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The paper is devoted to the problem of simultaneous estimation of scale
and natural parameters of the multiparameter gamma distribution under a
quadratic loss. The vector of the scale parameters is assumed to range over a
certain subset of the Cartesian product #} of n positive half lines. We
identify the class of all linear admissible estimators for the scale parameters
and show that all linear estimators of the natural parameters are inadmissi-
ble.

Since the problem of invariant quadratic estimation of variance compo-
nents in balanced random effects normal models leads to a problem of linear
estimation of parametric functions of gamma scale parameters restricted to
subsets of #7 being considered in this paper, some results on admissibility of
invariant quadratic estimators of variance components are also established.

1. Introduction. Let Y = (Y},...,Y,)" be a random vector, where the Y, are
independent gamma («;, ;) random variables, having density [on (0, c0)]

yia'_l exp{ _yi/ai}/oia'r(ai)-

For notational convenience set A = diag(«y,...,«,) and 0 = (6,,...,6,).
Here A is a known p.d. matrix and @ is the vector of scale parameters taking
values in

©® = {H's: 0 € #*, 0 > 0}.

The symbol a > 0 (a > 0), where a € #*, means that all components of the
vector a are positive (nonnegative) and H stands for a 2 X n, & < n, matrix of
rank k with nonnegative entries and having the property that H'c > 0 when
o > 0. The closure © of © is a finite cone generated by the % linearly indepen-
dent column vectors of matrix H’, which lay in the Cartesian product 2} of n
positive half lines.

Under the above setup

‘

EY = A4,
(1.1) covY = Adiag(62,...,62).

When © is the entire convex cone of vectors 6 > 0, the model is called
unrestricted, otherwise it is called a restricted model.
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We assume that the loss of estimating F’8 by a random vector 8, where F is
any n X m matrix, is

(1.2) (8 — FOYA(S — F9),

where A is a nnd. m X m matrix. If A =1,, I, being the m X m identity
matrix, then (1.2) becomes the ordinary squared error loss. Throughout the paper
we assume that A is p.d. unless indicated otherwise.

We denote by A"(F') the class of all estimators of F’§ having finite risk and
by #(F) the subclass of all linear estimators in A4°(F). Moreover, Laae(F)
and £, ,(F) stand for the class of linear estimators admissible within #(F)
and A (F), respectively. We shall delete F when it is the identity matrix, i.e.,
when the parameter 6 itself is being estimated.

As usual 1, stands for the k-vector of 1’s and 0., for the £ X [ 0 matrix. The
indices will be deleted when they can be guessed from the context. For any n X n
matrix M, the symbol M > 0 (M > 0) means that M is p.d. (n.n.d.), |M| denotes
the determinant of M, M* the Moore-Penrose g-inverse of M, tr M the trace of
M and M, a diagonal matrix with the ith diagonal element equal to the ith
diagonal element of M. Throughout the paper P stands for an n X n n.n.d.
diagonal matrix such that trP =1 and a = tr A.

We make extensive use of a result due to Klonecki and Zontek (1987) [see also
Zontek (1988)] which provides a complete characterization of ZLod2» 1-€., of the
class of all linear admissible estimators of § within the class of all linear
estimators under loss (1.2).

THEOREM 1.1. The class Lodje 1S given by
{LeY: Ls= (I+GA)T'G, G € 9},
where 9 is the closure of a set ¢ defined by
G = {AglA: Ae Sl},
and where Q is the convex hull
Q@ = conv{H'oo’H: 0 € #*,0 > 0}.

This theorem can be established by showing that for every matrix G in ¢ the
corresponding estimator for L'Y is a unique Bayes estimator within .# and that,
if Lo > L as r > oo, where {G,} C ¢, then L'Y is admissible within .#.

The main result in this paper gives a complete characterization of Lads 1-€.5
of the class of all linear estimators of § admissible within the class of all

estimators of §. Using the notation appearing in Theorem 1.1 it can be stated as
follows.

THEOREM 1.2. Foralln > 1, 4, = %3¢, where

-?%l_g= {L’GY € Ze:tankG=1,G € .‘?}

a
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One can easily verify that 29, consists of all estimators of the form
ad|.¥
1'KY
1+a

where K may be any p.d. n X n diagonal matrix such that K~'1 belongs to ©.
Clearly, for n = 1 the set %, 4 consists of one element (1/(1 + @))Y so that
the assertion of this theorem reduces to the celebrated result of Karlin (1958).
For n > 2 the theorem is a direct consequence of Theorem 3.1(i) and Theorem
3.2 given in Section 3. The first theorem asserts that all estimators in £\ £ o
are inadmissible. The second theorem states that every estimator in %3 . is

K1,

ad
admissible among the class of all estimators, which turns out to be a consequence

of Karlin’s theorem, mentioned above. The first result is established by showing
that for every estimator L'Y in #\ £ ¢ there exists an improved estimator of
the form

(1.3) LY + cYPYP2 - YPn,

where P = diag(p,,-..., p,) = 0, tr P = 1, while ¢ € #". This class of estimators
is broader than the class of estimators,

(I+A4)7[Y+e(YY, - V)", cea,

suggested by Das Gupta (1986) for improving the standard estimator (I + A)~'Y
of § within the unrestricted model under loss (1.2). The estimators suggested by
Das Gupta as well as the broader class (1.3) permit exact analytical representa-
tion of the risk, as is shown in the sequel.

The inadmissibility of the standard estimator of 6 for n > 2 was established
by Berger (1980) by finding improved estimators of a different structure than
(1.3).

Using a well known lemma due to Shinozaki (1975) [see also Rao (1976)] we
establish in Section 4 some results concerning characterizations of admissible
linear estimators for parametric functions F’6 and extend a result of Das Gupta
and Sinha (1986). Since the models with restrictions cover models encountered
for invariant quadratic estimation of variance components in random and mixed
models, in Section 5 some results on admissible estimation of variance compo-
nents will be also formulated. In the notation of model (1.1) the vector of the
variance components is represented by the vector parameter o or, equivalently,
by F’0 with F being equal to H'(HH’)™!. Finally, in Section 6 we show that if
n = 2, then all linear estimators based on (1/Y},...,1/Y,) of the vector of
natural parameters n = (1/0,,...,1/6,) are inadmissible. This latter result
extends theorems due to Berger (1980) and Das Gupta (1986).

2. Basic lemma. To show that a linear estimator L'Y of F'6 may be
improved by an estimator of form (1.3) it suffices to show that there exist a
matrix P and a vector ¢ € 2™ such that the risk difference between (1.3) and
L’Y is nonnegative for all o > 0 and positive for at least one such o.

To write the formula for the risk function in a compact form we introduce the
following notation. For any vector a = (a,,...,a,) and any n.n.d. diagonal
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matrices B = diag(b,,..., b,) and P = diag(p,,..., p,) let

n

ap= [lap

i=1

and let
n T(b; +p;)
Y8,p= <1 I'(p)
Then the risk difference between L’Y and
(2.1) LY + kcYp,

where k € %, can be expressed as
AR(o) = KYA,P0P[2"/QH ~ KYa+p, pC’Actp],
where
(2.2) gu=H[F - (A + P)L] Ac.
Now let 7 = sup 0, with the supremum taken over
Sy={oceR* o'qy=1,0>0},

say, and notice that there exists a k > 0 such that AR(¢) > 0 for every ¢ in =,
if and only if 7 is finite. In fact, if 7 is finite, then the desired inequality holds
when

2

O<k< ——m
7 I
TYa+p, pC'AcC

because for such k and ¢ € 3,
AR(0) > kyy pbp[2 — xkv4, p pc’AcT] > 0.

Since under the adopted assumptions AR(to) = t’AR(o) for all vectors ¢ > 0
and all positive numbers ¢, one can easily see that AR(o) > 0 for every ¢ > 0 if
and only if AR(o) > 0 for every o € Z,,.

Putting g4 = (qy,...,q,) and H = (h, ;) we can hence formulate the follow-
ing result which is basic for the discussion in the sequel.

LEMMA 2.1. There exists a constant k > 0 such that estimator (2.1) is better
than L'Y for F'6 if and only if q; >0 and if q,=0 and h;;=0 for some
l1<i<kandl<j<n, thenp,=0.

REMARK 2.1. For an unrestricted model with H=1,, A=1_,  and P =
(1/a)A, formula (2.2) becomes

1
q=[F—(1+——)AL]c, cER™
a

If ¢ >0, then LY is inadmissible. For m =1, i.e., for L, F € #", this
sufficient condition for inadmissibility was obtained by Das Gupta and Sinha
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(1986). Notice that if L = (I + GA)"'GF, where F € #", then q > 0 implies
that Fc > 0 and that Lc > 0, where ¢ € # (see Theorem 2.1).

These developments show that improvements of linear estimators of F’6 are
possible only in some directions and with limited shifts. The following result
which holds for any n.n.d. matrix A indicates directions in which improvements
are possible for linear admissible estimators L'Y belonging to

{(LF)Y: L'Y € Ly} \ {(LF)Y: L'Y € 3,5}
THEOREM 2.1. If L'Y + c¢Yp dominates L'Y and if Pis p.d., then HFAc > 0.

PROOF. As usual let G be a matrix in ¢ and let rank G > 1. First we show
that if 2(G)c > 0, where

h(G) = H[I - (A + P)(I + GA)"'G| H'(HH") "},

then ¢ > 0. _
From the definition of ¢ it follows that there exists a sequence {w,} of p.d.
matrices with nonnegative entries in @ such that

G, = (HwH);'HwH - G

as r - oo, so that A(G,)c > 0 for sufficiently large r. Thus without loss of
generality we may assume that

G = (HwH); 'HwH,

where w € Q.
Now we define a matrix S by

S=P Y (HwH), - HwH
and notice that
PYYH'wH),"”S(HwH);*PV* =1, - T,
where
T = P H'wH),"?HwH(H'wH) ;/* P2

The matrix T is n.n.d. and tr T = 1. Since rank G > 1, this ensures that its
eigenvalues are in [0, 1), so that S is p.d. From Theorem 12.2.9 in Graybill (1983)
it then follows that all entries of S™! are nonnegative.

Next notice that A(G) can be written as A(G) = UW, where

U=1I,- HP(HwH);'H'w,
while
W=H(I,+ AG) 'H'(HH') .
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Since the inverses of these matrices
U'=I+HS 'Hw
and
W'=1I, + HA(HwH);'Hw

have only nonnegative entries, we see that all coordinates of ¢ must be positive if
h(G)c > 0. To end the proof suppose that

[(1+ GA)'GF|'Y + cY,
dominates
[(1+Ga)'GF]Y
and that P is p.d. Then by Lemma 2.1
gy =H|F - (A + P)(I+ GA) 'GF|Ac > o.
Since gy = h(G)HFAc, the first part of the proof leads to the desired

conclusion. O

REMARK 2.2. For n =2 and m = 1 the assertion of this lemma may be
strengthened. If L'Y € %, o(F), where F € £, and if L'Y + cY, dominates
L'Y, then Fc¢ > 0.

3. Estimation of the scale parameter vector 6. In this section we estab-
lish the main results of the paper. The first theorem asserts that linear estima-
tors that are not in £ \» are inadmissible among the class of all estimators. The
second one states that the remaining linear estimators, i.e., the estimators in
&%« are admissible among the class of all estimators under the quadratic loss
function.

Throughout this section we assume that A is the identity matrix.

THEOREM 3.1. (i) There exists an estimator of form (2.1) dominating a
linear estimator L'Y of 0 if and only if

LYEZ\N Lo

() If L'Y € £pye\ LYye, then for every p.d. matrix P there exists an
estimator of the form (2.1) dominating L'Y.

PrOOF. (i) First suppose that L'Y € %) o. Then for any matrix P and any
vector ¢ € 2" it follows from (2.2) that g, = HQc, where

1
1 =]- ——(A+ P)K1I'K},
(3.) Q-I-——(A+P)

while K~'1 € ©, K being a p.d. diagonal matrix. From the fact that K~'1 > 0,
it follows that there exists a nonzero point o = (0y,..., 0;)" such that ¢ > 0 and
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K1 = H'o. For such a point ¢’q; = 0 holds, because
'K"(A+P)K1=1+a.

Let o,, t=1,...,t 1 <t <k, be the nonzero elements of 0. The assumption
that gy = (qy,...,q) = 0 would then imply that g, =0 for i = 1,..., . But
this and the fact thats (h,,..., h, ;) # 0 for j=1,..., n would in turn imply
that P = 0 by the second condition of Lemma 2.1. Since this contradicts the
assumption that tr P =1, no estimator in %%, can be dominated by an
estimator of form (2.1).

Now let L'Y € # and suppose that there are no matrices P and no vectors ¢
fulfilling the conditions of Lemma 2.1. In this case |[I — (A + P)L| = 0 for every
matrix P, since all entries of matrix H are nonnegative. This implies that L
must be of the form

(3.2) L

— ' —1

1+ aKoll Ko,
where K is a nonsingular diagonal matrix. In fact, let W(X) = |I — XL|, where
X = A + P. Asserting that |I — (A + P)L| = 0 for all matrices P is the same as
asserting that W(X) = 0 when tr X = 1 + « and X > A. Now this latter state-
ment implies that W(X) = a(tr X — 1 — «), where a € #. And, since W(0) = 1,
we obtain that W(X) =1 — tr X/(1 + «) for all diagonal matrices X. From this
we may infer that all principal minors of L of order larger than 1 must be equal
to 0 and that all diagonal entries of L are equal to 1/(1 + a). Hence L must be
of form (3.2) as asserted.

To end the proof of part (i) it suffices to show that under the adopted
assumption either K;'1 € ® or —K;'1 € ©.

Defining @, analogously to (3.1) with K replaced by K, one can easily verify
that ker(QjH’) = {0} and, consequently, that Z(HQ,) = #*, when K~ '1 ¢
A(H'). Here, for any matrix M, ker(M) denotes the kernel and #(M) the
column space of M.

In such a case there exists for every matrix P a vector ¢ such that q; =
HQyc > 0, which in view of Lemma 2.1 contradicts the assumption.

When K;'1 or — K1 belongs to 2(H’) \ 0, there must exist a vector g > 0
such that g’K;'1 = 0. Because K;'1 € ker(Q}), this implies that g € #(Q,)
which also leads to a contradiction.

(ii) Again making use of the fact that all entries of H are nonnegative, it is
enough by virtue of Lemma 2.1 to show that if L'Y € Zoaie\ Lo and if P is
p.d., then |I — (A + P)L| # 0. Suppose that this determinant is equal to 0.
Expressing L in terms of a matrix G in 4 we get

I - (A +P)(I+GA)'G|=0.
Since
I-(A+P)I+GA)'G=(I-PG)I+AG)™ ",

this condition reduces to |I — PG| = 0. From the definition of ¢ it now follows
that the characteristic roots of PG are nonnegative and that their sum must be
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equal to 1. This in turn implies that PG must be of rank 1. Therefore, G must be
also of rank 1, since P is p.d. But in such a case L'Y € %3, which contradicts
the assumption that LY & £ . O

REMARK 3.1. It should be noticed that the assertions of Theorem 3.1 may
not be valid for parametric functions F’6. The following illustrates this.

Consider model (1.1) with n = 2, A = H = I,. Take L = (1,1),and F = (4,0)".
Observe that L'Y = Y, + Y, is not admissible for F'6 within the class of all
linear estimators .Z(F), but since

F—(A+P)L=(2+py, —(1+py)),

the estimator Y, + Y, cannot be improved by an estimator of form (2.1). To see

that Theorem 3.1(ii) does not extend to parametric functions consider the same

model as above, but now treat Y, + Y, as an estimator of F' = 26, + (4/3)80,,

ie, take F' = (2, 7). In this case this estimator belongs to Z,; »(F) \ £ o(F).
In fact, in the representation of Theorem 1.1 it corresponds to the matrix

1 0

o= [as 1)

Lemma 2.1 immediately gives that this estimator can be improved by an

estimator of form (2.1) if and only if (p,, 5 — p,) > 0. Now this condition is

fulfilled if and only if 0 < p, < 3.

This remark and Theorem 3.1 show that the class of estimators suggested by
Das Gupta (1986) is broad enough to improve on inadmissible estimators of 4,
but not for improving on inadmissible linear estimators of parametric functions.

THEOREM 3.2. All estimators in .Ya?il o are admissible for 0 within the class
N of all estimators.

ProOOF. As noted in Section 1 every estimator in .‘Z’a?il o can be presented as
1'KY
1+ a

where K = diag(k,,..., k,) is a p.d. matrix such that K~'1 € ©.

The parameter set may not be all of #7. If § is as good as 8°, then the risk
function R($, 6) is a lower semicontinuous function of  which, since R(8°, 6) is
continuous, satisfies R(8, §) < R(8°, 9) for all § € ©.

By construction 6§ = H's. The inequality R(8,8) < R(8° 6) implies that
R(8, H's) < R(8° H'o). The inequality holds for all parameters  if and only if
it holds for all o > 0. The following proof thus establishes admissibility of §° as
an estimator of H'o, 6 > 0.

Now let

8% = K~ 1.
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At point 8 = 6, = AK~'1, where A > 0, the random variable 1’KY has a
gamma (a, A) distribution so that by Karlin’s theorem &* is an admissible
estimator of A.

On the other hand, the risk of any estimator 8 = (§,,...,8,) at 6, can be
written as

11
R(3,6,) = aE[ Z - ——z(ki8i - A)ﬂ,
1=1 ak 12
where a = L k72

Applying Jensen’s inequality to the expression in the big parentheses we

obtain

121 2
R(8,0,) > aE|— ) —§,— A
a ;o ki
and the inequality is strict unless k,6, = k,8; for all i, j = 1,..., n.
Since, as we have already noted, §* is admissible for A and since the quadratic
risks of 8° and &* are related at § = 6, by R(8°, 8,) = aR(8*, M), it follows that
if, say, 8 dominates 8°, then necessarily

R(6*%, A E : Xn: ! 5, —A 2
( ’ ) - a = ki i *
Consequently, 8, = (1/k,)6* for all i with probability 1, so that § = §° with
probability 1. But this contradicts the assumption that § dominates 8° and
concludes the proof of the theorem. O

4. Some remarks on estimating parametric functions. Now we show
that a number of results on estimating parametric functions F’6 considered in
Section 2 follow from Section 3 as consequences of a lemma due to Shinozaki and
some results of Klonecki and Zontek.

The relevant Shinozaki’s lemma (1975) states that if a random vector § is
admissible under loss function (1.2) with respect to a p.d. matrix A = A, then it
is also admissible under (1.2) with respect to any n.n.d. matrix A = A,. In view
of this lemma it is obvious that for any matrix n X m matrix F

(4.1) {((LF)Y: L'Y Gaw) C L (F)
and ‘
(4.2) {((LF)Y: L'Y € £,4,0} C Z0(F).

The reversed inclusions in (4.1) and (4.2) do not hold in general. To see that
the reversed inclusion in (4.1) may not hold, consider an unrestricted model with
H=1, and let F=(1,0,..., 0) € 2" Then (1/(1 + «,))F'Y is admissible for
F’§. Now suppose that for some matrix G in the relevant set ¢,

F=(I+ GA) 'GF.
1+ a
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From this one can deduce that rank G > 1, and Theorem 3.1 implies then that
[(I + GA)"'GYY cannot be admissible for 6.
A sufficient condition for both the inverse inclusions to hold, i.e., for

(4.3) L (F) = {((LF)Y: L'Y € £,y
and
(4.4) ZLae(F) = {(LF)Y: L'Y € £,4,0},

is that rank HF = rank H. In fact, let M'Y € %, ,(F). Since rank HF =
rank H implies that HF(HF)"= I,, it follows from Shinozaki’s lemma men-
tioned above that

H(FH) MY € %,y 4

Since Z(M’) ¢ #(F'H’) by Theorem 3.1(i) in Klonecki and Zontek (1988), it is
clear that M = M(HF)"HF. The assertion follows now by using once more
Shinozaki’s lemma. Relation (4.4) may be established by using similar argu-
ments.

REMARK 4.1. An estimator L’Y is in the set
{((MF)Y: MY € 4.},
where L = (1,...,1,Yy € #" and F = (f,,..., [,) € #", if and only if

ZL—1+a
o b
and either L€ ® and L >0or —L € ® and —L > 0.

For n = 2 there exists an estimator of form (2.1) that dominates L'Y €
Laaze(F), where L > 0, if and only if
Y L >1+ a.
i=1 b

This latter result does not extend to n > 2.

REMARK 4.2. In a recent paper Das Gupta and Sinha (1986) remarked
correctly that (a/(1 + a))1’Y may be an admissible estimator of (A1)'# within
the unrestricted model with H = I,. This follows straightforwardly from Re-
mark 4.1 for F = Al and L = (a/(1 + a))1.

REMARK 4.3. It may be of some interest to mention that in the multivariate
normal case, i.e., when Y is distributed as N(u, I), where p € #", an expression
similar to (4.3) holds for any n X m matrix F and for all n > 1 [see Zontek
(1986)].

5. Variance components. From the work of Farrell (1969), Olsen, Seely
and Birkes (1976), LaMotte (1976) and Anderson, Henderson, Pukelsheim and
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Searle (1984) it is known that for balanced as well as for some unbalanced
random and mixed effects models there exists for estimating variance compo-
nents a minimal sufficient statistic Y having a multivariate gamma distribution
with mean vector and covariance matrix of the form (1.1) and with o,,...,0,
representing the variance components involved. The matrices H and A are
determined by the model considered.

The linear admissible estimators of o, i.e.,, of F'f with F being equal to
H'(HH’)™!, within the relevant reduced model Y have the following form

(5.1) [(1+ 6a)‘cr(HE) Y,

where G € ¢, while ¢ is defined as in Theorem 1.1.

This is an admissible estimator if and only if rank G = 1. Moreover, since
rank HF = rank H, the set of estimators (5.1) with G ranging over the subset of
all matrices of ¢ with rank 1 represents the class of all admissible estimators of
o among the class of all linear estimators within the reduced model Y.

ExaMPLE 5.1. For the one-way balanced random effects normal model, i.e.,
in case when the observed random vector X is distributed as N, (1, Jo, + Io,),
where p € %, 0,, 0, > 0, while JJ is the Kronecker product of the u X u identity
matrix I and the v X v matrix 11/, the relevant minimal sufficient invariant
statistic for o becomes

1 1
X’(—J - —11’)X
1 v uv
Y=—
2 1
X ’(I - —d )X
v

The corresponding matrices A and H are, respectively,

A = Ldiag(u — 1, u(v - 1))

_lv O
H [1 1 ] )

From the above it follows that a linear estimator of o is admissible within the
class of all translation invariant estimators if and only if it has the structure

[(g —11)/0],

and

4 IY Y
-y, +
24+uwl\g ' ?

where g > 1.

In case when rank G > 1 every estimator (5.1) can be improved by an
estimator of the form (2.1), but no individual coordinate of the improved
estimator may be better than the corresponding individual coordinate of (5.1). In
fact, in view of Theorem 2.1 there may exist an improved estimator of the form
(2.1) for f’o or, equivalently, for [ H'(HH’)~'f 16, where f is any nonzero vector
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in %%, only in cases when all coordinates of f are different from 0 and have the
same sign. Now f = (0,...,0,1,0,...,0) does not meet this condition.

It is yet an unresolved problem whether within the reduced model Y individ-
ual components of a nonnegative estimator of o corresponding to a matrix G
with rank greater than 1 are admissible. If there would exist such an estimator
with admissible components, one could claim to have established the presence of
the Stein effect for estimating variance components.

6. Estimation of the vector n of natural parameters. In this section we
confine our attention to unrestricted gamma models. Without loss of generality
we may then assume that H is the identity matrix.

Using the same methods as in Sections 1 and 2 we show that for n > 2 no
linear estimator L'Z, where Z = (1/Y,,...,1/Y,), is admissible for the vector
n=(@1/6,,...,1/8,) of natural parameters under squared error loss,

(L'Z = n)yML'Z - m),

where A is a p.d. n X n matrix. To ensure the existence of the second moments
we need now to assume that A — 21 > 0.

To begin with we formulate a theorem analogous to Theorem 1.1 which
provides a complete characterization of the class H,4.,(F) of all linear admissi-
ble estimators L’Z of F'n, where as above F may be any n X m matrix, within
the class X'(F) of all linear estimators of F'n. The proof is similar to that of
Theorem 1.1 and will be omitted.

THEOREM 6.1. The class X,q.4(F) is given by
((LgFYZ: Lg=(A-I)(A-2D)[I+G(A-2I)]7'G,Ge g},
where % is the closure of a set 9 defined by
g={A;'A: A €@},
while
Q = conv{nn': n€ X", n>0}.

In exactly the same way as Lemma 2.1, one can establish the following.

LEMMA 6.1. There exists a number k > 0 such that
(6.1) L'Z + keZp,

where ¢ € ™, while P is an n.n.d. diagonal matrix and tr P = 1, dominates
the estimator L'Z of F'q if and only if

g=[(A-I-P)F-L]c=0

and, if the ith coordinate of q is 0, then also the ith diagonal element of P must
be 0.
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Now put X = diag(x,,...,x,) =A — I — P. Since the coefficient appearing
at x;x, -+ x, in the polynomial W(x) = |L — X| is equal to 1, we see that
W(x) cannot be identically 0 when trX =a —n —1 and X > A — 2I. This
shows that there exists a matrix P having the required properties such that

IA—I-P-L|=0.

This fact yields the following main result of this section.

THEOREM 6.2. If n > 2, then for every linear estimator L'Z of w there exists
an estimator of the form (5.1) which dominates L'Z.

This theorem extends some work of Berger (1980). He has shown that the
standard estimator (A — 21)Z of n which is admissible within the class of linear
estimators, is inadmissible within the class all estimators of 7. Das Gupta (1986)
has found a class of estimators of a simple form dominating this standard
estimator. The class of estimators defined by (6.1) is slightly broader than the
class considered by Das Gupta.

REMARK 6.1. Since every linear estimator of » may be improved uniformly
by (6.1), the assertion of Theorem 6.2 is valid when n ranges over any nonempty
subset of {v € 2™ v > 0}.

To end this section we shall formulate some results analogous to those
presented in Theorem 3.1(ii) and Theorem 3.2.

THEOREM 6.3. (i) If L'Z € X4y, then for every p.d. matrix P there exists a
vector ¢ in 2" such that for sufficiently small positive values of « the estimator
(6.1) dominates L'Z.

(i) If L'Z + cZp improves upon L'Z in X, 4 (F), where P is p.d., then
FAc > 0.

PROOF. Let G be a matrix in ¢ corresponding to the matrix L. Noting that
(A-I-P)F-L=(A-I)(I-PG*[I+ (A-2I)G]'F,
where (
G*=(A-1)"'[I+(A-21)G],

and that G* is a matrix of rank n belonging to ¢, the proof may be concluded by
using the methods developed in Section 2.
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