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BANDWIDTH CHOICE FOR NONPARAMETRIC REGRESSION

By JoHN RICE!
University of California, San Diego

This paper is concerned with the problem of choosing a bandwidth
parameter for nonparametric regression. We analyze a tapered Fourier series
estimate and discuss the relationship of this estimate to a kernel estimate.
We first consider a method based on an unbiased estimate of mean square
error, and show that the bandwidth thus chosen is asymptotically optimal.
Other methods are examined as well and are shown to be asymptotically
equivalent. A small simulation shows, however, that for small or moderate
sample size, the methods perform quite differently.

1. Introduction. Nonparametric probability density and regression esti-
mation have become quite popular in recent years, both as theoretical and
practical enterprises. The application of such techniques always requires a crucial
choice of a smoothing parameter, and various proposals have been made for data-
driven procedures for choosing this parameter. Varieties of cross-validation have
been especially prominent. Although there have been significant theoretical
developments—for example, Craven and Wahba (1979), Chow, et al (1982) and
Speckman (1982)—many questions remain open.

Given data

yi=fx) +e

where x; = i/n,i =0, ..., n — 1, and the &’s are independent random variables
with mean 0 and variance ¢? a kernel estimate of f is

(1.1) , fa(x) = T (Wn) wh(xi = x))yi.

Here w is the kernel which is symmetric about zero, and A is the reciprocal of
the bandwidth, which is to be chosen from the data. The estimate (1.1) as it
stands should be modified for x near the boundary—see Gasser and Muller (1979)
or Rice (1984)—unless f is smoothly periodic.

In this paper we will assume that f is smoothly periodic and will consider a
circular version of (1.1). This makes possible the use of Fourier analysis (note
that (1.1) is a convolution). As a further simplification, we will analyze a modified
version of (1.1), to be described in detail below. Basically, this modification
consists of discarding “aliased” Fourier coefficients of w, and thus replacing the
kernel estimate by a tapered Fourier series estimate. This simplifies certain
technical arguments and makes the essential arguments much easier to follow,
as was pointed out by a referee. However, we wish to make it clear that our
results apply to the modified estimator.

Received September 1982; revised April 1984.

! Research sponsored by NSF Grant MCS-7901800.

AMS 1980 subject classification. 62G99, 62J99.

Key words and phrases. Nonparametric regression, kernel regression, cross-validation, smoothing.

1215

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIK@J:Y

WWw.jstor.org



1216 JOHN RICE

We consider attempting to choose A so as to minimize the risk function
R,(\) = E(1/n) TG (f(x:) = fa(x))?
a discrete approximation to the integrated mean square error.
If we let
Y=(y0, -+ Y1) f=(f), -+, f(xam))T,
and
W) = [(Mn)w(x: — x))],
R,(\) may be expressed as
R,(A\) =E@/n) If - W)Y~
The residual sum of squares is
RSS.(\) = | Y- WN)Y|%

A simple calculation shows that

1 2 262
> ERSS,.(A\) = R,(A) + ¢° — - trace(W(A))
(1.2)
—R.O) 4+ o® — 2022w (0)
n

Thus, if ¢® were known, one could form an unbiased estimate of the risk:
(1.3) R.(\) = (1/n)RSS,(\) — ¢% + 262Aw(0)/n

and choose A to minimize R, (\). This sort of scheme was suggested by Mallows
(1973) in the context of variable selection in regression, and by Craven and
Wahba (1979) in the context of choosing a smoothing parameter for a smoothing
spline. Since o2 will not typically be known, it is tempting to form an estimate
of o2, 62, from successive differences yi+1 — y» or by pooling single degree of
freedom estimates formed from the residuals of straight lines fit to successive
triples of points and choose A to minimize

(1.4) R.(\) = (1/n)RSS,(\) — 6% + 26°Aw(0)/n.

Crossvalidation is intended to accomplish the same aim. Letting f* (x) denote
the estimated regression function with the kth point deleted, A is chosen to
minimize
(1.5) CV(N) = (1/n) Tr2d (ve — [P (x0)) %

Since this paper was first written, the author has seen manuscripts on
crossvalidation by Hall (1982), Li (1983a, b) and Wong (1982). Hall shows
asymptotic efficiency of a form of crossvalidated estimation for density estima-

tion. Wong shows consistency of crossvalidated kernel regression estimates for
equispaced data, using methods that are quite different from those used in this
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paper. Li (1983a) shows consistency for crossvalidated nearest-neighbor regres-
sion estimates. A very interesting paper of Li (1983b) relates crossvalidation,
risk estimation, and Stein estimates to nonparametric estimation problems.
Breiman and Freedman (1983) discuss some related problems in variable selection
for regression. However, as far as we know, this paper is the first to establish
rates of convergence for an estimated bandwidth (the bandwidth of the modified
estimator).

The remainder of this paper is organized as follows: In Section 2 the modified
estimate is defined and the properties of A, the minimizer of E,()), are investi-
gated as n — o, It is first shown that the minimizer of R, yields a consistent
estimate of f. It is next shown that there is a (possible local) minimizer A, such
that

where A} is the minimizer of R,(\). We then deduce an asymptotically normal
limiting distribution for an appropriately normalized version of A,. In Section 3
we show that for the original (unmodified) problem, the minimizers of R, (\) and
some other criteria have the same limiting behavior as the minimizer of R.(\).
In Section 4 we report the results of a small simulation.

2. Unbiased risk estimation. In this section we derive the main results
of the paper. We consider the estimate A, which minimizes R,()). In Theorem
2.1 we show that R,()\,) —, 0 as n — . Theorem 2.2 shows that (A, — A\})/A}
—, 0. A limiting normal distribution for A, is given in Theorem 2.3, which shows
that the standard deviation of (A, — A})/A} ~ 1/ VAR

Throughout this section we will assume that w is a symmetric probability
density with [ x w(x) dx = 0. In order to establish some of the results, it will be
necessary to assume further smoothness properties of w.

The estimate 1.1 is a convolution, and to investigate its properties and those
of the minimizer of R, it is convenient to use Fourier analysis. We will assume
that the model is circular—f will be regarded as a periodic function. This
assumption of circularity is clearly something of an artifice; however, if the model
is noncircular, an estimate of the form (1.1) will not be satisfactory for x near
the boundary.

We first introduce some notation. Let

yjn=f(j/n)+€jn, J=0, "'»n_]-

where E ¢, = 0 and the ¢;,’s are independent random variables with common
variance ¢ Let

(2.1) ykn = (1/\/;;) 2]=—01 yjne—Zwijk/n

be the finite Fourier transform of the sequence y;,/vn (Cooley, et al., 1977). It
follows that

(2.2) B, = (1/¥n) 323 f(j/n)e > = Jnf,,
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where
(2.3) fin = (1/n) 353 f(j/n)e 2k
is the kth finite Fourier coefficient of the sequence (1/n)f(j/n). Note that if

fe= J; f(x)e 2" dx

then

(2-4) fkn = fk + 25#0 fk+sn-

We will assume that w is nonnegative and has support on [, %2]. For each
A the function Aw (Ax) is extended periodically in order that the convolution (1.1)
be well defined. The finite Fourier coefficients of the sequence (\/n)w(\j/n) will
be denoted by wg,(\). As was true for f

(2'5) wkn(>\) = wk()\) + Zs#() wk+sn(x)-
If w has support on [, 4],

12
we(\) = A f w(\x)e 2** dy
(2.6) 12

= f w(x)e kA dx = ip(k/\), say,

for A > 1. The Fourier transform of w is denoted by .

We now discuss our modified estimate. Since the estimate (1.1) computed at
points j/n is a convolution, its finite Fourier coefficients are vnguws.(\). It is
well known that in this circular case the effect of a kernel smoothing is to taper
off the higher order Fourier coefficients. Now the modified estimate that we will
actually analyze below is defined to be a trigonometric polynomial with Fourier
coefficients Vnyu.w(k/\). Here a, < k < b, where

0 = -n/2 n even b = n/2—1 n even
i —-(n—-1)/2 n odd " (n—1)/2 n odd

The estimate is thus a tapered Fourier series. Discarding the aliased Fourier
coefficients eliminates many tedious technical details in the proofs that follow.
Although we have not done so, we conjecture that a proof for the unmodified
estimate can be obtained in a similar manner.

Now using Parseval’s relation

(1/m)RSS(\) = (1/n) S2re | i — Ientd (B/N) |2
= (1/n) Tio |9ml? |1 = R/ %

(Had we retained the original estimate, wy,(\) would have appeared in place of
w(k/)\)). The reason for using Fourier analysis is to obtain this simple diagon-
alization of RSS.

(2.7)
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In order to avoid degenerate cases, we will assume throughout that f is not a
trigonometric polynomial of finite degree.
We will need the moments of | |2 Clearly,

(2.8) Elyk,,|2=a2+n|fk,,|2.

We also have

LEMMA 2.1. If the ¢’s have fourth order cumulant, k4, for k#0, 7 # 0,
Cov(| Ynl2 | Inl?) = ke/n + (20* + 2n6? | fon| o, .

PrOOF. The proof is straightforward but rather laborious, so details will be
omitted. First, express the desired covariance in terms of the cumulants of the
¥’s, and then compute these cumulants in terms of the cumulants of the y’s from
(2.1) using orthogonality properties of the sequence {e~2"#/"},

For k or # = 0 some additional terms appear, but these play no role in the

development below. .
Now let (= | Y%n|2 — E | Y4n |2 Since R,(\) is an unbiased estimate of R,,(\)

(2.9) R.(\) = R.(\) + A(N)

where

(2.10) A.(\) = (1/n) Tin,, Sl 1 — W(R/A)|®
and EA, = 0.

We will now argue that the estimated bandwidth gives a consistent estimate
of f.

THEOREM 2.1. Assume that i (t) is of bounded variation and that the ¢;’s have
fourth moments. Then
P{sup;<<«| 1/n Zz’;an Sen |1 — W(R/A) 2| = ¢} < (c/e®)n"(log 4n)?

where ¢ does not depend on n.

ProOF.

(1/n) Tim, Giall — B(k/N) |2
= (1/n) X’ $m — 2/n) T’ Gl (k/X) + (1/n) T $un| W(R/N) |
=T+ T, + T;, say.

Here we have used the fact that since w is symmetric, & is real. Since w(0) = 1,
the term k = 0 vanishes. We have used Y’ to denote a sum excluding 0. We will
verify the bound for each term. Chebyshev’s inequality gives the result for T3.
Using summation by parts, T, can be expressed as

Ty = (2/n) oY A(R/N) B0 §n — (2/n)B(Ba/A) B2, Gin.

The bound on the second term of the equation above follows from Chebyshev’s
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inequality and the fact that i is bounded. As for the first term
sup,(2/n) Tpt Aw(R/N) $i, Gn

< (2/n)sups| S, Gnl supy Shl | A (k/N) |.

The second sup is finite since @ is of bounded variation. For the first sup we can
appeal to Lemma 4.1 of Chapter IV of Doob (1953). As stated, Doob’s lemma
applies to mean zero uncorrelated random variable Y, ---, Y, with variances
o? and states that

4 log 4n
Ef{max;<,| YL, Y;|% = (log 2) Yk o}

Doob uses the fact that the Ys are uncorrelated in concluding that the expec-
tation of sums of the form |Y; + Yo + Y3|2+ -+ + | Yoo+ Y, + Y,|? for
example, is 62 + --- + o2. If the Y/s are correlated, covariance terms appear,
but if all the covariance terms are positive the expectation of any such sum is
less than or equal to var ¥~ Y,. In our case the covariances are given by Lemma
2.1. If we define var* Y {;, to be the variance computed with «, replaced by | x4],
then .
2 log 4n £+ Ther
E{max<n| —a,, Gnl®} = ( log 2 ) Z gn

It may be noted that the contribution from the covariance terms is, in any case,
of smaller order than the contribution from the variance terms. T can be analyzed
similarly by writing

| w((k+1)/N) |* = |@(R/N)|*
= w((k+ 1)/MN[w((k + 1)/X) — w(k/N)] + w(k/Mw((k + 1)/X) — b (k/N)]

and using that & is bounded. This completes the proof of the theorem.

COROLLARY 2.1. Let )\, be the minimizer of R, (\). Then under the assumption
of the previous theorem, R, ()\,) —, 0

PROOF. There exists a deterministic sequence X, such that R,(X,) — 0.
Now
Ru(M) = Ra(ha) = An(W) = Ra(Xa) = A, (M)
= R.(\.) + An(Xs) + A.(\n)
< R.(\,) + 2 supy| A,(\) | — 0.

If f € C? then the asymptotically optimal value of A, is A} = con'/%. (Rosenblatt
(1971) gives results of this character for kernel density estimation. Similar
reasoning can be applied in our case. Since such arguments are by now routine
in this field, we will omit them.) We would like to show that \,, the minimizer
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of R,,()\), is a consistent estimate of A* in the sense that n™5(\, — A\¥) — 0, but

we have not been able to do this in full generality. We will, however, show that

for any constants a and b (a < ¢o < b) there is a consistent local minimizer an'/®

< A\ < bn'/®. The question of whether this is a global minimizer remains open.
First, we will rewrite A,()\)

An(A) = (1/n) Tik1zantss Senl 1 — W(k/N) |2
(2.11) + (1/n) Tikisantss $in| W(RIN) |2 = (2/1) Zjkizants $entd (R/N)
+ (1/n) Ziri>ant® Sin.
Here, a > 0, is to be determined later. Let
(2.12) @A) = Ra(V) + 8.() = (1/n) Bikizantt £

Since the last term does not depend on A, Q, and R, have the same minimizer.
We will first show that

(2.13) SUPnt<r<tntSN 5| Ry — @ul = 0

and then see that this implies that n™*(\, — A%) —, 0. The reason for the
normalization by n*/3is that n**R,,(A*) — c. The reason for considering @, rather
than R, is to discard the variability contributed by the extra term. (In the
following theorem and throughout the paper we will let ¢ be a generic constant
the precise meaning of which may change from usage to usage.)

THEOREM 2.2. Assume that |f.|?> = o(k™®) (which implies that f” € C?).
Assume that

(1) w"(t) = — (27)? [ e **x’w(x) dx is of bounded variation.

(2) w has a derivative v, and ¥ is of bounded variation. Then
-~1/5

P{supasarssnon®® | R, — Qu| = ¢} < (log 4n)2.

82

PrROOF. n*5(R, — Qn) consists of the first three terms of (2.11). We will
estimate each term, the first one being

Ty = 1Y% 3 kjzants $kn] 1 — W(R/N) |2
Expanding & about 0
1 — w(k/\) = —A2R%0" (pr)-

We claim that for « sufficiently small, the sequence {p.} is increasing. To see
this first note that ”(0) = —(2x)? [ x*w(x) dx < 0 implies that (1 — W (¢)/t* is
decreasing in a neighborhood of 0. Secondly, @” is increasing in a neighborhood
of 0 since w®(0) = 0 and W (0) = (27)* [ x*w(x) dx > 0. Now

Ty = n75A7* Diki<ants Senk? | 0" (08) |
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Summation by parts may be used as in Theorem 1.1. Note that
Var*(zmsﬂnl/ﬁ k4§kn) = Z(k|5anl/5 (kalf4 + nlfkn|2k8)
= 0(n*®) + o(n%®)

by the assumption on the rate of decrease of the Fourier coefficients of f.
The second term in n*5(R, — Q,) is

T, = —2n~Y5 k> anl/s Sin (R/N).

Consider the sum T3 over k& > an'/® (the other part of the sum may be analyzed
similarly). Writing @w(¢t) = §(¢)/(2xit) and using summation by parts

T3 < exnYsupy, | X5 ans (1/7)§in Zk;anllﬁ | AG(R/N) |
and
Pisup\| T%| = ¢} = (c/e*)var* Tisans (1/k)§in(log 4n)>
Furthermore
var*(Tesantss (1/R)$in) ~ Tisarts (L/E?) + 1 Tisantts | fin] *(1/k7)
= 0% + o(n7'?)
which completes the analysis of T,. The analysis of
Ts = n7™ Tirisants Sin| W(k/N) |2
is similar to that of T,. This concludes the proof of the theorem.

COROLLARY 2.2. Let 0, = n~'5\,, 0% = n™V5\* and 0* = lim,_.0% Then
under the assumptions of Theorem 2.2, 0, —, 0*.

ProOOF. Let T'(0) = lim,_.n*°R,(0) for a <@ < b. T'() is a continuous and
convex function and the convergence of n*°R,, to T is uniform in [a, b]. (Again,
these claims may be established by arguments similar to those in Rosenblatt,
1971.) 6* is the minimizer of T. Now

SUPa<g<s| n*°Q,(0) — T(6) |
< SUP,=s<s| *°Qn(0) — n*°R,(0) | + Sup,=s=s| n*°R, () — T(6) | — 0.

To prove that the minimizer of T.(0) = n4/5Q,,(0) tends in probability to the
minimizer of T, the following argument, due to Ian Abramson, will be used. For
any 6 > 0 define

D(3) = infig_gei>5(T(8) — T(6%)).
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Then
P[| 6, — 0*] > §]
< P[T(6,) — T(6*) > D(@)]
< P[T(6,) — T (6,) + Tu(6*) — T(6*) > D(3)]
=< P[T(6,) — T.(6,) = D(4)/2] + P[T,.(6*) — T(6*) = D(5)/2]
—, 0

P

since T', converges to 7 uniformly in probability.
This argument can be used to obtain bounds on | 8, — 6*|, since D(5) ~ §2.
The next goal is to analyze the asymptotic behavior of A, — A} by means of
the Taylor expansion ) ~

0 =R,(\5) + (A — ADRI(X,).
We will do this term by term:
LEMMA 2.2. Assume that |fi|? = 0(k™®) and that [ t*| ' (t) |® dt < ®. Then
var[R,(\})] = D n™5 + o(n~115)

where D is a constant given in the proof.

ProoFr.
Ri(N) = (=2/n\7" T Sk @7 (RN — @ (R/N))
and
var R/(\) = (8/n%) X 3 (¢* + no? | fun|DE2 | @' (R/N) |2 |1 = i (k/N) |2
+ covariance terms.
The covariance terms are of smaller order. We first consider
(8X7/n?) o* T k* | (R/N)|? |1 — w(k/N)|*
= 8\"Yn?e* [ 2|0 (@)|% |1 — w(t)|*dt.

At X\ = \}, this term is of order n™'*/%; let D be the coefficient of n™*"/>as n — o
(and n™Y°\} — 6*). The remaining term may be analyzed by splitting the range
of summation as before. Over the range | k| < an'/®

1 — w(k/N) = E*A"%0"(0).
Since i’ (t) is bounded, the magnitude of the sum is
(A\"%/n) Ykl <ant/s k® |f,m|2 = o(n"1/5)

by the assumption on f;.
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Over the range | k| > an'/’, we have
(BNTH/n) Tirisants k? | fon® |0 (R/N) |2 |1 — w(R/N) |?

k? | fin|® = 0(k™®); pulling this term out and bounding the sum by an integral
shows that the expression above is also o(n~'/%).

LEMMA 2.3. Assume that | fz|% = o(k™®). Also assume that

(1) xw(x) is differentiable and the Fourier transform of its derivative is of bounded
variation,

(2) x*w(x) is three times differentiable and the Fourier transform of its third
derivative is of bounded variation.

Then
P{supansysonis| A (A) | = e} < (c/e*)n""*5(log 4n)>.
PRrOOF.
An(N) = (1/n) T $en(d?/dN?)(1 — W (R/N))?
and '

(@®/dA*) (1 — w(k/N))? = —(4k/N) [’ (/N1 — W(k/N))]
= (2R*/N)[@" (/N1 — @(k/N)] + | &’ (R/N) |?].
We will break this up into several terms. Let
Tw = (‘—4/>\3n) 2|k|<an1/5 k fknw'(k/)\)(l - w(k/)\))-
Using 1 — w(k/\) = —\"2k%0” (o),
T = (4/A°n) 3jriantss k2$entd’ (R/N)W" (pr).

We use the summation by parts argument again, noting that if functions h and
g are bounded and of bounded variation, so is their product. Furthermore,

Var*((k“"/n) 2|k|5an1/5 k3§'kn) = (>\~10/n2) 2|k|5anl/5 (k6 + k6n|fkn|2)
= 0(n~*5) + o(n~1%5).
Secondly, let
Tis = —(4N72/n) Tisants kSintd’ (R/N)(1 — W (R/N))%

The assumption on xw (x) allows us to write @’ (t) = F(t)/t? where F is of bounded
variation. Substituting this, and using the summation by parts argument, we
have to estimate

* AT 1 A2 4 2 2 1 -13/5
var 7 Yk>ani/s E $en ) ~ ;2‘ 2|k|>an1/5 (¢* + no | fun|?) Eﬁ =0(n ).

The term
To = —(2\7*/n) T E*Getd” (R/N)(1 — W (R/N))



BANDWIDTH CHOICE 1225

can be analyzed similarly. Finally, there is the term
T3 = —(2A7*/n) T k*Gea| 0’ (k/N) |2.

Over the range | k| < an'/*we expand &’ about zero and use the fact that i’ (0)
= 0. Over the range k > an'/®the argument proceeds as before.

LEMMA 2.4. Assume the conditions of Lemma 2.2 and also assume that the &’s
have finite moments of all orders. Then

n*YR/(\¥) =5 N(0, D)

where D is given in Lemma 2.2.

PROOF. The proof follows from showing that the standardized cumulants of
order greater than two of R}, (A}) tend to zero. These cumulants can be calculated
from the cumulants of the y’s via the rules of Leonov and Shiryaev.

We now have all the pieces needed to show that A, has a limiting normal
distribution. The Taylor series expansion is

0 =R,(\%) + (\ — AHDRZ(X)
= AL + (A — AD[RZ(X,) + AZ(N)]
or

__ nteALGw)
" nRI(N) + nALRR,)

n_l/m()\n - A:)

From Lemma 2.2
var(n''/°A;(\})) = D.
From Lemma 2.3
P{supanscx<pnsn®® | AL(N) | = e} < ¢ n”Y5(log 4n)2

Also, R” is a continuous function and R/ (\¥) = ¢ n™%5. We thus have

THEOREM 2.3. Assume the conditions of Lemmas 2.2, 2.3, and 2.4. Then
n\, =A%) =2 N(O, p)

where p = D/c2.

Since \, and \* are of order n'/?, the theorem says that the relative fluctuations,
(A — A¥)/A¥ are of order n™/"or 1/vA¥. This result has been derived under the
assumption that f” € L, and w is “matched” to f in the sense that [ xw(x) dx =
0 and [ x’w(x) dx > 0. For the more general case, f™ € L,, [ x*w(x) dx = 0,
k=1,.--,m—1,and [ x™w(x) dx > 0, the optimal A is \} ~ n*®™*), The
arguments above can be traced through and it can be seen that the relative
fluctuations are of order 1/vA* again.

Lemma 2.3 assumes that w is smoother than kernels generally used in practice.
For example w might be three times differentiable with support on [—'2, 2] and
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w®(+1%) = 0. This assumption enabled us to argue that a Fourier transform was
of bounded variation. It might well be that more delicate arguments could use
weaker assumptions. The real practical importance of the smoothness of w is not
clear to us. :

We have assumed that the data are equally spaced and that the model is
circular. This avoids the problem of modifying the estimate at the boundary,
where it would no longer be of convolution type, and makes possible the use of
finite Fourier analysis to obtain a nice expression for K. An analysis for the more
general situation would have to take account of unequally spaced data and of the
boundary and would proceed along different lines, but we conjecture that the
results would be comparable. We believe that the importance and interest of our
results lie in their character rather than in the specific assumptions or techniques

of proof. .

3. Estimation of ¢ and cross-validation. In the previous section we
have considered properties of the bandwidth which minimizes (1.3), which entails
knowing the error variance ¢ In this section we consider minimizing (1.4),
which uses an estimate of ¢% and minimizing some other criteria, including
cross-validation.

From (1.3) and (1.4) we may write

(3.1) R.(\) = R.(\) + A (62 — a®w(0)/n

where ¢? is estimated from the residuals of straight lines fit to successive triples
of points or from successive differences. Under the assumption that f € C? the
variance of ¢? is of order n™' and the bias is of order n™* or n~?, and is relatively
negligible. Thus

(3.2) SUParser<tnts | RYO[R, () — R,(M)]| — 0

from which it follows tha~t the asymptotically efficient minimizer of R, is asymp-

totically a minimizer of R,,.
A variety of other criteria used in model selection may be considered as well.

These include:
1. Akaike’s Information Criterion (Akaike, 1974)

exp AIC(A) = RSS(\)exp[2Aw (0)/n].
2. Generalizéd Cross Validation (Craven and Wahba, 1979)

(1/n)RSS(N)

GOV = )/

3. Finite Prediction Error (Akaike, 1970):

_1+w(0)/n1
FPE()\) = 1w () /n N0 (0)/n 1 RSS()).
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4. A criterion mentioned by Shibata (1981):
S(\) = (1/n)RSS(A\)(1 + 22w(0)/n).

5. Another possible criterion is

_ (1/n)RSS()\)
TN =1_ 22w (0)/n’
which tends to guard against undersmoothing. T'(\) may be expressed as
O\ = RO\ + o — 2¢%w(0)/n _ RO "
1= 22w (0)/n T 1 - 22aw(0)/n

The minimizer of T should thus be biased toward oversmoothing.

To see that these criteria are all asymptotically equivalent to R()\) over the
range an'/® < \ < bn'/®, consider first

S(\) = (R.(\) + ¢ — 2xa®w(0)/n)(1 + 2w (0)/n)
(3.3) 2
R 2)\w(0) 8.0 — (AerO))'

=R,(\) + ¢

The second term does not depend on A and the third and fourth terms are of
smaller order than the first. The other four criteria may be expanded in Taylor
series and in each case the leading term is S(\). As above we may conclude that
each of these criteria has an asymptotically efficient minimizer.

The best known method for bandwidth choice is probably crossvalidation
(CV). To define CV we use a regression estimate for unequally spaced data
(Benedetti, 1977):

(3.4) fa(x) = T (% — i)y Aw (M (x — x5)).
When this formula is used in (1.5) we find a closed form expression:

2
CVO) =1 5k [yk(l + “"T(O’> _2 w(%)ykﬂ - fn(xk>]

n

2
(35) - Ly in-pr+ 13|20y, 2y 2),, )

n n

+ % >y — fn(xk)]lixw(O) - % w(%>yk+l].

The first term is (1/n)RSS(A). The second term is of smaller order. The principal
contribution from the third term comes from

(3.6) 22w (0)/n)(1/n) T (Y — fo(x))ye,
the expectation of which is approximately 2¢*\w(0)/n.
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4. An example. We report here the results of a modest simulation. Kernel
estimates of the function

4.1) f(x) = 231 — x)3

were constructed from a sample of 75 equispaced points. Gaussian noise with
o = .0015 was added; this value of ¢ gives a signal-to-noise ratio of 10 at the
peak, x = Y. The kernel was

— 2\ 2 <1
42) w(x) = {315/ S o ey

Computations were done in double precision on a VAX 11/780 computer using
the IMSL routine GGMNL to generate the Gaussian deviates. For each of 100
runs, bandwidths were chosen to minimize the criteria of the previous section.
The IMSL routine ZXLSF was used to find the minima.

Figure 1 shows the risk as a function of the bandwidth b= A"'. w(0)/nb =1
or b = .025 corresponds to no smoothing.

Table 1 summarizes the results. Define E(A\) = R(\)/R(\*) where \* is the
optimal value of A. The table shows for various values of E the number of times
out of 100 that E was exceeded by each estimator.

The estimators in the table are listed roughly in order of efficiency. T and CV
were the most effective, followed by GCV and R. Successive differences were
used to estimate o2 for R and in this case R can be written simply as

)\w(O) 1 E (Yrer — yk)z-

(4.3) R(\) == Z (yp = fa(xn))? + ——
This was found to be more effective than using residuals from lines fit to
successive triples of points. AIC, FPE, and S frequently undersmoothed and
performed poorly. FPE and S in particular show a strange tendency to choose A
so that Aw(0)/n = 1 which amounts to almost no smoothing at all. In fact, if
histograms of the bandwidths chosen by FPE and S are examined, the distribu-
tions look much like a mixture of a continuous distribution and a discrete mass

at A = n/w(0).
1.0
08|

06 |-

R(b)

04}

0.2 H

0 1 1 1
0 0.2 0.4 0.6 0.8 1.0

b
F16. 1. Risk as a function of bandwidth.
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TABLE 1
106 | 1.1 | 1.2 | 1.4 | 1.6 | 1.8 2 4 6 | 8
T| 28 17 4 1 0 0 0 0 0 0
cv| 33 22 7 1 0 0 0 0 0 0
Rl 36 21 6 3 1 0 0 0 0 0
GCv| 33 21 8 4 1 1 0 0 0 0
AIC| 46 27 18 16 14 13 13 1 4 4
FPE| 46 38 28 25 22 21 21 21 18 18
S| 66 57 50 43 42 42 41 41 19 19

Thus, despite their asymptotic equivalence, there are real differences in the
behavior of the estimators. Estimators that penalize undersmoothing heavily
perform much better. In terms of mean square error, there appears to be much
less danger of oversmoothing. These results are suggestive but hardly conclusive.
Various functions, different error distributions, and different sample sizes should
be tried. Unequally spaced data and noncircular models (with appropriate bound-
ary modification) should be run as well. It would also be interesting to consider
the effect of serially correlated errors. R, for example, is clearly sensitive to serial
correlation. '
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