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DERIVING POSTERIOR DISTRIBUTIONS FOR A LOCATION
PARAMETER: A DECISION THEORETIC APPROACH!

BY CONSTANTINE A. GATSONIS

University of Massachusetts

In this paper we develop a decision theoretic formulation for the problem
of deriving posterior distributions for a parameter 6, when the prior informa-
tion is vague. Let w(df) be the true but unknown prior, Q,(df|X) the
corresponding posterior and 6(df | X) an estimate of the posterior based on
an observation X. The loss function is specified as a measure of distance
between @.(- | X) and (- | X), and the risk is the expected value of the loss
with respect to the marginal distribution of X. When 6 is a location parameter,
the best invariant procedure (under translations in R") specifies the posterior
which is obtained from the uniform prior on 6. We show that this procedure
is admissible in dimension 1 or 2 but it is inadmissible in all higher dimensions.
The results reported here concern a broad class of location families, which
includes the normal.

1. Introduction. The problem of assessing posterior probabilities for a
parameter when the prior information is vague has led to the development of
several criteria for selecting noninformative priors: among others, Jeffrey’s rule
(see Box and Tiao, 1973), Savage’s “principle of precise measurement” (see
Edwards et al, 1963), etc. More recently, the problem was also considered with a
view towards developing “reference posteriors”, which would “approximately
describe the inferential content of the data without incorporating any further
information” (see Bernardo, 1979). In the case of a location parameter, these
approaches recommend the use of a uniform prior, a technique which has been
extensively discussed and criticized in recent years (see, for example, Box and
Tiao, 1973, and Dawid, Stone and Zidek, 1973). From the point of view of classical
decision theory, a major criticism of the use of uniform priors is that, in higher
dimensions, they lead to posteriors which provide inadmissible point estimators
and confidence procedures (see, for example, Stein, 1956, 1961; Brown, 1966; and
Joshi, 1967).

In this paper we develop a decision theoretic formulation for the problem
stated at the beginning. Let 7(df) be the true but unknown prior on the parameter
0, Q-(d | X) the corresponding posterior and (df | X) an estimate of the posterior
based on an observation X. The loss function will be given by the L, distance
between Q.(- | X) and &(- | X), and the risk of a procedure & will be the expected
value of the loss with respect to the marginal distribution of X. Various properties
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of the procedure 6(- | X) will be investigated, in particular admissibility, invari-
ance and minimaxity.

The discussion in this paper is concerned with 6 being an arbitrary location
parameter. Special attention is given to the case of the normal mean. In Section
2 we give an easy calculation showing that the best invariant procedure (under
translations in R") can be obtained by assuming a uniform prior on 6, i.e.,
6(0] X) = f(X — 0), where f denotes the density of X. In Sections 3 and 4 we
show that an analog to the classical Stein effect arises in this context. The best
invariant procedure is admissible when the dimension n of 6 is 1 or 2 but it is
inadmissible in all higher dimensions. In fact, if n = 3 then 6 is dominated by
procedures of the form 6(f | X) = f(x + y(X) — 0), where X + y(X) is a Stein-
type point estimator of f. In the case of the normal mean, explicit choices of v
are given, while in the general location parameter case 6 is shown to dominate
6 as a certain parameter of v tends to its limiting value (an analogous situation
appears in Stein, 1956, and Brown, 1966).

The contents of this paper bear some resemblance to those of a recent paper
by Eaton (1981). However, Eaton’s approach and formulation is quite different
than the one presented here.

The Bayesian formulations we mentioned at the outset do not seem to
differentiate, within their own framework, between low and high dimensional
location parameters. The approach we present enables us to do so and, while it
concurs with the suggestions for using uniform priors in lower dimensions, it
argues against their use in higher dimensions. The proposed improvements over
the best invariant procedure provide point estimates and confidence procedures
for 6, which are superior to the usual ones.

2. Definitions and preliminary results. Let X be an observation from
an n-dimensional location family with density f(x — 8). Let w(8) be the (unknown)
prior density of 6 (all densities are with respect to Lebesgue measure in R"). We
denote by Q.(0 | x) the posterior density of § and by m,(x) the marginal density
of X. We always consider priors for which Q.(- | x) € Ly(R") for each x. The
space II of priors under consideration will be specified in each case.

An estimate of @,(- | x) is a function h in the action space <, where I =
{h:h € Ly(R™), 0 < h(f), for all § and 0 < [g» h(f) df < 1}. The loss function is
given by:

Lim, by %) = [ h = Q(- |0 [,

where || - || denotes the usual L, distance.
A (nonrandomized) procedure § is a measurable map from the sample space
into 9 i.e., é(- | x) € G for each x. The risk of § is given by:

R(m, 8) = E(L(w, 6(X), X)),

where the expectation is taken with respect to m,. (We will often write 6(x) and
Q.(x) instead of 6(- | x) and Q.(- | x).) A procedure & will be called “admissible”
iff there does not exist another procedure §; such that R(w, §;) < R(m, é) for all
m € II, with strict inequality holding for some w, € II.
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Consider now the group G of translations in R" and the corresponding group
G of translation operators acting on functions on R". & is invariant under G.
Assume II is an arbitrary set of densities, invariant under G. It is easy to verify
that the loss function is invariant under these group actions, i.e.

L(&.(r), &(h), &(x)) = L(x, h, x), forall c€R"

A decision procedure & will be called “invariant” iff 6(g.(x)) = g.(6(x)), i.e.,
6@|x+c)=06(0—c|x),forallx,c, 0 €ER™

PROPOSITION 2.1. The procedure & defined by (0| x) = f(x — 60) is a best
invariant procedure.

ProoOF. If 6 is any invariant procedure then we can easily show that:

R(x, 8) = fRn dz[j;n 6(z]10) — Q.(z + x| x))*m.(x) dx].

The integral inside the brackets is minimized for each z by the choice:
5(z]0) = f Q.(z + x| x)m(x) dx = f(—2). 0O
Rﬂ

REMARK. (i) It is easy to see that § can be obtained as the posterior if we
assume the uniform prior on 6. For general results of this type see Berger (1980a,
pages 259, 263).

(ii) The proof of the proposition shows that é is unique up to equivalence with
respect to Lebesgue measure.

(iii) If X ~ N(, A) then 5(X) is a N(X, A) density. However, if X, - - -, X,
m = 1, is an random sample from N(6, A), we cannot automatically reduce the
problem by sufficiency, since X is not necessarily a sufficient statistic for the
joint marginal distribution of the X;s. We can transform the problem in the
following way which is common in location problems (see Brown, 1966, for
example). Let X = X;, Y, = Xy, — X3, i =1, ---, m — 1. The joint density of
X, Y is given by: p(x — 6, y) dxv(dy) where

ff(x + 1) -+ flx + Y1)
| fof(x + y1) -+« f(x + Ypoy) dx

and v(dy) = (J f(X)f(x + y1) -+ f(x + ym-1) dx) [[27" dy.. If loss and risk are
defined as above and a procedure is “invariant” iff 6(8 | x + ¢, y) = 6(8 — c| x, y),
for all 4, x, y, c € R", we can show that the best invariant procedure is (8 | x, y)
=pl(x — 8, y), i.e,, 8 ~ N(X, (1/m)A). In fact, the results in the rest of this paper
can be shown to hold with X instead of X and (1/m)A instead of A.

plx, y) =

3. Admissibility.

(I). The normal case. We assume here that X ~ N(0, A) with the covari-
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ance matrix A known, and II = set a conjugate priors for 6, i.e., § ~ N(u, B) for
some vector 4 € R" and nonsingular matrix B.

THEOREM 3.1. The best invariant procedure § is admissible in dimension
n=1or2.

PrOOF. It suffices to show that 6§ cannot be dominated over the set Iy of all
conjugate priors with the same covariance matrix B, where B is arbitrary but
fixed. The family of marginal distributions of X becomes a location parameter
family now, with location vector u. Thus, our problem fits in the framework
developed by Brown and Fox (19744, b) for proving the admissibility of procedures
in one- and two-dimensional location parameter families.

Following the Brown-Fox notation we write

L(IJ, h’ x) = W(g—u(h)’ X = IJ’)'

Let a = (2m)™*(det(A™* + B™)™Y)""2 It is easy to see that we only need to
consider procedures such that 6(f | x) < a, for all §, x € R". Hence, without loss
of generality we can restrict our action space to

' = {h:h € Ly(R"); 0 < h(§) <aforall§ € R", 0 < f h(0) db < 1}.
R’l

Clearly now W(h, x) < 4a,forall h€ Z’, x E R".

We state here a version of the Brown-Fox sufficient conditions for admissi-
bility of the best invariant procedure and refer the reader to the above mentioned
papers, as well as to Brown (1966), for the proof of sufficiency.

(A) The action space is compact in the weak topology of Ly(R") and the loss
function L(g, -, x) is lower semicontinuous for each pair (u, x).

With condition (13:) being satisfied, the following are sufficient conditions for
the admissibility of § in dimension n = 1.

(B1) There exists a best invariant procedure §, with risk E < . § is essentially
uniquely determilled, i.e., if 6 is any other invariant procedure such that R(y, 6)
= R then 6(x) = 6(x) a.e. (dx).

(B2) If {6;} is a sequence of invariant procedures such that R(yu, §;) — R, then
6:(0) — 8(0) (weakly). Conversely, if {§;} is a sequence of invariant procedures
such that §,(0) — 6(0) then

f [W(5(x), x) — W(8(x), x)]*'mo(x) dx — 0.

(B3) [ | x| W(5(x), x)mo(x) dx < oo.
(B4) f?)c dy [Supéinvariam f{y (W((S_(x), x) - W(é(x), x))mo(dx)] < .

By m, we denote here the marginal corresponding to the prior with u = 0.
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In dimension n = 2 the sufficient conditions (in addition to (A)) are:
(C1) There exists a best invariant procedure § with risk R < oo.
(C2) The loss W is bounded above and [ | x |*W(8(x), x)mo(x) dx < ce.

(C3) There exists a positive valued nonincreasing function K on R* such that
[ K(y) dy < o and, for any invariant procedure é and A > 0 we have

J; - [W(5(x), x) — W(3(x), x)Imo(x) dx

1/2
= K(A)[ fR , (W((x), x) — W(3(x), x))mo(x) dx]

and
j,‘ - [W(3(x), x) — W(3(x), x)]*mo(x) dx

1/2
< K(A)[L2 (W(6(x), x) — W(5(x), x))mo(x) dx] -

REMARK. As Brown and Fox note, (C3) is a condition on the local behavior
of the loss near §(x) and it implies that if 6 is another best invariant procedure
then

W((x), x) = W(s(x), x) ae. (dx).

The proof of Theorem 3.1 will be completed now by establishing the following
three lemmas.

LEMMA 3.1. Condition (A) holds for &' and L.

PROOF. Let S be the ball in Ly,(R") with center at 0 and radius va. S is
weakly compact by the Banach-Alaoglu theorem and, clearly, £’ C S. For any
sequence {h,} C 2’ there exists a subsequence {h,,} such that h, — h € S. We
will show that, in fact, h € 9.

Let T = {x:h(x) < 0} and g(x) = Ir(x)e™"*"". Then [ h,, (x)g(x) dx = 0 but
[ h(x)g(x) < 0 if T has nonzero Lebesgue measure. Hence T has Lebesgue
measure zero. Similarly we show that h(x) < q, a.e. (dx). Finally, for each M > 0,

f hn(x) dx — h(x) dx,
lx|=M |x|=M

which implies that [, <m h(x) dx < 1. This proves that h € Z".

The lower semicontinuity of L(u, -, x) follows from the fact that, if h; —» h
weakly, then lim inf| h;|| = ||lim inf A;|| = | h| (see Liusternik and Sobolev,
1974, page 148).0

LEMMA 3.2. Let n = 1. Then conditions (B1)-(B4) are satisfied.



POSTERIORS FOR LOCATION PARAMETERS 963

PROOF. We remarked earlier that & is essentially unique. Let {6;} be a
sequence of invariant procedures such that R(u, 6;) — R(u, §). If {6,(0)} is a
(weakly) convergent subsequence of {6,(0)} and h = lim §,(0), we can define a
procedure & by 6(f | x) = h(x — 6). Note that § is an invariant procedure and, in
fact, 6, (x) — é(x), for all x. The lower semicontinuity of the loss function and
Fatou’s lemma give:

R(u, §) = lim inf R(y, 8;) = R(y, 9).

Hence 6;(0) — 5(0).
For the converse, note that the previous argument shows that [W(5(x), x) —
W(6:x), x)]* — 0. Use now the dominated convergence theorem to establish (B2).
Condition (B3) is obvious, having noted that the loss is bounded above. To
establish (B4), note that for each invariant procedure 6 and y > 0 we have:

J: [W(d(x), x) — W(d(x), x)]mo(x) dx < 4a J; mo(x) dx. 0O

x|=y
LEMMA 3.3. Let n = 2. Then conditions (C1)-(C3) are satisfied.

Proor. The first two conditions clearly hold. The verification of (C3) is
similar to (2.14) in Brown and Fox (1974b). Let

1/2
K(\) = 2[ J; - [ 6(x) — Qolx) [I°mo(x) dx] .

The function K is clearly nonincreasing and [§ K(\) d\ < ¢ [§ e™ d\ < w for
some positive constant c. Here @, denotes the posterior corresponding to the
prior with u = 0.

If (-, -) denotes the L, inner product, then for any invariant procedure 6 and
any A > 0 we have:

J; - [W(8(x), x) — W(s(x), x)]mo(x) dx

=2 f, (3 = 6(x), 8(x) = Qolx))molx) dx

=2 Jl‘|>>\ (0(x) = 5(), g(x) = Qo(x))my(x) dx
1/2

< 2K(>\)[ f 16(x) — 6(x) lI*mo(x) dx]

1/2
= 2K(>\)[ f (I16(x) = Qo(x) 1* = |l 6(x) — Qo(x) [I*)mo(x) dx] .

The second part of (C3) is verified similarly. 00
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REMARK. An easy calculation shows that the risk of § is constant for all u
with fixed B, but depends on B in such a way that sup, sz R(u, §) = «. Hence §
is minimax over each Il but not over II.

II. The general location parameter case. The admissibility results for
the normal case can be extended to the case where X is an observation from an
arbitrary location parameter family with density f(x — 6). The space II is a
location parameter family of priors on 6, i.e., II = {x(8 — ¢), { € R"}. Clearly
more general sets II can be allowed, which are collections of location parameter
families, each of which satisfies the regularity conditions we set below.

It can be readily verified that the proof of Theorem 3.1 goes through in this
more general setting without any essential changes, if the following conditions
hold:

In dimension n = 1 we require
(G1) 3 a constant ¢ such that Q.0 |x) < c, for all 6, {, x € R", and
(G2) [ ]|x]|mo(x) dx < 0.

In dimension n = 2 we require that (G1) hold and also

(G3) [ |x|**mo(x) dx < o, for some & > 0.

REMARKS. (i) It is easy to show that (G2) is implied by
(G2)" [|x]|flx)dx<oand [ |0]|x(0) db < oo.

(ii) Note that if P, denotes the probability measure with density m, then, for
each A > 0, (G3) implies that Po(| X | > \) < d/| A\ |***. Hence

1/2
d ) d\ < oo,

)\2+c

f JP0(|X|>A)d>\51+f (
0 1

This guarantees that the function K we defined in Lemma 3.3 is integrable.

EXAMPLE. An unknown scale parameter problem. Let X be a univariate
normal random variable with known mean u and unknown precision 7. We
assume a class of conjugate priors on 7, namely m3 ~ Gamma (%, 8), with g
unknown. The problem is to estimate the unknown posterior € when the loss
function is given by L(8, h, x) = [ (h(r) — Qs(7 | x))*r dr and risk is calculated
with respect to the marginal density m;(x).

The following well-known logarithmic transformation will bring this problem
into our location parameter framework. Let Z = log(| X — 1 |?), 6 = —log 7 and
¢ = log 8. A straightforward calculation will show that the density of Z is

flz = 0) = (1/v2m)exp[(z = 8) — ¥ exp(z — 6)]
and the prior on 6 is
(6 — £) = (1/Vm)exp(#a(¢ — ) — exp(¢ — 6)).
Let Q; be the posterior and m; the marginal density of Z. Denote by L* the L,
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loss function for estimating @; and by R* the corresponding risk. It can be shown
that if 6* is any procedure in the transformed problem and 6 is a procedure in
the original one defined by é(7| X) = (1/7)6*(—log 7|2 log|X — u|) then
R*(¢, 6*) = R(B, 8). Hence, if 6* is admissible in the transformed problem then §
is admissible in the original one.

We can verify that, for the transformed problem (G1) and (G2) hold. Hence
6*(0|Z) = f(Z — 0) is admissible. It follows that the procedure 5(r|X) =
(1/¥V277) | X — u| exp(—Yer | X — n|?) is admissible in the original problem. It is
easy to see that 6 can be obtained by placing the noninformative prior on r,
namely 7(7) = 1/7.

4. Inadmissibility

(I) The normal case. We assume here the setting of Section (3I) but allow
IT to be of a more general type, namely any set of piecewise continuous prior
densities which contains the conjugate priors.

THEOREM 4.1. The best invariant procedure § is inadmissible in dimension
n=3.

PrOOF. Let f(x — 6) denote the n-dimensional N(, A) density. We will show
that § can be dominated by procedures of the form &(6|x) = f(x + v(x) — 6),
where v will be explicitly determined as a solution of a differential inequality (in
a manner similar to Brown, 1979, or Berger, 1980b).

We write the difference of the risks as follows:

R(r, 6) — R(, §)
= E[I8(X) I* = 1 8(X) I* + 2(Q«(X), 6(X) — 8(X))]

=2 f 1r(0)[f flx = 0)(f(x — 0) — fx + v(x) — 8)) dx] do.

Hence, it suffices to find y:R™ — R" such that
(4.1) E[f(X—-0) —f(X+~v(X)—10)] <0, forall 6,

where X ~ N(6, A) in the expectation.
Using the inequality 1 — e™ < x we get:

flx—=0) — flx + v(x) — )
= flx — 0)[1 — exp(—%y"(x)A'v(x) — (x — §)TA 7 v(x))]
< flx — 0)[ay"(®)A "y (x) + (x — 0)TA y(x)].
Clearly now i
LHS of (4.1) < cE[%y"(X)A7v(X) + Ya(x — 6)T(4/2) v (X)],

where c is positive constant and X ~ N(6, 2A4) in the expectation. Using Stein’s
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identity (see Stein, 1981) we get that:

LHS of (4.1) = (¢/2)E[y"(X)A7'v(X) + V - v(X)].
Hence, it suffices to choose v so that it satisfies the differential inequality:
(4.2) YT(x)A 'y (x) + V - y(x) <O0.

Many Stein-type estimators of the multivariate normal mean will satisfy (4.2).
In particular, let v (x) = —(A/xT"A *x)x. Then (4.2) holds for all 0 <A < n — 2.
The function y which corresponds to the positive-part Stein estimator also
satisfies (4.2).0

REMARKS. (i) Although (4.2) is equality if A = n — 2, it is easy to show that
(4.1) is still valid for +,—,. (ii) The procedures which dominate §, if used as
posteriors, lead to point estimators which are superior to the sample mean. They
also lead to confidence procedures which are superior to the usual confidence
sets centered at the sample mean, as was recently demonstrated by Hwang and
Casella (1982).

II. The general location parameter case. We assume here the setting
of Section (3.II). We will show that the best invariant procedure & can be
dominated by procedures of the form 6(8 | x) = f(x + y(x) — ), for some suitably
chosen function . The proof will involve taking series expansions (as in the
normal case) but the treatment of the error terms is much more involved. In fact,
we will only give the form of v and show that the corresponding procedure §
dominates § as a certain parameter of v tends to its limiting value.

The argument given at the beginning of the proof of Theorem 4.1 shows that
R(m, 8) — R(w, §) < 0 if we can pick a y:R" — R" such that

(4.3 E((X—-0) — (X + v(X)—60)) <0, forall 6

where X ~ f(x — 6) in the expectation.
We proceed now to get the form of v, via the following heuristic argument. A
simple change of variables shows that (4.1) is equivalent to

(4.4) E(f(Z) - f(Z+~(Z+0))) <0, forall 0

where Z ~ f(z) in the expectation. By expanding f and v in their Taylor series
around Z and 6 respectively we get:

E(f(Z) = (Z + ~v(Z + 0)))
= —E(y(0) - VAZ) + (v'(0)Z) - VAZ) + R, - VA(Z)
+ Yoy T(0)H(Z)v(0) + v"(0)H(Z)y' (6)Z
+ YyT(0)H(Z)R, + %ZTy'(0)H(Z)v'(0)Z
+ Z™y'(0)H(Z)R; + »RIH(Z)R, + R,)

where H(z) = (D,D,f(2)) i, j =1, ---, n, R, is the remainder of f and R, is the
remainder of «.

(4.5)
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Let ¢ = % [gn f%2) dz and M = (my), i, j = 1, ---, n where m; =
Ye [gn Dif(2)D,f(2) dz. Integration by parts shows that:
(4.6a) E(ZD,fZ)) = {(i’c iz
’ =]
(4.6b) EH(Z)) = -2M
and
(4.6c) - EVAZ)) =0.

Substituting into (4.5) we get:
EIA(Z) — f(Z + +(Z + 0))]
=cV . y(0) + yT(0)M~(6)
(4.7) — E[R, - VA(Z) + v O)H(Z)v' 0)Z + v (0)H(Z)R;

+ BZTy' (0)H(Z)Y'(0)Z + ZTy'(0)H(Z)R; + 2RTH(Z)R, + Ri].

If M is nonnegative definite, the first two terms in the RHS of (4.7) suggest
the following form of v:

4.8) ~(x)=-— b_-%’ where >0 and 0<a<c(n— 2).
For such a v we have:
—_ NpnT
OV - 4(0) + A T(O)My(0) = —n_ 4 Bact @) Mb_

b+ 6TMo b + 0™Mo)?

The following theorem shows that, under regularity conditions, the contribu-
tion of the rest of the terms in (4.7) is negligible as b — . (|| M || will denote the
Euclidean norm of a matrix M, i.e., | M ||2 = Y m}).

THEOREM 4.2. Let n = 3 and f satisfy the following conditions:
(C1) There exists a constant L > 0 such that, if

g(2) = sup{| Vf(z + w(2) | : |w(z) | <L|z|},

then E[(|Z|® + 1)g(Z)] < o».
(C2) H(z) is uniformly continuous on R"™ and there exists a constant K > 0 such
that:

E[sup{| HZ + w(Z)) || : |w(Z) | < K| Z|}] <.

If v is given by (4.8), then the corresponding procedure 6 dominates & as b — oo,

PrOOF. Under the above conditions, M exists almost surely, E(| VAZ)|) <
o and the derivation of (4.6a—c) is justified. Furthermore, if M exists then it is
positive definite and, without loss of generality, we can assume that M = I (in
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which case f may no longer have total mass 1). Henceforth we assume that
M = I and v(0) = —(af/D), where D =D(0) = b + | 0|2
The LHS of (4.4) can be written as follows:

E[f(Z) = (Z + ~(0 + Z))]
(4.9) = E[f(Z) — (Z + v(0))] + E[f(Z + v(0)) — (Z + v(6) + v'(0)Z)]
+ E[f(Z + ~(6) + v'(0)Z) — (Z + ~(0 + Z))].
The first term on the RHS of (4.9) can be written as:
| EIAZ) - fZ + ~()] = —Yay"(0)E[H(Z + 7(6, Z))]¥(6),

where (6, Z) is a point on the line segment from Z to Z + v(6). By (C2) and the
dominated convergence theorem we get that E[H(Z + ¥(8, Z))] — E[H(Z)] =
—2I uniformly in 6, as b — . Hence,

(4.10) D|E[AZ) — A(Z +v(0))]| <a® + o(1).

The last term on the RHS of (4.9) is treated similarly. We write it as
E[RIVAZ + 7(6, Z))], where R, is the remainder for the expansion of v at 6 and
¥(0, Z) lies on the line segment between Z + v(0 + Z) and Z + v(0) + v'(0)Z. A
calculation using the well known identity 1/(1 + x) = 1 — x + x2/(1 + x) shows
that:

_alZ|X0+2Z)+2Z"0Z o(|Z|* + 207Z)%6 + Z)
a D? D¥b+ |Z+ 0|3

R,

It follows that:
(4.11) |R:| < (1/D**) 1| Z1? + 2| Z|?)

for c1, ¢, positive constants, independent of 6. If | Z | > ¢> 0 and b is large enough
we can show that | VAZ + v(0, Z)) | <g(Z). If | Z | < ¢ then the continuity of Vf
implies | VAZ + ¥(0, Z)) | < constant. It follows now from (4.11), (C1) and the
dominated convergence theorem that

(4.12) D|ERIVAZ + 70, Z)))| = 0

uniformly in 6, as b — oo,
The remaining term on the RHS of (4.9) is treated as follows. Using the mean
value theorem we get:

DE[f(Z + v(6)) — f(Z + v(8) + v"(0)Z)]
= DE[-(y'(0)Z) - VAZ + v(8) + ' (6)2)]
= aE[Z"VAZ + v(8) + Fy'(6)Z)]
— (2a/D)E[ZT00"VAZ + v(0) + Fv'(0)Z)]

for some 7 € (0, 1]. Note that as b — o, | y(§) | — 0 and || y’(8) | — 0 uniformly
in 6. It follows now from (4.6), (4.13), (C1) and the dominated convergence

(4.13)
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theorem that
(4.14) DE[AZ+~(0)) — f(Z+~(0) +v'(0)Z)] = —(n — 2)ac + o(1)

uniformly in 6, as b — oc.
The proof of the theorem follows now from (4.10), (4.12) and (4.14), if we
choose a < ¢(n — 2).0

REMARK. The set of conditions below is easier to verify than (C1) and (C2),
and implies them:

(C1)" E[1Z1°(1 + Vf(Z))] < e,
(C2) E[|HZ)I(1Z|*+1)] <% and
(C3)I SUp.er~Max; ; r I DiDjDkf(Z) I < o,
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