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INFINITESIMAL ROBUSTNESS FOR AUTOREGRESSIVE
PROCESSES!

By H. KUNscH!
University of Tokyo and ETH Zurich

We define the influence function and construct optimal robust estimators
for autoregressive processes. We show that the asymptotic bias caused by
small contaminations of the marginals can be written as the integral of a
certain function with respect to the contamination. This function is called
the influence function. It is unique only up to an equivalence relation, but
there is a natural unique version which describes the limiting influence of an
additional observation given the previous observations. Moreover, with this
version the asymptotic variance at the true model can be expressed in a simple
form. Optimal robust estimators minimize this asymptotic variance under a
constraint on the influence function. As in the i.i.d. case, they are found by
truncating a multiple of the influence function of the maximum likelihood
estimator.

0. Introduction. Up to now, two main approaches in robust statistics have
emerged, the minimax approach of Huber presented in his book (1981) and the
infinitesimal approach of Hampel, see e.g. the handouts of Hampel et al. (1982).
However, these theories deal almost exclusively with independent observations.
The robust estimators for time series proposed so far in the literature (see e.g.
Kleiner et al., 1979) are based mainly on heuristic ideas. Papantoni-Kazakos and
Gray (1979) and Boente et al. (1982) investigated qualitative robustness for time
series, but this is not sufficient for constructing good robust procedures. Here we
define and obtain optimal robust estimators for autoregressive processes by
generalizing the infinitesimal approach.

The basic tool in this approach is the influence function of Hampel (1968,
1974). It contains the information on both the asymptotic bias and the asymptotic
variance. In order to obtain such an influence function in our situation, we study
the infinitesimal asymptotic bias of a contamination for estimators which depend
only on some finite dimensional empirical marginal. We show that this bias can
be written as the integral of a function with respect to the contamination
(Theorem 1.1). This function is unique only up to an equivalence relation
(Theorem 1.2), but there is a unique version which has the interpretation as the
influence of an additional observation giyen the previous values. Namely, such
an influence should have—for the clean process—conditional expectation zero
given the past. There is exactly one version which satisfies this condition
(Theorem 1.3). Moreover we can express the asymptotic variance at the model
with this version in a simple form (Formula (1.23)).
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844 H. KUNSCH

In Chapter 2 we show that, subject to a bound on this version of the influence
function, the trace of the asymptotic variance is minimized by a Huberized
maximum likelihood estimator. The bound used here is in general stronger than
a bound on the infinitesimal asymptotic bias (see Example 2.7), but the use of
this stronger bound is justified by a resistance point of view, cf. Section 1.5. The
location of the observations and the scale of the innovations are estimated
without affecting the precision and robustness of the main parameter. In the
Gaussian case, the optimal robust estimator is explicitly given in Formulas
(2.12)-(2.14). It is similar to the Hampel-Krasker—-Welsch form of bounded
influence regression. An example of observed data with outliers is included, and
there the robust estimators perform much better than maximum likelihood.

1. The influence function for autoregressive processes. We consider
in this paper the usual autoregressive model of order p(AR(p) for short):

(1.1) (Xi — n) = X5=1 Be(Xick — m) + U; with U; iid.

We assume that the innovations U, are distributed according to ¢ *h(x/c) dx
where h is a known probability density on R satisfying [ xh(x) dx = 0, [ x*h(x)
dx=1.061, ---, B, n and ¢ are functions of an unknown parameter § € @ C R?
(¢ = p + 2). Furthermore we assume that for all § the usual stationarity condition
is satisfied, i.e. all roots of 2 — ¥7_, Bx2""*have absolute value less than one.

1.1 The maximum likelihood estimator and other estimators defined by
functionals. By f™(x;, -+, x,; 8) we denote the joint density of X, --., X,
where X; is as in (1.1). By the Markov property of an AR-process we obtain for

aln>p

fr(x1, <oy Xn; 0) = fP(x1, -+, 255 0) T10phy R((x} — ZBex}s)/o)0” "
(1.2) .
with X, =X —n.

Using the notations

i)
(1.3) A (xy, <oy X3 0) = % log f™(x1, - -+, xn; 0)
and
i)
(1.4) k(X1, -+, Xpe1; 0) = % log(h((xp+1 — ZBrxps1-k)/0)/0)

we have from (1.2)
(1.5)  A'(x1, +- -, Xn; 0) = NP(x1, -+, Xp; 0) + 720 k(x5, -+ -, Xjaps 0).

In the sequel we will consider A" and « as column vectors. From (1.5) we see that
the maximum likelihood estimator for 6 based on x;, - - -, x, is up to a boundary
term the solution of the following set of equations

(1.6) 2l k(% -y xjap; 0) = 0.
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But it is well known that the maximum likelihood estimator is in general very
sensitive to outliers and other irregularities in the data. In this paper we look for
a more robust estimator in a certain class. One possible class consists of
estimators which can be written as a solution of the following equations

(1.7) S, -y Kamer; 0,) =0

for some fixed but arbitrary m € N and ¢: R™ X @ —» R?% We call such an
estimator an M-estimator. The GM-estimators of Kleiner et al. (1979) and the
$-estimators of Bustos (1982) are special cases of M-estimators in our

terminology.
A more general class of estimators is obtained in the following way. For
observations x;, ---, x, we define the empirical m-dimensional marginal

distribution p(x, n)™ (m < n) by
(1.8) plx,n)"=n"'3T% 8. x,,,,.) Where x;,=x_, for i>n.

Here 6, is the point mass at x € R™. The periodic continuation of the observations
is just a technical device in order that p(x, n)™ € A% = {A m-dimensional
marginals of stationary processes}. We consider then estimators §,, which can be
written as a functional evaluated at p(x, n)™ for some m independent of n:

(1.9) 0,(x1, -+, x2) = T(p(x, n)™) where T: #T — O.

Sometimes it is necessary to restrict T to a certain subset of .#T,,, e.g. if second
moments are needed. The modifications in such a case are straightforward. For
m = 1 this setup is the usual one in the i.i.d. case. Choosing as T the functional
defined by T'(u™) = 6 iff [Y(x1, -+, Xn; O)u™(dx) = 0, we see that our M-
estimators belong to this class after an asymptotically negligible modification at
the boundary.

1.2 The bias caused by contaminations. In time series there are many
different types of contamination which makes robustness more difficult than in
the i.i.d. case. At least one should consider innovative and additive outliers (see
e.g. Kleiner et al., 1979), and we should distinguish between single outliers
separated by good data and outliers occurring in patches. Fixed or random size
of the patches gives rise to many variations; and instead of adding outliers to the
good data we could multiply the good data by outliers or replace them completely.
Another type of contamination which is quite different affects only the
dependence structure, but has no atypically large observations, e.g. a Gaussian
model with a spectral density different from an AR-model. In all the types above,
one can introduce a parametric family of contaminated observations (Y%),»o such
that for ¢ = 0 we have the model (1.1) and ¢ is related to the percentage and/or
the size of the outliers.

If the observations (x;) come from any stationary ergodic process, then
p(x, n)™ converges by the ergodic theorem weakly to the m-dimensional marginal
p™ almost surely as n goes to infinity. So if T is continuous in the weak topology,
then 6, defined by (1.9) converges to T'(u™). We therefore ask that T is Fisher
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continuous, i.e.
(1.10) T(ug') =6 forall 6

where uf* is the m-dimensional marginal of (1.1). In a contamination model with
marginals u™*, the asymptotic bias is then

be) = T(u™) — 0 = T(p™) — T(u™).
In order to see how quickly b(e) goes to zero we take the derivative
b'(e) = lim e X(T(u™) — T(u™9).

In order to make computations easier, we will approximate the arc u™° in
M7 by a segment 1™ = (1 — e)ul + ev™, v™ € M 3. It is very plausible that
this will give the same results if the arc u™°is smooth enough, but since g, is
not a linear space, some care is needed. In all cases where we have a (1 — ¢)-
percentage of clean data, it is easily seen that for any m

(1.11) u™ =1 —ec)us + cev™ + o(e)

where ¢ = lim ¢ Prob [at least one outlier in a block of length m] and »™
depends on both the distribution of the outliers and . In addition, it can be
shown that we obtain ¢ = 1 and any v™ € £, if we choose outliers in long
patches which replace the good data. If (1.11) holds, it is obvious that we may
replace u™° by a segment. At the end of the next section we will show that the
same is true for quite general contaminations.

1.3 The definition of the influence function. Based on the considerations of
the previous sections, we are going to study now

(112)  T'(6, v™) = limoe (T((1 — e)ui® + ev™) = T(ui)) (™ € Mar).

In the case where T belongs to an M-estimator, we obtain by the usual Taylor
series approximation that under some regularity condition

T'@, v™) = M! f Yi(xy, -+, xm; 0)v™(dx,, ---, dx,) where
(1.13)
M= f Y(x, )N (x, 0)‘us (dx).

The next theorem shows that in general T'(, v™) is given by a kernel
t(x1, -y X3 0)

T/(o, Vm) = f t(xl’ sy Xm o)ym(dxly Tty dxm)-
Note that T (6, v™) will be affine, i.e. T'(0, avT + (1 — a)v5) = aT' (0, vT) +
(1= a)T’(6, v5). Therefore we can apply the following result to each component

of T (6, v™).

THEOREM 1.1. A functional L: # 3. — R is of the form L(v™) = [ t(x)v™(dx)
with t bounded and continuous iff L is affine and weakly continuous.
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The proof is given in Chapter 3. For m = 1 it is trivial, just put t(x) = L(é,).
But for m = 2, 6, & # %, and the convex set .#7%, has a more complicated
structure than for m = 1. Namely, two different extremal points are no longer
mutually singular as the example m = 2, v; = (8¢,y) + 0(,0)/2 and vy = (5 +
8(y,2) + 0(2,x))/3 shows, and it seems difficult to determine all extremal points. For
these reasons we cannot define the kernel by taking derivatives of T in the
direction of suitable v’s.

Another difficulty with m = 2 comes from the fact that the kernel is not
unique: -

THEOREM 1.2. [ t(x)v™(dx) = 0 Vv™ € M Gu iff t(x1, -+, xp) = (21, -- -,
Xm-1) — &(%x2, - - , X,) With an arbitrary g.

For the proof see Chapter 3.
We therefore call any function ICr(x, 6): R™ X ® — R? such that

(1.14) T'(0, v™) = f ICr(x, 0)v™(dx) Vv™ € M Ga

an influence function of T at 6. So the influence function is in fact a whole
equivalence class of all functions

ICr(xy, -+ ) Xm; 0) + 8(x1, -+, Xm—1; 0) — 8(x2, -+, Xm; 0),

g: R™1x @ - R?arbitrary.
By definition any influence function satisfies

(1.15) f IC7(x, 0)ug(dx) = 0.

Moreover, recalling that the segment (1 — ¢)u§* + ev™ is just an approximation
for any » near uj*, we conclude

(1.16) Te™ =60 + f ICr(x, 0)v™(dx) if »™ is near ul'.

From the Fisher-consistency and (1.16) we obtain
b—0="Tw) - T(u) = f ICr(x, 0)f™(x, 0) dx, - -+ dn

= f ICr(x, 0)(f"(x, §) = f™(x, 0)) dx1 -+ dxpn.
Hence by differentiating with respect to 6:

Id = f ICr(x, 0) (% m(x, 0)) dx; - dxm
(1.17)

= f ICr(x, 0)N"(x, 0)'ui (dx).

For M-estimators (1.17) is an obvious consequence from (1.13). On the other
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hand it follows from (1.17) that any estimator of the type (1.9) which has an
influence function can be replaced by an M-estimator with the same IC: we just
take ICr(x, 6) as our y.

As a second application of (1.16) we consider the asymptotic bias in a general
contamination model u™".

be) = T(u™) — T(u™) = fICT(x, 0)u™*(dx)

= f ICr(x, 9)[p™ (dx) — u™(dx)].

So if a finite signed measure 4™ exists such that e *[u™* — 1™°] converges weakly
to 4™, then

(1.18) b’ = f ICr(x, 0)p™(dx).

1.4 Asymptotic variance and a particular version of the influence function. In
order to simplify notations in what follows, we introduce the shift-operator S:
R" — R" and its iterations. They are defined by

(119) (Snx)i = xi+n(n = 0’ 19 . ’)-

If our observations follow the model (1.1), then p(x, n)™ is near u§* for n large,
so by (1.16)

(1.20) b, —0=T(p(x, n)™) — 0 = n™! Y21 ICH(S'x, 0).

This suggests that for clean observations n'/%(6, — 6) will be asymptotically
normal with mean zero and variance-covariance matrix

C(T, 0) = Ey[ICr(x, 0)ICr(x, 6)]
+ 3%, Ey[ICr(x, 0)IC(S'x, 8)" + ICr(Sx, 6)ICr(x, 6)1].

Rigorous conditions and proofs for this to be true are given in Bustos (1982). For
the definition and construction of optimal robust estimators, we will avoid these
problems by minimizing C(T, ) regardless if asymptotic normality holds or not.

Formula (1.21) is independent of the particular choice of the influence func-
tion, but one may ask if there is a version for which it becomes simpler. We will
denote by IC$™(x, 6) (cond for conditional mean zero) any version of the
influence function which satisfies

(1.21)

(122) f IC?IQDd(xl’ ety Xmy o)ﬂﬂ(dxm | Xm—1y *** xm—p) =0

for all x,, - -+, Xm_y. By (1.22) IC$™(S'x, 6) and IC$™4(S’x,0) are uncorrelated
for i # j, so we obtain from (1.21)

(1.23) C(T, 0) = f ICF™(x, 0)ICE™ (x, 0) ‘i (dx),

i.e. the same formula as in the i.i.d. case. The following result shows that IC"d
always exists if m > p (which is no restriction) and that it is unique.
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THEOREM 1.3. Let u denote the distribution of an AR(p)-process (1.1). If f:
R™— R, m > p, is continuous, sup | f(x) |/(1 + |x|) < and [ f(x)u™(dx) =0,
then there exists a continuous function g: R™ '— R with sup | g(x) |/(1 + | x]) <
oand [ (f(x, ~-+, %m) + &(x1, -+, Xm—1) — &(x2, -+, Xm))u(dXm| X1, -+,
Xm—p) = 0 for all x,, - - - , Xn_1. § Is unique up to an additive constant.

The proof is given in Chapter 3.
IC$™ is uncorrelated with any function depending only on x;, -, xp,—;. In
particular, from (1.5) and (1.17)

f ICF™ (x, 9)x(S™P7"x, ) 'ui (dx)
(1.24)

= f IC$™ (x, 0)A™(x, 0) ‘i (dx) = Id.

In the case of the approximate maximum likelihood estimator (1.6) it is easily
checked that

(1.25) IC$™(x, 0) = I() 'k (x, 0)

where I(0) is the Fisher information

(1.26) I1(6) = f x(x, 0)k(x, 0)‘ub*' (dx).

So for the maximum likelihood estimator the obvious choice for the influence
function leads to the version IC$™, and we get the well known result C(MLE,
0)=1()""

IC$™ has the intuitive interpretation of the influence of an observation at x,,
given the m — 1 previous values. Namely, by (1.22) its conditional expectation is
zero for the clean process and by (1.20) 8, — 0 is approximately the average of all
influences. This interpretation together with the simplicity of formula (1.23) and
the result in the case of maximum likelihood suggests that IC$"® is the natural
choice for the influence function.

1.5 The gross error sensitivity. We have seen in Sections 1.2 and 1.3 that
our influence function contains all information on the infinitesimal asymptotic
bias b’. If one is interested in the value of b’ for a particular contamination,
one has of course to integrate over the relevant »™ € .#,, but in most cases
there are no problems in finding »™ and doing the calculations. Another
question is how big b’ can be at most. For any contamination with a
(1 — ¢)-percentage of clean data | b’ | is by (1.11) less than or equal to cy where
y=sup {| [ ICr(x,8)v™(dx) |, v™ € M %a} and c is the same as in (1.11). Moreover
by the remark following (1.11) | b’ | is arbitrarily close to v if the outliers occur
in long patches. This suggests calling v = v (T, ) the gross-error-sensitivity of
the estimator 7" at the parameter 6. One might object that outliers in long patches
are not so frequent, but I think that at least for a first analysis of the data, safety
against all possible contaminations is desirable and in the spirit of robustness.
Taking the sup of | b’ | only for a certain class of contaminations is dangerous
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because for the calculation of b’, specific properties of the outlier model are used
which are hard to check (e.g. independence of the outliers and the clean data).
Moreover, as we shall see in Chapter 2, bounding vy does not result in huge
efficiency losses for the clean data. So from the point of view of precision, there
also is no need to use methods which protect only against certain kinds of
contamination.

There is also an argument in the opposite direction, namely that a bound on
7 is not enough. If we want to see how sensitive an estimate is to small changes
in the sample (the so-called resistance point of view, cf. Mosteller-Tukey, 1977),
then v does not help much. Consider for instance two series x and y of length n
with x, = y; for all i except i,. If x is a typical sample of an AR-process, then it
can be shown that for large n

n(,(x) — 6,())
(1.27)

= ;';io_mﬂ UCr(xiy -+ -y Xigm—1; 0) — IC7(yi, « -+, Yiem-1; 0)).

Note that the right-hand side of (1.27) is independent of which version of IC
we choose. Obviously v =< infsup,|ICr(x, 6) + g(x) — g(Sx)| but the next
example shows that there is in general strict inequality. So in particular it seems
to be impossible to estimate the right-hand side of (1.27) with the help of v.

EXAMPLE 1.4. Let m = 2 and choose ¢ as follows: ¥(x;, x;) = 0 except
in small neighborhoods of (1, 0) and (-1, 0), and —2 = y(—1, 0) < y¥(x, x3) <
¥(1, 0) = 2. If v*> € A%, has mass near (1, 0), then it must have at least equal
mass somewhere near the line x, = 1 where ¢ is zero. Therefore

sup,2 = 1.

f ¥ (21, x2)v%(dx)

But if | Y(x1, x2) + g(x1) — g(x2) | = 1 for some g, then g(1) — g(0) < —1 and
g(—1) — g(0) = 1 which would imply that ¢ (1, — 1) + g(1) — g(—1) < —2.

Because of this result we should like to bound instead of v some quantity more
closely related to the influence function itself. The right-hand side of (1.27) is
not satisfactory either, since we get a different expression if we replace two or
more observations. From the interpretation of IC$™ in Section 1.4 and the
resistance point of view it is justified to bound IC$™. Moreover we then can give
at least upper bounds for y as well as for the right-hand side of (1.27) and all
other expressions obtained from similar considerations. So we will work in the
rest of the paper with the following gross error sensitivity

v* = sup, | IC$™(x, 9) |.

Problems which arise from the fact that v* (and v) depend on the chosen
parametrization will be dealt with in Section 2.2.
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2. Optimal robust estimators

2.1 Unstandardized optimality with known ¢. We consider here Hampel’s
optimality problem: minimize the trace of the asymptotic covariance matrix
C(T, 6) among all estimators of the type (1.9) which have an influence function
and for which v* = sup, | IC$™(x, ) | < c(#). Using the results of the previous
chapter, this is equivalent to finding an m > p and a function y: R™ X @ — R?
which minimizes

2.1) Trace f Y(x, Y (x, ) ui*(dx) = f Yi(x, 0)Y(x, 0)ul(dx)

under the side conditions

(2-2) f d/(xly Tty xm; a)ﬂﬁ(dxml xm—ly ttty xl) = Oy
(2.3) f VX1, -y Xms Ok (Xmepy -+ Xm; 0)'ui*(dx) = Id,
(2.4) sup, | ¥(x, 0) | < ().

(compare (1.22)—(1.24)). Because the constant (2.4) and therefore also the optimal
estimator depend on the chosen parametrization (see Krasker-Welsch, 1982,
Stahel, 1981), we used the term “unstandardized” in the heading of this section.

Similarly to the i.i.d. case, the expression (2.1) can be transformed using (2.3).
Namely, for any g X ¢ matrix A depending only on § we have

Trace f Y(x, )¢ (x, 0)us (dx)

= Trace f W(x, 0) — Ax(S™ P 1y, 6))
- (Y(x, ) — Ak (S™ P 'x, 6))'ui (dx)
+ Trace f W(x, 0)x(S™ P x, 6)'ul*(dx)-A")
(2.5)
+ Trace <A f k(S™ P 1x, §)Y(x, 0)‘u3"(dx)>

— Trace (A f k(x, 0)«(x, 0)‘,u$,"(dx)A‘>

= f [ ¥ (x, 0) — Ak(S™P7x, 0) | *ui(dx)
+ 2 Trace (A) — Trace (A-1()-A"Y).

The last two terms are independent of ¥, so the optimal y has to be as close to
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A-x(S™ P 1x, ) as the side conditions allow. Let H, be the g-dimensional Huber-
function H.(x) = x min(1, ¢/| x |). Then we have:

THEOREM 2.1. Assume the distribution of the innovations is symmetric about
its mean, i.e. h(x) = h(—x), and o is known, while y, 81, ---, B, depend on an
unknown parameter 0. If the bound c(0) is such that

f H,»)(A(0)k(x, 6))x(x, 0)‘u§+1(dx) = Id

has a solution A(0) for all 8, then (2.1) is minimal under the side conditions (2.2)-
24)ifm=p+1and y(x, 0) = Hyp(A0)x(x, 0)).

PrROOF. The optimal ¥ under the condition (2.4) alone is by (2.5) equal to
H,4(A(0)x(S™ P 'x, 8)). Since we have chosen A () such that (2.3) is satisfied,
we only have to show that the above y satisfies (2.2). But this follows easily by
symmetry:

K(x, 0); = o™ % (S2_, Buxtois + b’ (u/o)/h(u/o)

where
* — —_ % P *
xf=x—m u=x3— Xhoy BrXpri-r.

The term containing the derivative is independent of x,.;, and the ratio
h’(u/a)/h(u/c) is an odd function of u; so ¢ is for fixed x;, ---, x, an odd
function of u. O

In the following we show how to modify this optimal robust estimator if one
takes constraints which are invariant to parameter transformations and if in
addition ¢ is also unknown.

2.2 Two possible standardizations. The discussion here is completely analo-
gous to the i.i.d. case (see Stahel, 1981), so we just state the results. One possibility
to replace (2.4) is

(2.6) v** = sup. (¥ (x, 0)T(0)(x, 0))* < ¢

where I(0) is the Fisher information (1.26) and ¢ does not depend on 6. In (2.6)
we compare the bias with the scatter of the maximum likelihood estimator. For
an optimal estimator we take m = p + 1 and

(2.7) Y(x, 0) = J(0) H.(A0)x(x, 0))
where J(0)J(0)' = I(8) and A () is the solution of

f H.(A0)k(x, 0))k (x, 0)‘'uf™ (dx) = J(0)".

By construction, (2.7) satisfies (2.3) and (2.6), and under the hypotheses of
Theorem 2.1 it satisfies also (2.2). By an easy modification of (2.5), it can be
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shown that it minimizes the trace of (I(6) - [ y(x, )¢ (x, 6)‘u(dx)) under the
side conditions (2.2), (2.3) and (2.6), cf. Stahel (1981).
The second alternative to (2.4) is

(2.8) y** = Supx[‘//(x, 0)° (f Y(x, 0)y(x, 0)‘#2"(dx)>“¢(x, 6’)]“2 <ec

Here we compare the bias with the scatter of the estimator itself. Again we take
m=p+ 1, but

. -1
(29) ¥(x, 0) = (f H:(A(0)x(x, 0))k (x, 0)‘u§+1(dx)> H:(A(0)k(x, 6)),

where A (0) is the solution of

f H.(A(0)«(x, 0))H:(A ()« (x, 0))‘uf*" (dx) = Id.

Again, under the conditions of Theorem 2.1, this y satisfies (2.2), (2.3) and (2.8).
It does not minimize a criterion, but by an easy modification of (2.5), no other
estimator satisfying the same side conditions can have a smaller asymptotic
covariance matrix, cf. Stahel (1981).

2.3 Estimation of nuisance parameters ¢ and 5. In general ¢ is a nuisance
parameter, and in most situations the same is true for . We show here that we
can estimate the nuisance parameter without affecting the estimation of the
main parameter.

If only ¢ is the nuisance parameter, we write § = (6;, 6;) with §, = o while 5
and @, ---, B, depend on 6, alone. Similarly we partition x = (xy, ko), ¢ =

(‘l/ly ¢2)~

THEOREM 2.2. If y1(x1, - -+, Xps1; 0) = x (u/0) where u = x}1 — T Brxti1p,
x} = x, — n, and x is an even function with [ x(u)h(u) du = 0, and if ¥, is one of
the optimal solutions of Sections 2.1-2.2, then ¢ is asymptotically independent of
8 and the asymptotic covariance for 8, is the same as for known ¢.

PRrOOF. [ x(u)h(u) du = 0 implies that (2.2) holds. Since «, and y are odd
functions of u, we have by symmetry

f Va5, 0o (x, 0)'wf* (dx) = f ¥, 00 (x, 0)'wf* (dx) = 0.
This means that IC5™ = (o, const., ), so the theorem follows. [
If the nuisance parameter is (o, 7), then we write 6§ = (6, 0,, 63) with 6, = o,

0 = n and (B, ---, B,) depends only on ;. Again we partition x = (kq, ko, k3)

and ¢ = (Y1, Yo, ¥3).

THEOREM 2.3. If Y, is as in Theorem 2.2, Y5 (x, 0) = £(u/o) with £ odd and if
Ys is one of the optimal solutions of Sections 2.1-2.2, then &, 7 and 03 are
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asymptotically independent and the asymptotic covariance of 03 is the same as for
known n and o.

Proor. Uand Xj, ---, X, are independent, and (XT, - - - , X}) has the same
distribution as (—X¥, - .-, —X}). Therefore by symmetry

f Ya(x, 0)xs(x, 0)'pf™ (dx) = f Yalx, 0)¥s(x, 0)'uf™ (dx) = 0.

The rest of the proof is the same as for Theorem 2.2. 00

REMARK 2.4. Often one subtracts the median of x,, ---, x, from all the x;
and then proceeds as if 5 is known and equal to zero. This corresponds to taking
Va(x, 0) = sign(x; — n). But in this case the second component of IC$" is not a
multiple of y,. Using the general formula (1.21) it follows that  and 85 are not
asymptotically independent, although [ ¥ (x, 6)¢s(x, 8)'u5*" (dx) = 0.

2.4 Simplifications in the Gaussian case. With Gaussian innovations the
matrices A(f) in (2.7) and (2.9) can be calculated up to a factor. Moreover the
two standardizations give the same estimators. These results are based on the
following

LEMMA 2.5. Let the innovations U; be Gaussian and assume that 0 =
(81, -+, Bo) is unknown while n = 0 and ¢ = 1 are known. If J(8) is any matrix
with J(0)J(8)" = I1(9), then for all 6

f Hy(J (6) 'k (x, 0))x (x, 8)'uf™ (dx) = f(b)J ()"

and

f Hy(J(0) 'k (x, 0))Ho(J (0) 7'k (x, 0))uf™ (dx) = f*(b)Id

where f and f* are continuous functions R* — R” defined in (2.10) and (2.11)
below.

PrOOF. In this case, the information matrix has elements 1(0);, = E,(X; X).
Therefore, if we put Y; = $x(J(0) )Xps1-x (i =1, .-+, p), then the Y; are
under uf distributed according to _#(0, Id). Note that

b/1y|

u if |u|l=
if |ul=b/lyl

_ _ JYi
Hy(J(0) 'k (x, 0)), = {b - sign(w)y/ |y |

where u = xp+1 — X BrXp+1-x. The distribution of (Y;, -+, Y,, U) is independent
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of 8, and we conclude by symmetry that

f Hy(J(0) 'k (x, 0))i(J(0) "' (x, 0));nf ™ (dx) =0 (i # ),

b/l b w
=9 f fﬁ(f u¢p(u) du + — ug(u) du)
0 [y | Yenyi

- ¢ (yi) dy: (=)

where ¢ is the standard normal density. From this, the first assertion follows
immediately with

0 bz"l/2 0
(2.10) f(b) = 2p! J; z(J; u’p(u) du + bz7? J;_m ug(u) du)xﬁ(z) dz

where x 2 is the chi-squared density. The proof of the second assertion is similar.
We obtain

0 bz'1/2 2 oo
(2.11) f*b)=2p! J; z(J; u?¢(u) du + b; J,:_l/z o(u) du)xﬁ(z) dz.
O

The desired A(f) is therefore a constant times J (). The choice of the
constant will determine the value of v** and v*** respectively. Since we can use
any matrix multiple of the influence function for the definition of the optimal
estimator, we get the following set of equations

2::1!7 wbl(d(xir c 00y Xitp-1; H)ai+p/&)(xi+j - ﬁ)ai+p =0

(2.12)
G=0,---,p—1)
(2.13) YR we,(Gi/6)d; = 0
(2.14) Shper W, (0:/3)%F = (n — p — Da - &
Here

d(x, -, 253 0) = (Tij (6 = )% = ) RO) ™))",
R(0); = Covy(Xi, X;) (,j=1,---,p), Qi =x— 7 — Y2, Bulxice — 9)
wp(x) = min(l, l—fz—l) (x E R), a= f 22wy (x) %9 (x) dx.
We summarize the properties of this estimator as follows.

THEOREM 2.6. 14, 6, § are asymptotically independent under the model uy. The
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B-component of ICL,.q is
fb) we, (d(x1, - -+, Xp; O)Ups1/O)Ups1 R(O) (xy — 1, -+ -, %, — 1),

the asymptotic covariance for 3 is f(b1) "%f*(b;)R(0)/o? and the standardized gross-
error-sensitivities for 8 are y** = byf(b;) ™", v*** = b;f*(b;) "% The estimator for
B is optimal among all estimators with the same or smaller values for v** or y***
respectively.

The proof is a straightforward application of previous results.

First let us discuss shortly the choice of cut-off constant b,. Instead of giving
a value of y** or y***, it is common in robust statistics to choose b, such that
the efficiency f(b,)%f*(b) ! is acceptable. In our implementation of the estimator
(2.12)-(2.14) we determined b; such that f(b,)~2f*(b,) is between 1.05 and 1.15.
Values of b, and coresponding v ** are given in Table 1 of Kinsch (1983). For
known By, - - -, Bp, (2.13)-(2.14) is a location-scale problem for i.i.d. variables and
we can use a standard value of b,. (2.13) was chosen such that we also have an
optimality property of 5. For ¢ there is no optimality, but (2.13)-(2.14) corre-
sponds to Huber’s “Proposal 2” and we use it for computational simplicity.

The equation (2.12) is the analogue of what one gets in Schweppe’s form of
bounded influence regression, see Krasker-Welsch (1982). The weights used for
the (p + 1) — tuple x;, - - -, x;+,depends on how well x;, - - -, x;4p—; fit to the model
and how big the estimated innovation &, is. However, we don’t have separate
weights for x;, - - -, xi1p-1 and for &;,, as in Mallows form. A large | 4;.,| causes
no downweighting if x;, - - -, x;4,-1 fit well and vice versa. This property gives us
a high efficiency at the true model. The only difference with robust regression is
that here the model determines also the distribution of the “independent vari-
ables” x,, - - -, x;1p—1 which simplifies the problem. Finally, we mention that we
would get weights w;, ((const. + d(x;, - - -, Xivp-1; 6)2)Y/ ®0;4p/6) if 1 is not consid-
ered as a nuisance parameter and we bound the total influence on # and 3; - - -
B,. This means that we have to downweight if ;. is large although x;, - - - , xi4p—1
fits well.

2.5 Anexample. The author has written an ALGOL program for the solution
of (2.12)-(2.14). As an example, we compare here maximum likelihood with our
robust estimator for a series consisting of 91 monthly interest rates of an Austrian
bank (data kindly provided by W. Polasek, Vienna). They are plotted in Fig. 1,
which is reprinted from Kinsch (1983) with permission of the publisher, and
have been analyzed already in Kiinsch (1983). From Table 1 we see that there
are tremendous differences between the maximum likelihood and the robust
estimates for 3 and ¢. The series contains three large outliers for the months
number 18, 28 and 29. So we wondered what might happen if we replaced these
outliers by 9.85 which is close to the values nearby. From Table 2 we see that
the maximum likelihood estimates are moving closer to the robust estimates
which are almost the same as before. However the estimates for ¢ still differ by
a factor 1.6. A closer inspection of the data shows that this difference is due to 5
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F1G. 1. Monthly interest rate during 91 months. (Dotted lines indicate doubtful parts in the data).

TABLE 1
Parameter estimates obtained by fitting an AR(p)-process to the data of Fig. 1
p=1 by be ] i é
o © .789 9.19 443
2.5 1.5 958 9.18 154
2.5 1.0 959 9.11 .133
1.5 1.5 959 9.18 154
1.5 1.0 .959 9.11 .133
p=2 b, b, b1 B2 7 q
o © 766 .030 9.19 442
2.9 1.5 977 -.023 9.19 .154
2.9 1.0 .993 —.032 9.14 127
1.7 1.5 1.001 —.035 9.24 154
1.7 1.0 1.003 -.031 9.16 125

large jumps in the series (indicated by dotted lines). This phenomenon is much
less obvious than the three big outliers, but it is surely important to know that
the innovations are usually small with some occasional large values. This example
shows that our robust estimators are insensitive to gross errors and that they
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TABLE 2
Parameter estimates for the data of Fig. 1 after correction of the three large outliers.p =1

b, b, B i ¢

00 00 923 9.12 212
2.5 1.5 958 9.21 137
2.5 1.0 959 9.16 .126
1.5 1.5 964 9.23 .136
1.5 1.0 .965 9.17 125

can draw our attention also to other irregularities in the data which are otherwise
easily overlooked.

2.6 Open problems. We have found the optimal estimators under a bound on
IC$™(x, 6) in some metric. One might wonder what happens if we bounded
instead [ ICr(x, 6)v™(dx) over all v™ € A ga. For our optimal estimator

sup, | IC$™ (x, 8) | = sup,»+ f ICy(x, 0)vP*'(dx) |,

we just take vP*!'= §,... ,and let ¢ go to infinity. However the following example
shows that we can decrease the asymptotic covariance without increasing
sup,p+1| [ ICr(x, )" (dx) |.

EXAMPLE 2.7. We take a Gaussian AR(1)-process with » = 0 and ¢ = 1
known and fix a > 0. If Y (xy, x2) = H.(x;,(x2 — 6 x1)), then ¢ can be varied freely
not only in {| x1(x; — 6x1) | < ¢}, but also in {0 < x; < 2(cf)?, x; < x,} without
increasing sup,2| [ ¥ (x1, x2)v*(dx, x2) | . Namely, if (y1, y2) is a point in the above
domain and »? € M2, has mass near (yi, y2), then »*> must have equal mass
somewhere near the line x, = y;. But on this line ¥(x;, x;) < y}/46 < c. We
therefore choose a function w concentrated on this domain with

f w(x1, %2)p(x2 — 0x1) dxz = 0,

f w(x1, %2)(x2 — 0x1)p(x2 — 0x1) dxy = 0

and

f w(x1, x)Y(x1, x2)@(xz — 0x1) dx, =0, <O
for x; in a set of positive measure.

We do this for all § > 0 and put ¢, = ¢ + ew. If ¢ is small enough, the estimator
given by . has a smaller variance, but the same bound for the asymptotic bias
as the estimator given by .

It would be interesting to know how much smaller the asymptotic covariance
can be, but we guess that the improvement will be small. In addition, the bound
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on the integrated influence function is not quite satisfactory for the reasons given
in Section 1.5.

Another open question is if a similar theory can be obtained without the
restriction that the estimator depends on some finite dimensional marginal. We
do not know if an analogue to Theorem 1.1 holds, but at least for M-estimators
the generalization is straightforward. If 6, is given by

(2.15) Sy i, Xie1y e, %15 0,) =0

where y; converges in some sense to a y: R” X 0 — R, then 0, converges u — a.s.
to T(n) where T is defined by [ y(x, T(u))u(dx) = 0. Moreover under some
regularity

lim e ™(T((1 = e)us + ev) — T'(n)) = f ICr(x, 0)v(dx)
with
ICr(x, 0) = E,[(8/30)y] ¥ (x, 0).

However, the big problem comes from the fact that the segment (1 — ¢)uy + ev is
not a good approximation to the arc of a contamination model. (1.11) does not
hold and ¢ ~*(u. — uo) does in general not converge to a finite signed measure.

It is clear that an infinite range will be needed for ARMA models, but it is of
interest also in the autoregressive case. For instance, the asymptotic variance of
an estimator depends in general on the whole distribution of the process. It is
therefore an open problem how to generalize the change of variance function to
autoregressive processes. Another problem concerns the estimation based on
robust filtering, see Kleiner et al. (1979), and Martin and Thomson (1982). It is
not an M-estimator in our sense here, and it is not clear if it is of the type (2.15)
with y; converging to some y. Moreover it seems to have a bias for the true
model. For all these reasons we see no possibility of comparing this method with
the optimal estimator here on a theoretical basis.

3. Proof of Theorems 1.1-1.3.

3.1 Proof of Theorems 1.1 and 1.2. We start with Theorem 1.2 since its
proof is easier and we will use it for the proof of Theorem 1.1. So let us

assume that [ t(x)y™(dx) = O for all »™ € A Fa. We put glxs, -+, Xp-1) =
St t(xe, -0y Xm-1, 0, - -+, 0). For this g we have
Exr, <oy Xm) — 8(x1, <o) Xm1) + 8(x2y + -5 Xm)
= [t(x1, -y Xm) + 8(x2, « -+, Xm) + TET 6O, -+, 0, X1, -+, x4)]
— [g(xy, -+ ) Tm-1) + TP 0, -+, 0, X1, -+, 2p)].

In order to see that the first bracket is zero, we choose as »™p(y, 2m — 1)™ where
yi=x(i<i=m)andy; =0 (m<i=<2m — 1), while for the second bracket we
choose as v™p(z, 2m — 2)" where z;,=x; (1 <i<m)and z;,=0(m < i < 2m —
2). This completes the proof of Theorem 1.2.
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The “only if” part of Theorem 1.1 is obvious. For the “if” part, we are going
to use a result saying that every affine continuous function on a compact convex
subset K of a topological vector space E can be approximated uniformly on K by
continuous linear functionals on E, see Meyer (1966), Chapter XI, T6.
Inour case we choose E = .#' = {finite signed measures on R™} and as K the
set {v™ € MG, v™ is concentrated on [N, N]™}. By Prohorov’s Theorem,
K is weakly compact. But any continuous linear functional on #’ is of
the form »™ — [ ¢t dv™ with ¢ continuous and bounded, see Huber (1981),
Lemma 2.2.1. So let ¢; be a sequence of bounded continuous functions such that
sup,mex| L(v™) — [ t; dv™| < j~'. Obviously we may replace t; by

fj(xh Tty xm) = tj(xly ) xm) - 2;:;_11 tj(xky oty Xm—1y 0; Tty 0)
+ Z;en=2 tj(xk’ oy Xmy 0’ Tty 0)
Then we have for k > j, | £j(x1, -+, Xm) — tx(x1, --+, xw)| < 4/j for all x €

[N, N]™, as one can see easily if one chooses as »™ the same measures as in the
proof of Theorem 1.2. So t; converges on [N, N]™ uniformly to a function ¢
which is therefore continuous.

Because of the special choice of t}, fj(x) is constant on the set {x € R™, x,, =
0}. Therefore t(x) = t(0, ---, 0) = L(5,) for all x with x,, = 0. Looking at the
construction of the function g in Theorem 1.2, we see that we will get an extension
of ¢t when we take N’ > N. So we have constructed a continuous function ¢t on
R™such that L(»™) = [ t(x)v™ (dx) for all v™ € M, with compact support.

Because L is weakly continuous and affine, it is easy to show that C =
sup,»| L(»™) | < oo, cf. the proof of Lemma 2.2.1 of Huber (1981). Choosing as »™
the measure p(y, 2m — 1)" withy,=x;, (1 <i<=m),y,=0(m<i<2m — 1) we
get

It(xl, “‘:xm)l 5(2m—1)C+ZZl=_11 It(07 ”'707x17 ""xk)' +(m_1)c

because ¢ is equal to L(68,) for all x with x,, = 0. But if x,, # 0, then each argument
of t in the sum on the right-hand side has more zero components than x =
(x1, -+, xn). Hence we may conclude by induction on the number of nonzero
components of x that ¢ is bounded. But then it follows immediately that L(»™) =
J t(x)»™ (dx) for all v™ € A, and the theorem is proved.

3.2 Proof of Theorem 1.3. First we show that g is unique up to a constant.
For this it is sufficient to prove that f = ( implies g = const. Iterating the equation
for g we find

(B1) &Xi, -+, Xn1) = E[n7' Ty g(Xi, -+, Xivm-2) | X1, <+ o, Xna).

By the ergodic theorem, the average on the right-hand side converges in L, to
[ 8(x)u™ " (dx) so g(Xy, -+, Xm-1) = [ g(x)p™* (dx) a.s. By the continuity of
£ this means g = const.

For the existence we introduce the transition operator P. It takes bounded
continuous functions on R*(k = p) in bounded continuous functions on R™ax(*~1.»)



ROBUSTNESS FOR AUTOREGRESSIONS 861
and is defined by

(3-2) Pf(xly M) xk—l) = f f(xly M) Xk)/.t (dxk | Xk—1y **°y xk—p) (k > p)

(3.3) Pf(xy, -+, %) = ff(xzy oy Xpr)u (AXpar | %p, - oo, 1) (k= p).
Furthermore we put Vi(x;, --+, x,) =1+ Y%, | x;] and
C% = {f: R* — R continuous, || f|lv = sup, | f(x)|/Vi(x) < oo}.
Since
PVi(xy, -+, 1) = 1+ 35 x| + X6, 185 xe—j| + E| U
< const. Vip_1(x1, - -, Xp—1),

P can be extended to an operator from C% to Cax*~Lp)
It is then sufficient to show that for all k = p and all f € C% with [ f(x)u* (dx)
= 0 there is a g € C% such that

(3-4) g(xly Tty xp) _Pg(xly M) xp) =f(x1; M) xp) (k=p)

(3.5) &(x1, + -y x) — Pg(xg, -+, x) = f(xq, ---, %) (k> p).

(In order to find the g to the original f of Theorem 1.3, we solve (3.4) — (3.5) with
Pf instead of f).

In the next step we show that the case k > p can be reduced to the case k = p.
Namely we put
(3.6) 8(x1, v ooy k) = E(Xppi1y vy Xn) + 2 PIf (X4, vy )
where g is the solution of
(3.7) &(x1, -+, %) — PE(x1, -+, %) = P*Pf(xy, -+, x).

It is an easy calculation to show that (3.5) follows from (3.6) and (3.7).

For the proof that (3.4) has a solution, we use an idea due to S. Kotani
(compare the similar argument in Kotani, 1983). We introduce the operator Q:
Co(R,) — Cy(RP) defined by

(3.8) Qf (x) = Vo (x)"P(V,f)(x)

(Cy = space of bounded continuous functions with supremum norm). (3.4) is then
equivalent to

(3.9) &(x) — Qg(x) = f(x)

where f =f.V;, g=g. V' Here f €J = {f € Cy; [ f (x) V() (dx) = 0} and
Q: J — J. By Lemma 3.1 below, @ satisfies the conditions of Theorem VIII. 8.3,
page 711, of Dunford-Schwartz (1959) and obviously the same is true for @
restricted to J. So because A = 1 can be at most a pole of order one, we only have
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to show that g = Qg, § € J, implies § = 0. But this follows from (3.1) by the same
argument as in the uniqueness proof for g.

LEMMA 3.1. The operator @ of (3.8) has the following properties:
1) Q™| =C foralln.
(ii) there is an n and a compact operator K such that | Q" — K| < 1.

PrOOF. By the special form of P we obtain
Q)] = £l Vp(x) 1P Vp(x)
< [ FI Vo(x) ™M1 + 25y | et | xpea-; | + E| X:])

where o, are the coefficients defined in Anderson (1971), 5.21. Since | ajf;| — 0
as n — o, (i) is obvious. Let n be such that all | «}; | < 1. To any ¢ > 0 we then
can find a y € C, with compact support, 0 < ¢ < 1 and such that (1 — y(x)) Q@"1(x)
< e. Put Rf(x) = f(x)¢(x). Then (1 — R)Q" | < ¢ and RQ"R is compact.
Moreover

Q"= RQ"R + (1 — R)Q"R + Q"(1 — R).

From this it follows easily that there is a compact operator K such that
Q" — K| <1ifeissmalllO
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