedman and Stuetzle (1982) which uses a
locally adaptive window size. The idea is to use a large window when the
underlying function is slowly changing and a small window when it is rapidly
changing. The local window size is data determined.

Supersmoother is intrinsically nonlinear and unsymmetric. While ACE func-
tioned extremely well on most problems, it because clear early on that these
supersmoother properties were the source of some undesirable artifacts. For
instance, the transformations for weak variables were somewhat dependent on
the order of entry of the variables. These artifacts were especially apparent for
small sample sizes and we advised users to use a fixed window size when the
number of cases was appreciably below 100.

This started me thinking about what would be done to improve the perfor-
mance. It was clear that convergence could, at best, be established for symmetric
smoothers. It was not at all clear how to symmetrize running linear smoothers.
The only natural symmetric smoother around was smoothing splines.

Up to this point, my thinking seems to have paralleled that of the authors. At
a point several years ago, I would have been in agreement with their statement,
“We find fixed knot cubic splines less appealing than their immediate competi-
tors, smoothing splines.”

But while it was clear that smoothing splines would do the trick, the issue of
control over the degrees of freedom seemed unsurmountable. One cannot assume
the same number of degrees of freedom for each variable. The appropriate
number of degrees of freedom may vary considerably from variable to variable.
Some transformations may be almost linear and some may be quite complex.

Smoothing splines use one parameter per variable to govern the degree of
smoothness, and determine the value of this parameter by a search using
cross-validation. To conduct such a search over, say, a 10-dimensional space,
seemed computationally unfeasible.

In fact, I would challenge to the authors to construct an additive model using
smoothing splines for, say 10 predictor variables and 300 cases computing a
nearly “optimal” degree of smoothing for each variable individually that can run
in a reasonably length of time on anything short of a Cray.

There are other problems about using iterated smoothers to fit an additive
model. As the authors point out, it is difficult to compute standard inferential
statistics, that is, confidence intervals, or standard regression diagnostics, such as
influence.
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On the other hand, it is very simple to set up a spline basis for each variable
and then to treat the whole problem of fitting an additive model to an untrans-
formed y-response as a classical regression. This too has problems associated
with it, but the problems are more surmountable.

If one is doing a bivariate fit, and using splines with knots as the x-points
t, ty, ..., t;, then a basis for the cubic splines is given by

1, x, x2, x3, [(x - tl)+]3,..., [(x - tJ)+]3.
Usually, the knots are put at equally spaced order statistics and in my experi-
mentation, this has generally worked better than anything else. Here are some
problems in the bivariate case:

1. The self-influence near the endpoints is large. The fitted curves have high
variance near the endpoints and tend to wagglé around there.

2. The fitted function is dependent on the knot location. This was succinctly
pointed out by Hastie and Tibshirani (1988).

There are good fixes to these problems. To decrease the self-influence near the
endpoints, impose the condition that the fitted spline function be linear at the
lowest and highest x-value. For equally spaced x-values this approximately
halves the self-influence at the endpoints. A salutary side effect is that this end
condition knocks the functions x2, x3 out of the spline basis, leaving only the
linear functions and the functions corresponding to knots.

There are two aspects to problem 2. The first is that the influence of x-values
will depend on their location relative to the knots. This can be seen by looking at
a graph of the self-influence curve. For an ordinary spline fit, this curve ripples
up and down depending on where the point is in relation to the adjacent knots.

One way to decrease this dependence of influence on the knot locations is to
interlace the knots. Here is a simple example of interlacing. Suppose one is doing
a spline fit with knots at the order statistics x(0.25), x(0.50), x(0.75). Do the
regression on the spline basis using these knots getting a predictor function
yi(x). Do another regression using splines at the interlaced points x(0.125),
x(0.375), x(0.625), x(0.875), and denote the resulting predictor function by y,(x).
Let the final prediction function y(x) be the average of y,(x) and y,(x).

If the corresponding self-influence is now graphed, it will appear almost
constant except near the endpoints. It is interesting that the smoother corre-
sponding to y(x) is linear and symmetric, but is not a projection matrix.

However, the most important element in reducing the dependence on knot
placement is a procedure suggested by Smith (1982). Her idea was this—put
down many knots along the x-axis, say, as closely as possible to equispaced order
statistics. Do the regression into this space. Now delete knots from the fit, at
each stage deleting that knot whose deletion causes the least rise in residual sum
of squares. Continue the deletion under the “best” fit is found.

There are many advantages to this procedure. First, in the basis given above,
each knot corresponds to a coefficient. Thus, deleting knots is nothing else than
the classical regression procedure of deleting variables. Second, deleting a knot at
any knot point has the effect of broadening the window size in the neighborhood
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of that point. Thus, knot deletion has the effect of using a locally adaptive
window size—the feature that made supersmoother so attractive.

The result, when finished with the deletion, is that the remaining knots will
be located in the vicinity of rapid change of the function, with no knots in those
intervals where it can be adequately fit by a cubic.

Peters and I recently completed a fairly extensive simulation [Breiman and
Peters (1988)] that compared four automatic smoothers. Here the word auto-
matic indicates that the smoother had a mechanism to select its own window size
in a data-dependent way. We compared smoothing splines, supersmoother, a
kernel-type smoother, and our version of the above procedure Wthh we called
the DKS smoother (delete knot splines).

We used sample sizes 25, 75 and 225 with a variety of functions of X-designs.
In DKS, we used 9 knots for sample size 25, 12 for 75 and 16 at 225. The decision
on the number of knots to retain by was based on minimum C,. The version of
DKS used in the simulation has since been refined and made more accurate.
Even so, the simulation showed that the early version was quite competitive at
almost every X-design, sample size and function. In terms of computing time, it
is second only to supersmoother.

As a result of this approach, we have a simple method for fitting a multivari-
ate additive model that also permits good control over the number of degrees of
freedom used in the fit. Here is the procedure—put down many knots on each
predictor variable; fit the full model; do knot deletion where we delete at any
stage that knot on any variable giving the least rise to RSS; and use some
method to decide how many knots to retain in the model. For instance, some
variant of cross-validation could be used in making this latter decision.

I am currently working on developing and testing this method, using cross-
validation to decide how many knots to retain. Early results are quite promising.
For those interested in computing details, I note that to prevent ill-conditioning,
we convert to a B-spline basis for the matrix inversion and then convert back to
the power basis for the deletion. The algorithm is computationally rapid—in any
instances even faster than the original ACE code.

By using this approach, we have gotten around all of the issues of convergence
of iterated sequences of smoothers. At the same time, we keep tight control on
the number of degrees used in the model and tailor the number of degrees of
freedom to individual variables.

Note that regression diagnostics can be easily computed. Confidence intervals
can also be computed. Once the final model is arrived at, forget that it has been
gotten by data-directed variable selection, and compute the intervals in the
classical manner based on the final model. Of course this is cheating, but the
issue is whether these confidence intervals are reasonable approximations. That
is under investigation.

Another issue that I (and the authors) consider important in the context of
nonparametric modeling is that of modeling bivariate interaction. Suppose, for
example, that we have two predictor variables and we want to fit a model of the
form f(x,, x,). For example, we may have already fit an additive model and
want to explore any signs of bivariate interactions in the residuals.
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Early on, it was clear that one way to do this was to construct a surface
gotten from a smooth of y on x,, x,. But is was also clear that this path had
some serious difficulties. The authors refer to some of these in Section 3.1. I add
one more—if the two-dimensional smoother has p degrees of freedom in each
dimension, then, approximately, it has overall about p? degrees of freedom.
Thus, it results in a quite nonparsimonious fit with little possibility of adjusting
the fit to each variable.

I have stewed over this problem for a while. Recently, I developed the
following promising approach: To explain, it is easier to go into random variable
space. Consider the following problem: given random variables Y, X;, X,, find
functions f and g that minimize

E(Y - f(X,)8(X))". .
Of course, f and g are nonunique up to at least a multiplicative constant. We
can fix this up by requiring E( f(X,))? = 1.
Here is a tentative algorithm for finding the minimizing f, g. Hold f fixed.
Then the minimizing g is given by

8(X;) = E(Yf(X))|X.)/E(f*(X))IX,).
Now hold g fixed. Then the minimizing f is given by

f(Xy) = E(Yg(X2)|X1)/E(g2(X2)|X1).
Iterate this process—hold f fixed and find the minimizing g. Then hold that g
fixed and find the minimizing f. Continue until convergence.

If X, and X, are independent, then this is a classical problem in approxima-
tion theory, the optimal f, g are solutions of linear eigenvalue equations, there is
one global minimum and no local minima; and the iteration can be easily be
shown to converge to the global minimum.

Ignoring, for the nonce, what happens in the case of nonindependence, note
that again, as in the ACE algorithm, the iteration only depends on bivariate
conditional expectations. This gets us out of the nasty problem that any surface
smoother depends on an arbitrary two-dimensional metric.

The algorithm can be easily extended to the problem: Find {f;,g;}, j =
1,..., J, to minimize

E(Y - f)(X))g(X,) — -+ _fJ(Xl)gJ(X2))2~

Again, the trick is to keep the { f;} fixed and minimize on the {g;}, then keep the
{g,} fixed and minimize on the { f;}, and so forth.

The algorithm can also be done stepwise. That is, find the minimizing f, g.
Now apply the same procedure to Y — f(X;)g(X;). In the independence case,
stepwise gives the same results as the simultaneous minimization. But in either
case it can be shown that the sequence of approximations converges to
E(Y|X,, X,).

This is easy to translate into finite data form. Write f and g in terms of a
finite spline basis. Hold the coefficients in f fixed and minimize the RSS over
the coefficients in g. Now hold those in g constant and minimize over those in f.
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This algorithm is a fast and parsimonious way for representing interaction.
For example, if, in their spline bases, f and g have p degrees of freedom, then
the minimizing product fg has about p degrees of freedom in it. One adds more
multiplicative terms until there is no significant decrease in RSS. Furthermore,
the multiplicative terms are easy to interpret.

Unfortunately, numerical results indicate that in the nonindependence case,
there are a number of local minima in addition to the global minimum. The
algorithm always converges, but it may not converge to the global minimum.
This makes the selection of a good starting point important. Our experimental
results have been that if we use the starting point given by assuming indepen-
dence, then the iterates have always converged toward the global minimum.

I am currently working on straightening up the details of this representation
of bivariate interaction and hope to go public soon.”
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We must begin by thanking the authors for a thought-provoking work. As is
well known [Kimeldorf and Wahba (1971) and Wahba (1978)], quadratic penal-
ized likelihood estimates (with nonnegative definite penalty functionals) are
Bayes estimates. Let y = g + € with g ~ N(0, 2) and ¢ ~ N(0, 62I), then

g=3(Z+0) 'y=Ay, say,
which also minimizes (1/02)(y — 8)'(y — &) + g’=7'g, the resulting smoother

matrices are all symmetric nonnegative definite with their eigenvalues in [0, 1).
This generalizes to the case where 2 is improper, which gives eigenvalues +1.
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