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A GEOMETRIC APPROACH TO NONLINEAR REGRESSION
DIAGNOSTICS WITH APPLICATION TO MATCHED
CASE-CONTROL STUDIES!

By SURESH H. MOOLGAVKAR, EDWARD D. LUSTBADER, AND
DAvID J. VENZON

The Fox Chase Cancer Center, Philadelphia

A geometric approach is described for the detection of influential points
in nonlinear regression. This work extends and gives geometric interpretation
to recent results in logistic regression diagnostics. An application of this
approach to matched case-control studies is discussed.

1. Introduction. A question of interest in the fitting of statistical models
is how deletion of observations affects parameter estimates. In ordinary least
squares with design matrix X and parameters 3, an exact solution to the change
in estimates is known, and the projection matrix X(X‘X) 'X", also called the hat
matrix, plays an important role (Hoaglin and Welsch, 1978). More recently,
Pregibon (1981) considered logistic regression and derived an approximation to
the change in the maximum likelihood estimate 8 on deletion of observations.
Pregibon’s procedure is based on one iteration of the Newton-Raphson algorithm,
and by analogy with ordinary least squares, yields a “hat” matrix that plays the
role of X(X’X)™'X" in linear regression. This procedure is easily extended to the
exponential family when the natural parameter § = X3, i.e., when 6 is a linear
function of S.

This note presents a geometric construction of a hat matrix that is applicable
to a wide range of problems in nonlinear regression. The matrix that we propose
includes the usual hat matrix in ordinary least squares and Pregibon’s hat matrix
for the exponential family as special cases, and can be used to compute an
approximation to the change in 3 on deletion of observations. However, when
the model being fit is intrinisically nonlinear, our approach, in general, yields
different approximations from the one-step Newton-Raphson approach, and it
turns out that, for the exponential family, our diagnostics are identical to those
based on one-step of the Fisher scoring algorithm, and are easier to implement.
We also propose an appropriate definition of residuals for multivariate random
variables, and a generalization of the notion of leverage.

The use of intrinsically nonlinear models is increasing in epidemiology, espe-
cially in the analysis of case-control studies by various extensions of the multiple
logistic model. Our methods can be used to study the influence of entire risk sets
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and of individual controls. In order to use our geometric construction, we view
the conditional likelihood of matched case-control studies as arising from a
multinomial sampling scheme. This leads immediately to diagnostics for the
elimination of entire risk sets. However, the computations are somewhat labori-
ous. It turns out that a Poisson sampling scheme leads (up to a constant) to the
same likelihood. With the Poisson model, the computation of the diagnostics is
much simplified. Moreover, as is proved in the appendix, both models lead to
identical diagnostics for elimination of entire risk sets, and the Poisson model
(but not the multinomial) can be readily used to study the influence of individual
controls. The equivalence of the diagnostics (for risk set deletion) based on the
Poisson and multinomial schemes is particularly easy to prove in the geometric
setting.

2. The exponential family and the hat matrix. Suppose that Y;, Y5,
-, Y, are independent vector valued random variables with Y; being a member
of the m(i)-parameter exponential family. Let Y = (Y%, Y%, ..., YY) and
let y*=(y1, - -, ¥4) be a realization of Y. The density of Y!= (Y, - -, Yinw)
is
8(yi, 0) = exp{fiy; — a(6;) + b(y)}

where 0} = (6, ---, Oinw) is the vector of natural parameters. Let 6 =
(0%, 65, ---, 67), and let 8 be a vector of parameters to be estimated. Since
a(@) = f(B) is the expectation of Y, the normal equations are

(1) (86/08){y — f(B)} = 0.

When 6§ = XB, the Newton-Raphson algorithm yields the following iterative
scheme:

(2) B = B+ (XVIX)TX,

where ' is the estimate at the jth iteration, V/ = d{ﬂ(ﬁj )} is the (block diagonal)
covanance matrix of Y at the jth iteration and F={y-— f(ﬁ’)} Let n = X3 +
V-1 r, where § is the maximum likelihood estimate of B and V and 7 are evaluated
at 8. Then, at convergence, expression (2) can be written as

(3) B = (X'VX)'X'Vy.

Let B, be the maximum likelihood estimate of 8 on deletion of the kth random
variable. By analogy with a linear regression having design matrix V12X and
observation vector V%5, Pregibon (1981) estimates 8, = § — B using the hat
matrix

(4) H=V"X(X'VX) X'V,
This estimate of 3 is identical to the one obtained by starting at 8 and taking
one step towards ﬁ(k) using the Newton-Raphson algorithm.

3. A geometric construction of the hat matrix. There are two impor-
tant spaces associated with multivariate exponential families, the space of natural
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parameters and the space of expectations. The geometry of these spaces, and, in
particular, the geometry of maximum likelihood estimation has recently been the
focus of some interest (Efron, 1975, 1978; Amari, 1982). The Fisher information
matrix —E(3°//30%) = V is a naturally defined inner product on the space of
natural parameters, whereas its inverse is the natural inner product on the dual
space, i.e., on the space of expectations. Maximum likelihood estimation may be
viewed geometrically in the space of expectations as follows.
As before, f(ﬁ) = {fiB), f5(B), ---, fa(B)} is the vector of expectations of
= (Y4 -+, YO as a function of 8. The quadratic form {y — f(8)}'V~!
{y f(ﬁ)} is mlmmlzed at 3 when the Y; are in the exponential family. Geomet-
rically, the weighted distance between y and the locus of expectations f(f) is
minimized at f(ﬂ) Thus, the vector {y — f(ﬂ)} is perpendicular to the tangent
plane of the locus of () at f( B) in the inner product defined by V™! (note that
—E(0%/30) =) = V). This is true even if § = h(B) is not a linear function of 8.
Let J; denote the Jacobian matrix of f at B. The columns of J; span the vector
space parallel to the tangent plane at f(8), and the orthogonal (in the inner
product defined by V'~ 1) prOJectlon onto this vector space is defined by the matrix

(5) = V_l/QJﬁ(Jt‘ _1J3)_1Jt‘ V—1/2

Note that the columns of V"2 are orthonormal vectors for the inner product
defined by V~'. The matrix H is expressed in terms of the basis consisting of
these orthonormal vectors. The geometric view of H as a projection matrix
suggests its use as a hat matrix for any generalized least squares problem. This
approach is equivalent to using the linear least squares problem y = J;38 + r,
E(r) = 0 and var(r) = V, to estimate &, in the nonlinear problem. The appropriate
formula is given by (6) below.

Let Jj, H,, and V, be the Jacobian matrix, the hat matrix, and the block-
diagonal covariance matrix, respectively, restricted to the kth random variable.
Then,

(6) =PF—PBw~ (J5 V_IJB)_IJf}h ViVA(I — H) 'V,

where 7, =Y — fk(B). Note that Jf; V'ng is the expected (Fisher) information
matrix at .

If 6 = XB, i.e., if 6 is a linear function of 3, then an easy computation shows
thatJ; = VX and substitution of this into (5) yields (4). Thus, the approximation
(6) is the same as the one-step Newton-Raphson approximation suggested by
Pregibon. When 6 = k() is not a linear function of 3, then J; = VX; where X;
is the matrix 36/, and (5) yields (4) with X replaced by X;. In this case, the
one-step approximation to §; based on the Newton-Raphson algorithm does not
yield (6). Moreover, the one-step Newton-Raphson approximation is more diffi-
cult to implement than (6). This is easily seen by noting that derivatives of the
left-hand side of the normal equations (1) will involve products of X; and f(8).
However, in all cases, (6) can be interpreted as being a one-step estimate based
on the Fisher scoring algorithm for maximum likelihood estimation.

The above discussion has been restricted to the exponential family. However,



NONLINEAR REGRESSION DIAGNOSTICS 819

in any weighted least squares problem, the hat matrix can still be constructed as
in (5) with V! replaced by the appropriate positive definite weight matrix. In
this case, (6) can be interpreted as being a one-step estimate based on the Gauss-
Newton algorithm for nonlinear least squares estimation (see, e.g., Cook and
Weisberg, 1982, pages 186-187).

4. The diagnostics. Expression (6) suggests three additional diagnostic
measures to evaluate the impact of the kth observation.

The quadratic form 7} V};'#, will be denoted by | 7, |% and provides a natural
one-dimensional summary residual statistic. Since

v = FBWV My = F(B)} = Zhan | ],
a plot of | 7, |2 can be used as a diagnostic like the familiar residual plots in linear
regression with the obvious difference that | 7, | is always positive.

Another diagnostic of interest is an analogue of the Cook distance (Cook,
1977)

(7) Dy = {(B = Buw)' W5V I (B — Buw)}V2

D, is a standardized measure of how much deletions of observations affect the
parameter values. We refer to D, as the influence of Y.

Finally, let M, = I — H,. Then it is clear from the expression (6) that small
values of det M, imply large changes in parameter estimates. The quantity 1 —
det M, will be called the leverage of Y,. If Y, is one-dimensional, this reduces to
the usual notion of leverage.

5. The matched case-control study. Logistic regression is assuming in-
creasing importance in the analysis of matched case-control studies. Usually, the
odds ratio p(8, x) = exp(8‘x). However, other functional forms for the odds ratio
are of interest, and Thomas (1981) has considered various general relative risk
models. A question of interest is how do individual risk sets and individual
controls within risk sets affect the fit of the model and the parameter estimates?

Suppose that there are n cases, and that for the ith case there are m(i)
controls. Let R; denote the ith risk set, i.e., the ith case together with its controls.
Whatever the form of p(3, x), the appropriate conditional likelihood function is

(8) L = TI%: p(B, x:0)/3m8) 0(B, xig)

where x;, is the vector of covariates for the gth individual in risk set i, and ¢ = 0
corresponds to the case (Thomas, 1981).

The likelihood (8) can also arise by letting Y;, Y,, - .., Y, be independent
random variables such that Y; has a multinomial distribution with cell probabil-
ities (Py, - - -, Pim()) and realization y; = (1, 0, - - -, 0), where

(©)) Py = p(B, xis)/ TS p(B, xig).

It is easily seen that (8) is the product of the P;, which is the likelihood function
for this multinomial realization. The natural parameters of Y; as a member of
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the m(i)-parameter exponential family are
= log(Pis/Pi) = log p(B, xis) — log p(B, xi0), s=1, ---, m(@).

Thus, 6 is a linear function of g if, and only if, p(8, xi;) = exp(8x;).

As noted in Section 3, the Jacobian matrix is given by V;X;, where V; is the
block diagonal covariance marix of the Y; and Xj is the matrix of first derivatives
90/3B. The hat matrix may then be constructed as in (5).

There are computational problems in working with this hat matrix since it
necessitates taking the square root of a block diagonal covariance matrix. More-
over, while this hat marix can be used to study the effect of deleting entire risk
sets, it is not practical to study the effect of individual controls within risk sets.
These problems can be resolved by letting the P in (9) be the expectations of
m(i) + 1 independent Poisson variables. For this model, the likelihood contri-
bution from risk set R; is

Pivexp(—Pio) [ exp(—P;) = exp(—1)Pj.

The hat matrix for this model may also be constructed as in (5). The matrix 1%
is now the diagonal matrix of variances of the Poisson random variables.

Estimates of 6, on dropping risk sets, | 7| % the Cook distance (influence), and
leverage may be computed as in Section 4. Although it seems plausible, it does
not follow directly from the equivalence of the likelihoods that, for the deletion
of an entire risk set, these diagnostics are identical for the Poisson and multi-
nomial models. For our geometric approach, they are, as is discussed in the
appendix.

An approximation to the changes in parameter estimates for omission of
individual controls may also be computed with an expression like (6) based on
the Poisson approach. However, if one control is deleted from risk set k, the
estimated probabilities for the case and the remaining m(k) — 1 controls do not
sum to 1. It is our experience that the approximations to the change in parameter
estimates are better if the probabilities are adjusted to sum to 1. Using these
adjusted probabilities, an appropriate diagnostic for the change in the estimate
of (3 after deleting control s in risk set k is

ﬂ ﬁ(ks) (J V lJﬁ) IJ:iksU 1/2(1 - hks) vhs/rks
= —(J5V ) W h/{(1 — Pr)(1 — hu)}

where Jj4, Ups, and hhs are the row of Jj, the diagonal element of V and the
diagonal element of H, respectively, correspondmg to that control, and where
Frs = Frs/ (1 — Ppg) = =P/ (1 — Pyo).

6. Anexample. Inthissection, we discuss an application of the diagnostics
to a matched case-control study of endometrial cancer in Los Angeles (Mack et
al., 1976). The data are also presented in Appendix III of Breslow and Day (1980),
and are available from us on request. There are 63 cases (63 risk sets) with 4
controls per case in that data set. Two covariates, one of them discrete (presence
or absence of gall bladder disease), and the other continuous (length of estrogen
use in months), were chosen for analysis. We eliminated 6 risk sets because these
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had a missing covariate value for the case. In addition, we eliminated 1 control
from each of 8 other risk sets because a covariate value was missing on that
control. Thus, we analyzed a total of 277 observations arranged in 49 risk sets
consisting of a case and 4 controls each, and 8 risk sets consisting of a case and
3 controls each. An additive formulation was used for the relative risk p(8, x) =
1 + B1x, + B2xs. For this model, our diagnostics are different from those based
on the Newton-Raphson one-step approximation.

In all that follows, we will be using the Poisson model for the matched case-
control study. The hat matrix H is defined as in (5) and is a 277 X 277 matrix
w1th rank 2 (since number of covariates = 2) For any risk set with 7, = (1 — Pko,
- Pkl, cee, — Pk,,,) where m = 3 or 4 and P,, are the fitted values (probabilities),
%&Eﬁma4X4m5X5mﬂnx

Since the expression (6) for §, is an approximation, it is crucial to evaluate
whether the approximation is adequate to draw attention to risk sets that lead
to large changes in parameter estimates when dropped. Figure 1 shows the actual
change in parameter estimates, and the approximate change, using both one-step
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Newton-Raphson and our approach. In this example, expression (6) does some-
what better than the one-step Newton-Raphson approximation, and, contrary to
Pregibon’s (1981) experience, the latter occasionally overestimates the change in
coefficients. We judge the approximation by (6) to be conservative, but adequate
to draw attention to unusual risk sets. Expression (6) involves the inversion of
(I — H,). However, matrix inversion may be avoided by noting that each H,is a
submatrix of a large projection matrix of rank 2. This implies that H, is small
and (I — Hy)™ = X% (Hy)’, with (H,)° = I. In our computations, we use the
approximation (I — H,)™' = I + H,, which does an excellent job.

An easy computation shows that | 7|2 = (1 — Po)/Pk. Nominal levels for
| 7+ |2 that are based on distributional properties are difficult to compute. How-
ever, a simple computation shows that, conditional on the risk sets, the expec-
tation of | 7|2 is equal to the number of controls in the risk set. This is also the
value of | 7|2 under the null hypothesis that 8 = 0. Thus, risk sets with | 7 |?
larger than the number of controls are worse fit by the model under consideration
than by the null model, and a plot of | 7. |? should serve to draw attention to
these risk sets.

Of course, in any analysis of matched case-control data, some of the risk sets
are likely to have values of | 7, | larger than the nominal level we have proposed.
To take an extreme example, in a matched pair analysis (m(i) = 1), using the
usual logistic model and with one binary covariate (d = 1), let a;,o be the number
of pairs with the covariate present for the case and absent for the control, and
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FIG. 2. Plot of | 7+ |? versus leverage. Note that one risk set (29) has a very large value of | Fx |2 A few

“,n “«.

risk sets have both high leverage and high | 7|2 An “x” denotes a risk set with 4 controls, an “o
denotes a risk set with 3 controls.
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Fi1G. 3. Change in parameter estimates on deleting individual controls. Index refers to the index of the
risk set; the first control in each risk set has been dropped. An open box denotes the actual change in
parameter estimates, an “x” denotes the approximate change with the correction factor (1 — P,,l)“ and
an open triangle denotes the approximate change without the correction factor. Maximum likelihood
estimates with all individuals included are Bl = 4.26, ﬁg =0.12.

ao,1 be the number of pairs with the covariate absent for the case and present for
the control. The estimate of the odds ratio is a; /a0, and thus determines the
number of risk sets with | 7, |2 > 1, which is the nominal value in this case. The
statistic | Fx|? will be most useful when the number of covariates is large and
there are both continuous and discrete covariates.

Large values of leverage for a risk set indicate an unusual combination of
covariates in that risk set. Since rank (H) = 2, the average diagonal entry is
2/277 = 0.007, and the average trace of a 5 X 5 matrix H, is 0.035. For each of
these H,, there are, at most, 2 nonzero eigenvalues and, therefore, the “average”
size of such an eigenvalue is 0.018. Now each M, = I — H, has 5 eigenvalues. Of
these, three are equal to 1 (corresponding to the zero eigenvalues of H,); the
other two lie in the closed interval [0, 1]. On average, these two eigenvalues of
M, are 1 — 0.018 = 0.982, and the average determinant is (0. 982)2 = 0.964; hence,
values of 1 — det M, greater than 0.036 indicate risk sets with higher than average
leverage.

Figure 2 is a plot of | Fx|? versus leverage. Risk set 29 stands out as having
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very high |7, |2 A few risk sets (e.g., 9, 17) have both high leverage and high
| P |2,

Figure 3 is a plot of the change in parameter estimates on dropping individual
controls. The first control in each risk set was dropped for this figure. The
correction factor (1 — Py;)™! improves the approximation considerably.

Finally, although a convenient expression like (6) is unavailable, for the
example discussed here, the one-step Newton-Raphson approximation was rela-
tively easy to implement because p(3, x) is linear in 8. However, there is some
interest in using more general forms of the relative risk function p(g, x). For
example, Thomas (1981) advocates using a mixture model in which

pla, B, x) = (1 + B'x)'~*{exp(Bx)}~

In such instances, expression (6) based on the geometric approach is considerably
easier to implement than the one-step Newton-Raphson approximation.

7. Concluding remarks. We have presented a simple geometric approach
to diagnostics for general nonlinear regression. Our approach is identical to a
one-step approximation based on the Gauss-Newton algorithm. For the exponen-
tial family, this algorithm corresponds to the method of scoring for parameters
which is essentially the Newton-Raphson algorithm with the expected informa-
tion matrix taking the place of the observed one. A geometric view of one-step
approximations based on these two algorithms (Newton-Raphson and scoring
for parameters) is as follows. As noted earlier, the expected information matrix
(with the kth observation deleted) defines an inner product on the space of
parameters. Similarly, in a small enough neighborhood of B, the observed
information matrix (with the kth observation deleted) also defines an inner
product. Thus, if 3 is close enough to B(k), the observed information matrix defines
an inner product in a neighborhood of 3. The gradients (Milnor, 1963, page 12)
of the log likelihood with respect to these inner products can be defined at §.
The one-step approximations then consist of adding the appropriate gradient
vectors to ﬁ

In the exponential family, when § = X33, the diagnostics presented here are
identical to those suggested by Pregibon (1981). However, the approach described
here is applicable to any generalized least squares problem. For example, the
methods proposed in this paper are directly applicable to what Wedderburn
(1974) calls maximum quasilikelihood estimation.

For matched case-control studies, our approach yields diagnostics for a general
relative risk formulation. Moreover, the Poisson model provides diagnostics for
deletion of individual controls.

We note here that the partial likelihood (Cox, 1975) that arises in the analysis
of survival data via the proportional hazards model is formally identical to (8).
Thus, the approach described here is applicable. However, because of the nesting
of risk sets, the diagnostics for the deletion of entire risk sets are difficult to
interpret. It is more desirable to compute the diagnostics for deleting individuals.
Most individuals in a survival study appear in several risk sets. In order to
implement the formula (6), it is necessary to keep track of the contribution made
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by the individual in each risk set so that the matrices Jj, V., H,, and the vector
7r can be computed. The procedure is illustrated in a recent manuscript (Lust-
bader and Moolgavkar, 1984). The risk sets are typically much larger than the
risk sets for case-control studies, and the computational problems are correspond-
ingly more difficult. In particular, (6) involves the inversion of a large matrix.
However, as noted above, since H, is a submatrix of a projection matrix,
(I — Hy)™ may be replaced by the first few terms of the series Y (H,)’. In our
experience, I + Hj does an excellent job.

In this paper, we have restricted our attention to risk sets with only single
failures. When there are several failures in a risk set, our method is easily
generalized to yield diagnostics for deletion of entire risk sets. In the context of
survival analysis, if the ties are broken by the method of Peto (1972) and Breslow
(1972), then our approach will yield diagnostics for deleting individuals. However,
if there are several failures per risk set, breaking of ties is not to be recommended.
This situation could arise in a stratified case-control study, and there is no
obvious generalization of our method to yield deletion diagnostics for single
individuals. However, in this situation, the deletion of entire strata is likely to
be of primary interest, and this can be handled by our methods as noted above.

Finally, yet another approach to diagnostics is advocated by Storer and
Crowley (1984). They note that an approximation to §, may be obtained by fitting
an augmented regression model. Prentice (personal communication) has also
been exploring a similar approach. Pregibon (1984) has explored the Newton-
Raphson one-step approximation in the context of matched case-control studies.
Ultimately, the choice among various approaches will have to be made on the
basis of convenience, computational ease, and the adequacy of the approximation.

APPENDIX

In this appendix, we sketch a proof of the proposition that the multinomial
and Poisson approaches yield identical diagnostics (Section 4) and estimates of

6 ﬁ(k) for the elimination of risk sets. Let Y‘ = (Y,, ---, Y,) be a multi-
nomial random variable with parameters (1, Po, Py, ---, Pn), >; P; = 1. Let
= (Zy, +--, Zy) be a vector of m + 1 independent Poisson random variables

with expectation vector (P, - - -, P,,). Let 8 € R? be a parameter, f,(8) = P;, f(8)
= (fi(B), - - -, fm(B))’, and g(B) = (fo(B), f1(B), - - -, fm(B))". Let JJ, be the Jacobian
matrix of f and J, the Jacobian matrix of g. Then, oJ; is a linear transformation
from R? into U C R™" where U is the subspace defined by Y7o x; = 0. Let
V: be the m X m covariance matrix of (Y;, Y,, ---, Y,) and let V, be the
(m + 1) X (m + 1) diagonal matrix of variances of (Z, Z,, - -, Z,). Then, V!
and V3! define inner products on R™ and R™"!, respectively. Let {ej};-1,... » be
the standard Euclidean basis for R™, and let the basis for U consist of the set of
vectors {uj}j-1,...,m, with u; = (-1,0, .-+, 1,0, - - -, 0), —1 in the Oth position, 1 in
the jth position. Then, the linear transformation A:R™ — U, with A(e)) = u;, is
an isometry. Let J%¥ and J% denote, respectively, the adjoints for J; and J,; with
the standard inner product on R? and the appropriate inner product (V1! or
Vz!) on the image space (R™ or R™*!). (For a definition of adjoint, see Hoffman
and Kunze, 1971, page 295.) The appropriate hat matrices (5) for the multinomial
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and Poisson models are then J;(J¥J,) ¥ and Jo(J¥J,) 'J ¥, respectively. Under
the isometry A, R™ and U are identical as inner product spaces, and the above
two hat matrices can be identified with each other. Our proposition now follows
easily.

Further details can be found in a recent technical report (Moolgavkar, Lust-
bader, and Venzon, 1982).
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