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DETECTION OF MULTIVARIATE OUTLIERS IN
ELLIPTICALLY SYMMETRIC DISTRIBUTIONS!

By BiMAL KUMAR SINHA
University of Pittsburgh

An extension of Ferguson’s (Fourth Berkeley Symposium on Probability
and Mathematical Statistics, 1961, Volume 1) univariate normal results and
Schwager and Margolin’s (1982) multivariate normal results for detection of
outliers is made to the multivariate elliptically symmetric case with mean
slippage. The main result can be viewed as a robustness property of the use
of Mardia’s multivariate kurtosis statistic as a locally optimum test statistic
to detect outliers against nonnormal multivariate distributions.

1. Introduction. Ferguson (1961) did a pioneering work on the detection
and rejection of outliers in samples from a univariate normal distribution with
either mean or variance slippage. Later much work followed on the problem of
estimation of parameters and tests of hypotheses of parameters in particular
probability models, assuming the presence of outliers in the data. These two
aspects of the problem of outliers, as mentioned clearly in Schwager and Margolin
(1982), are entirely different. Generally, one needs one kind of techniques to
determine if outliers are present and to identify them. However, a different kind
of techniques is required to suitably modify a statistical analysis for purposes of
inferences to incorporate the information regarding the presence and identity of
outlying observations.

The motivation for the present investigation lies in a recent paper of Schwager
and Margolin (1982) who derive a locally optimum procedure for detection of
multivariate normal outliers arising from mean slippage. The paper has some
very interesting features. First, this seems to be the only paper attempting
successfully to generalize the concept and techniques of Ferguson to the multi-
normal case. Second, interestingly enough, it turns out that the locally best
invariant test for outliers (under a suitable group of transformations) against
mean slippage alternatives is based on Mardia’s (1970) multivariate sample
kurtosis. We will show that the assumption of multinormality of the error
components can be dispensed with without any essential difficulty.

In this paper we extend the results of Schwager and Margolin (1982) to
nonnormal elliptically symmetric multivariate populations and in the process
provide a simpler derivation of the main optimality result. This derivation of

Received May 1983; revised December 1983.

! This work is sponsored by the Air Force Office of Scientific Research under Contract F49620-
82-K-001. Reproduction in whole or in part is permitted for any purpose of the United States
Government.

AMS 1980 subject classification. Primary 62A05, 62H15; secondary 62H10, 62E15.

Key words and phrases. Locally best invariant, maximal invariant, mean slippage, multivariate
kurtosis, outliers, robustness, Wijsman’s representation theorem.

1558

G]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2
The Annals of Statistics. FIGJY

_ ®
Www.stor.org



OUTLIERS IN ELLIPTIC DISTRIBUTIONS 1559

course depends mostly on the existing calculations of Schwager and Margolin
(1982). The class of nonnormal multivariate populations we consider is well
known in the context of robust tests for multivariate problems (see Kariya and
Eaton, 1977; Kariya, 1981a, 1981c; and Sinha and Drygas, 1982, for a univariate
problem). The main tool we use is a representation theorem due to Wijsman
(1967). The multivariate outlier problem is formulated in Section 2, while Section
3 contains the main result.

2. The multivariate outlier problem. Let Z(n) and <“(p) denote the
set of n X n orthogonal matrices and the set of p X p positive definite matrices
respectively. For an n X p random matrix U, we denote by £ (U) the distribution
of U. We call U elliptically symmetric about M with scale matrix = € & (p) if
Z(gY) = Z(Y) for all g € Z(np), where Y = (Y, ---, Y,), Y;is the ith row
of Y= (U- M)Z™V2% Let Z = {U: n X p|rank (U) = p}. Throughout
the paper, n = p + 1 is assumed. Moreover, we denote by % (M, I, ® ) the
class of np-dimensional elliptically symmetric distributions about M with
scale matrix ¥ € <(p) such that P{U — M € 2} = 1. We assume that
Z(U) e (M, I,® Z) has a density (with respect to the Lebesgue measure)
which is expressible as

(2.1) f(UIM, 2) = |Z|™*p(tr 27U — M)"(U - M))

where ¢: [0, ©) — [0, ).
Consider a random sample of size n from a multivariate distribution. We will
denote the sample by X: n X p and assume that the following model holds:

(2.2) X=1u' + U2

where 1 is the unit vector (n X 1), p is the unknown common mean vector
(p X 1) of the rows of X and the random error component U has a distribution
ZWU) € F(0, I, ® I,) with a density given in (2.1) with M = 0 and 2 = I,.
This is equivalent to the specification that £ (X) € & (1u’, I, ® Z). It is clear
that our formulation is more general than Schwager and Margolin’s (1982) in
that ¢ is arbitrary. Some mild regularity conditions on ¢ which will be needed in
the sequel are presented later.

In this paper we consider the possibility of outliers with mean slippage. For
any matrix A = (a;): n X p, extending Ferguson’s (1961) formulation and
proceeding as in Schwager and Margolin (1982), this can be incorporated by
considering the model

(2.3) X=1p' + AAZ 2+ U2

Here A is a nonzero scalar and A is an arbitrary matrix such that some of the
rows of A are zero. In this formulation, unless A = 0, the observation X;
corresponding to the ith row of X is an outlier if the ith row of A is nonzero.
The general multivariate outlier problem then consists of the model (2.3), the
distributional assumption about U: £ (U) € (0, I, ® I,), and the null
hypothesis Hy: A = 0 versus the alternative hypothesis H;: A # 0. In what follows



1560 B. K. SINHA

we will derive a locally optimum test of H, against H; employing invariance
arguments through the use of a group of transformations keeping the testing
problem invariant. It may be noted that rejection of H, implies a decision to act
as if there are outliers in the data according to the assumed structure of A. How-
ever, as will be seen later, the optimum test obtains for a wide variety of
outliers structures (see Remark 3.1). Moreover, the test is null robust in the
sense that the null distribution of the test statistic remains the same for any
Z(X)e FAu’, I, ® Z) (see Remark 3.3).

Following Schwager and Margolin (1982), it is clear that the above testing
problem remains invariant under the action of the group ¥ = @ X G1(p) X R”
where & denotes the group of all n X n permutation matrices with elements I',,,
G1(p) the group of p X p nonsingular matrices with elements C and R the
Euclidean p-space. The three (sub)group operations are defined by: (1) addition
of an arbitrary vector u* € R” to each row of X; (2) postmultiplication of X by
any nonsingular matrix C € G1(p) and (3) permutation of the rows of X by
premultiplying X by I', € & For details see Schwager and Margolin (1982). In
the next section we derive the distribution of a maximal invariant statistic,
applying Wijsman’s (1967) theorem. This méthod does not require an explicit
evaluation of a maximal invariant statistic although this is available in Schwager
and Margolin (1982). It may be pointed out that the null distribution of a
maximal invariant statistic is independent of any parameter and, as stated earlier,
is independent of any . € £

3. Main results. Without loss of generality, by invariance of the problem,
we may assume g =0 and 2 = I,,. To obtain a formal expression of the distribution
of a maximal invariant T'(X), we use the following version of Wijsman’s (1967)
theorem.

LEMMA 3.1. Let h(x|A) = ¢(tr(x — AA) (x — AA)) be the pdf of X, let
T = t(X) be a maximal invariant under the transformation & and let PX be the
distribution induced by T under A. Then the pdf of T with respect to P{ evaluated
at T = t(X) is given by

dP{ _ Johg-X|A)|C’CI™ dv(g)

where v is a left invariant measure on ¥

Conditions under which (3.1) holds are stated in Wijsman (1967); the details

are omitted here.
We now proceed to evaluate (3.1) explicitly. The transformation g- x is given
by (see Schwager and Margolin, 1982)

(3.2) gx=TxC+ 1p*, T, € FH CEGLp), w*ERP

and we take v = »; X v, X v3 where », is the discrete uniform probability measure
with mass 1/n! at each of the n! elements I', € & dvy(C) = dC/|C’C|*”* and
dvs(u*) is the Lebesgue measure on R”.
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LEMMA 3.2. The ratio of the pdfs in expression (3.1) is evaluated as

Y l( , &[tr(C'C = 2AC'S™VY(Tx — 1%')'A + AZ(A’A - Al—nlA—))]IC’CI"““"/2 dC
1(p)

(3.3)
Za Ll( ) &[tl‘(C'C)] l C/C'(n—p)/z dc

for some $: [0, ©) — [0, ), where Y, denotes the summation over n! terms
representing permutations of the rows of x, X the sample mean vector and S = x’x
— nxx’.

PrOOF. The numerator N, (say) of (3.1) can be written as

N, = l' O f f dtr(x’x — Ax’A — AA'x + A’A’A|x —> g - x))
n G1(p) YIRP

| CIC P2 dC dg(u®).

Here ¢(tr(- - - |x — g - x)) stands for the value of ¢ evaluated when x is replaced
by g - x provided by (3.2). The argument of ¢, after the substitution x = g - x,
simplifies to

tr[(T.xC + 1p*’) (TexC + 1p*') — 2AA"(ToxC + 1p*’) + A’A’A]
= tr(C’x'T.T.xC + 2nC’%u*’ + nu*u*’
— 2AA'TxC — 2AA'1u* + A%A’A)

(3.4)

= tr(C’x’xC — 2AA'T.xC + A%A’A
(3.5)
- n(C’i _A A’l)(i’C _A 1’A> + nc*c*’)
n n .
= tr(C’(x'x - nxx’)C — 2AC'(T',x — 1X’)’A

+ A2<A’A _4 lnl A) + nc*c*’) .

In the equalities ébove, c* = u* — (A/n)A’1 + C’x and we have used the fact
that x'T';T.x = x'x, VI, € & Since dvs(u*) = dvs(e*), using a result of Dawid
(1977), integration with respect to ¢* over R” yields

Ny=—= 3. f <£[tr(C’(x'x - nxx’)C — 2AC'(T',x — 1X')'A
G1(p)
RPRCETY)) P

for ¢: [0, ) — [0, ) given by ¢(Z) = [y» ¢(Z + nu’u) du.

(3.6)
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Now x’x — nkx’ = S, the sample sum of squares and products matrix, is p.d.

by our assumption n = p + 1. Writing S = S"/2S"/? where S'/2 is the positive
square root of S and making the transformation C — S2C, N, reduces to

lsl_n/2 7 ’ rQ-1/2 o’\’
Y ltr{ C'C — 2AC’S™V3(Tx — 1X')'A

n! G1(p)
+ A2<A'A - 4 1n1 A))] |crC| P2 dC.

Since the denominator of (3.1) corresponds to N, with A = 0, the lemma follows. [

NA =
3.7)

We now proceed to evaluate the expression in (3.3). An exact evaluation of
the expression is difficult but its Taylor series expansion up to a few terms
evaluated at A = 0, which is all we need to derive a locally best invariant test, is
not so. Making a transformation from C to —C, it is clear from (3.3) that the
ratio of the pdfs depends only on AZ. We show that the coefficient &, of A® in this
ratio

3.8) & =23, [tr{AC’S™3(T.x — 1x’)' %@ (tr C'C) | C'C| P2 dC,
G1(p)

apart from another constant term depending only on A, is a constant, and that
the coefficient 8, of A* in the ratio

(3.9) b= 2. ; [tr{AC’S™ V(T x — 1%’)"}]*6“(tr C’'C) | C'C| P72 dC,
J1(p)

apart from other terms including~ (3.8) ~which are constants, is of the t:orm
K.(#)T(x)L(A) + K»($) where K,(¢), Kz($) are constants, ¢ *(u) = (d'/du’)¢(uw),
i'—_ 2, 4, a= (l/n) 2'11 a;,

(3.10) T(x) = bop=n X7 {(xi — x)'S7Y(x; — X)}?
and
L(A) = (n® + n?) I% [ vl*

— (n? = n)[2 T= (v + Tk Ivil®3,

with v; = (a;— a), | vil|2=v!vi, ' = (X1, -+, X,) and A" = (ay, -+ -, &,).

(3.11)

EVALUATION OF &,. This is based on the following elementary result whose
proof is omitted. 3. below is over n! permutations obtained by permuting the
columns of A, and A, satisfies A,1 = 0 and A,A/ = A, (independent of «) for
all a.

LEMMA 3.3. Y. {tr(BA.)}? = n(n — 2)!(tr BAoB’) — (n — 2)!(1'BA,B’1).

Taking B = AC’'S™'?, A, = (T.x — 1%’)’ and using the fact that (T.x — 1x’)’
(T',x — 1x’) = S for any «, it follows that
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5y = J; _ In(n = 2)\(tr AC'CA") — (n - 2)1(1’AC'CA'1))

(3.12)
- ¢?(tr C'C) | C'C| ™" dC

which is a constant.

EVALUATION OF 44. This is primarily based on some results derived by
Schwager and Margolin (1982). Write

tr{AC’S™V3(Ix — 1%’)"} = tr{TLAC'S VX (x — 1X’)’} = ¥, &/ Cay,

where & = S™V2;, §; is the ith column vector of (x — 1X’)’ and a,, is the ith
column vector of A’'T,,. Since Y%, & is a null vector, in the last equality above
we can replace a;, by v;, = the ith column vector of (A’'T, — al’). We now use
the results of Section 5 of Schwager and Margolin (1982). Their Theorem 5.1 is
applicable directly and their Lemmas 5.1 and 5.2 and Theorem 5.2 are used with
& suitably redefined as

(313) ? = f chd®(tr C'C)| C’C| P72 dC.,
G1(p) .

The justification follows easily because the above results are independent of any
particular structure of the underlying probability distribution and actually depend
on the invariance of the associated measure under orthogonal transformations.
This yields

(3.14) 8 = (n— )I1BLA) T 1 &% + k()

where L(A) is as defined in (3.11). This completes our demonstration since || & ||
= (x; — X)’S~!}(x; — X) and k(¢) is a constant.
Our main result is the following.

THEOREM 3.1. Assume that ¢ satisfies (i) ® < oo, (ii) é(x + y) admits a Taylor
expansion in y for every x with continuous fourth order derivative, and (iii) that
the first four derivatives of the power function of an invariant test with respect to
A can be carried out beneath the integral sign. The locally best invariant locally
unbiased test, conditionally on A, rejects Hy: A = 0 for large values of b, if
® . L(A) >.0 and small values of by, if ® - L(A) < 0.

PROOF. An application of Lemma 3.2 and the generalized Neyman-Pearson
Lemma along with the quantities 6, 64 completes the proof of the theorem. The
routine details are omitted (see, for example, Kariya, 1981b). 0

REMARK 3.1. As mentioned in Schwager and Margolin (1982), the local
optimality of the b, -test obtains for a specific A and a universal optimality
(local) result holds whenever the fraction of nonzero rows of A is at most 21%.

REMARK 3.2. The class of nonnormal distributions ¢ considered in (2.1)
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contains the (np-dimensional) multivariate ¢-distribution, the multivariate Cau-
chy distribution, the contaminated normal distribution and more generally con-
tinuous normal mixtures of the type f = [§ N(U| M, aZ) dG(a) where N is the
normal density and G is a distribution function on (0, ). For such an f, it is easy
to justify the conditions in Theorem 3.1 (see Ferguson, 1961) and it turns out
that & > 0.

REMARK 3.3. It is easy to verify that the locally optimum test statistic
T(x) = b,,, satisfies (i) T((x — 1p')=""?) = T(x) for all p € R?, T € & (p), and
(ii) T(ax) = T(x) for all scalars a > 0. This establishes the null robustness of the
locally optimum test (vide Corollary 2.1, Kariya, 1981c).

REMARK 3.4. It may be noted that the conditions'in Theorem 3.1 are stated
in terms of the intermediate function ¢(x) = [we ¢(x + nu’u) du. Stated in terms
of ¢, the following are sufficient:

(i) f
G1(p)

(ii) ¢(x + y) admits a Taylor expansion in y for every x with continuous fourth
order derivative and

¢t | C'C| ™ P2 dC < oo;

x=trC’'C

84
f 3t ¢(x + nu’u) du
RP

8—- f ¢(x + nu'u) du| = f 2— ¢(x + nu'u) du, 1=1,2,3,4.
ox' | Jre re Ox'

It is remarked that these conditions are satisfied for a large class of pdfs especially
in the case of normal mixture: ¢(x) = 5 e~ dF(a) provided

f a2—p(n+1)/2 dF(a) < o and f ai—(p/2) dF(a) < oo, 1= 1’ 2, 3, 4.
0 0
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