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ON THE ASYMPTOTIC BEHAVIOUR OF EMPIRICAL BAYES
TESTS FOR THE CONTINUOUS ONE-PARAMETER
EXPONENTIAL FAMILY

By THEO STIJNEN

University of Leiden, Netherlands

Several authors have proposed empirical Bayes tests (EBT) for the
continuous one-parameter exponential family for the case that the prior
distribution is completely unspecified. They investigated the convergence rate
of the (unconditional) Bayes risk, and gave upper bounds for this convergence
rate. In this paper it is proposed to study the convergence of the conditional
Bayes risk. A method is presented which makes it possible to derive the exact
convergence rate of the conditional risk and its limit distribution. Several
results are given. Also the question is considered whether monotonizing an
empirical Bayes test influences its asymptotic properties.

1. Introduction. We consider empirical Bayes tests (EBT’s) for testing
Hy: 6 < 6, against Hy: § > 6, in the exponential family

(1.1) f(x]0) = m(x)e®h(d), —v<a<x<b=<om,

with m positive and continuously differentiable on (a, b). The loss function is
L(8, 0) = max{f — 6, 0} for accepting Hy, and L(f, 1) = max{f, — 0, 0} for accepting
H,. The parameter 6 is distributed according to a completely unknown prior
distribution G on the natural parameter space €.

Let X;, - -+, X,, denote the observations from n independent past experiments:
Xi, +-+, X, are i.i.d. r.v.’s with (marginal) density f(x) = [ m(x)e*h(6) dG(6).
Let X be the observation in the present experiment. Then the conditional Bayes
risk of an EBT ¢, is defined as 7(G, ¢,) = E[L(9, ¢.(X1, -+, Xu; XD X4, - -+,
X,], and the (unconditional) Bayes risk is defined as r(G, ¢,) = EF(G, ¢,). The
minimal attainable risk, which is achieved by a Bayes test w.r.t. G, is denoted by
r(G@). For a more detailed introduction to this EB testing problem and for further
references, see Johns and VanRyzin (J & VR) (1971) and Van Houwelingen (VH)
(1976).

J & VR (1971) and VH (1976) introduced EBT’s for the above problem. They
investigated the convergence rate of r(G, ¢,) — r(G). In this paper our approach
is to study the asymptotic behaviour of #(G, ¢,) — r(G). Whereas J & VR and
VH derive only bounds for the convergence rates, our approach leads to exact
results.

J & VR (1971) constructed EBT’s as follows. Let d denote the Bayes estimator
for estimating 6 under quadratic loss. Then a Bayes test w.r.t. G can be given by
¢(x) = I[d(x) > 6,), where I[A] denotes the indicator function of a set A, and
d(x) = f'(x)/f(x) — m’(x)/m(x). An estimate d, of d can be obtained by
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using, for instance, kernel estimators for f” and f. This leads to an EBT ¢,(x) =
I[d.(x) > 6,). Unfortunately, since d, is not necessarily monotone, this EBT is
not monotone and therefore not conditionally component admissible (CCA) (cf.
VH, 1973, 1977; and Boyer and Gilliland, 1980, for a discussion of the CCA
property). VH (1973) proposed to monotonize J & VR’s EBT’s as follows. Let
an(Xy, -, X)) =[1 [0 = 1] (x| 6) dx, and let F~(- | 6,) be the inverse of the
c.d.f. corresponding to f(- | 6y). Then

(1.2) AXy, ey Xy X) = IX > F7(1 = an(Xy, -+, Xa) | 60)]

is a monotone EBT with smaller risk than the original ¢,. A formal proof can be
found e.g. in Brown et al. (1976).

The EBT’s studied in this article are essentially those of J & VR (1971) and
the monotonized versions thereof. Our goal is to derjve the convergence rate and
limit distribution of the conditional Bayes risk.

In Section 2 we define the EBT’s to be studied in this paper. In Section 3 we
present our results, which are proved in Section 4. Finally, in Section 5, we
discuss the results.

2. A class of empirical Bayes tests. The main class of EBT’s considered
in this paper is constructed as follows. Define ¢(x) = [ h(9)exp(x8) dG(6). By
Theorem 2.9 of Lehmann (1959), ¢ is analytic and its derivative is given by ¢’ (x)
= [ 0h(f)exp(x0) dG(0). Therefore, d can be written as d = t’/t. Following Singh
(1979), we estimate t’ and ¢ as follows. Let » = 1 be a fixed integer, and let
K; (i = 0, 1) be kernel functions satisfying the following conditions.

(i) K; has finite support and the closure of the convex hull [A;, B;] of the
support contains zero,

(2.1) (i) K;is absolutely continuous on [A;, B;] with bounded derivative,

(iii) fnyi(y) dy=0 if j=0,1,.---,v—1, j#i
-1 if j=i
Denote t@ = t and t¥ = t’, then the estimator t$ of t” is defined as
(2.2) tP(x) = (nhy*)™ B Kil(x — X;)/ha)/m(X;), i=0,1,

where (hn)nz1 1s a sequence of pos_itive real numbers. In order to ensure that
t%9(x) is a consistent estimator of ¢®(x), we have to require that

(2.3) h, >0 and nhd— o,

Usually one chooses K, and K, such that ¢\ is the derivative of ¢{. This choice
yields automatically the same » and h, for both estimators.

Since d = t’/t, d can be estimated by t{/t?. In order to avoid difficulties
when the denominator becomes zero, let a, and b, be sequences, which may
depend on Xj, .-, X, such that

2.4) t,(x) >0 on [an, b.], a,—pa and b, —pb.
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Now we define
dn(x) = tPx)/tO(x) if a,<x=<b,,

(2.5) = d,(a,) if x < ap,
= dn(bn) if x> b,.

We assume that a,, and b,, are chosen such that

(2.6) sup{| dn(x) — d(x)|, x € [an, bal} —p 0.

In Section 5 we shall indicate a possibility to construct a, and b, such that (2.4)
and (2.6) are fulfilled.

The main class of EBT’s to be studied in this paper is given by
(2.7 ¢n(x) = I[dn(x) > o], .
where d, is defined in (2.5). According to (1.2) the monotonized version of ¢, is
given by
(2.8) on(x) = I[x > c,],

where ¢, = F7}(1 — a, | 6o), with «, defined as
, .
(2.9) ap = f I[d.(x) > 6o]f (x| 6o) dx.

3. Mainresults. In this section we shall present two theorems that describe
the asymptotic behaviour of the conditional Bayes risk of the EBT's introduced
in the previous section. Before formulating the results, a theorem is mentioned
which plays a central role in the derivation of the results.

We begin by introducing a useful expression for the conditional Bayes risk. It
is easy to see that for an arbitrary (non-EB) test ¢ the Bayes risk can be written
as

(3.1) r(G, ¢) = j:b o(x)g(x) dx + J;L(H, 0) dG(0),

where g(x) = f(x)(6p — d(x)). To ensure that the Bayes risk (3.1) is finite we
assume that

(3.2) _‘ E|0] <o

Further, in‘order to avoid degeneracy, we shall suppose that

(3.3) lim,,d (%) < 6o < lim,pd ().

In particular, (3.3) implies that G is nondegenerate. Since d’(x) can be written
as d’(x) = var{f | X = x}, this implies that d is strictly increasing, so ¢ = d ()
is well defined and ¢ € (a, b). Since ¢(x) = I[d(x) > 6], the following expression
is obtained from (3.1):

c b
(34) r(G, ¢) —r(@G) = J; I[¢(x) = 1]g(x) dx — J; I[¢(x) = 0]g(x) dx.
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Let D, = #(@G, ¢n) — r(G), with ¢, the EBT that was defined by (2.7). Then
according to (3.4) we have
b

(3.5) D, = f I[dn(x) > fo]g(x) dx — f I[dn(x) =< Bo]g(x) dx.

For the monotonized version ¢} (see (2.8) and (2.9)) we define D} = #(G, ¢}) —
r(@). To investigate the asymptotic behaviour of D} the same method can be
used as for D,. This can be seen as follows. Define a = 1 — F(c| 6,), analogously
to a;, (cf. (2.9)). Then we have

b

(3.6) on—a= f I[dn(x) > bolf (x| fo) dx — f I[dn(x) =< 6o]f (x| o) dx.

Notice that this expression is very similar to (3.5). Therefore the limit distribution
of a, — a can be determined completely analogously to that of D,. Once that is
done, the limit distribution of D} is derived as follows. According to the definition
of ¢, we have ¢, — ¢ ~g — f(c| 6p) *(an — @), where ~; means that both sides have
identical limit distributions. From (2.8) and (3.4) one can easily see that D} can
be written as Dy = [¢ g(x) dx. Since g is continuously differentiable and
g(c) = 0, it follows that D¥ ~; —%2g’(c)(c — ¢,)? so that

(3.7) D ~q =Yg (c)f (c] 60) H(an — ).

The investigation of the limit behaviour of D, and a, — « is based on
approximation of d, by a suitable Gaussian process. The following theorem is
used.

THEOREM 1 (Stijnen, 1982). Let d, be defined by (2.2) and (2.5), and suppose
that (2.1) and (2.3) are satisfied. Then
(3.8)  dn(x) =a d(x) + Buf (x)7/*W(x/hn) + Yntn(x) + Ra(x), x € (a,b),

where B, = (nh3)™Y2, v, = h’, and =, means that the stochastic processes on both
sides are identically distributed. Furthermore, the following holds:

(i) W is a stationary zero mean Gaussian process with covariance function

(3.9) v(t) = f K\(t + 2)K.(2) dz.
(i1) (un)nzllis a sequence of real functions uniformly converging on compact
intervals to the function u defined by
t(v+1)(x) 3 t(v)(x)t(l)(x)
t(x) ¢ t)?
with C; = [ (—2)'(»)'Ki(2) dz, i =0, 1.

(iii) (nh2)Y2| R.(x)| is bounded in probability uniformly in x on every compact
interval contained in (a, b).

(3.10) u(x) = G
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From (3.8) it follows that the convergence rate of d, is fastest if (nh3)™/2 ~ h?.
Although our method is capable of managing the general case in which only (2.3)
is assumed, we restrict ourselves for the sake of simplicity to this important
particular case. Therefore we assume that

(3.11) hy, ~ Cn~Y/@*3)

where C is an arbitrary positive constant. Since the constant C may be incorpo-
rated in the kernel function K, we assume without loss of generality that C = 1.
Before giving our main results, we introduce the following random variables.
Let A < 0 and 5 be arbitrary constants, and let W be the Gaussian process defined
in Theorem 1. Then we define
0

D(n, \) = fo yI[W(y) < Ay + n] dy — f_w yI[W(y) > Ay + 1] dy

and
0

D*(n, N) = j; IIW(y) <Xy + 9] dy — fw IIW(y) > Ay + n] dy.

Since the sample paths of W are continuous (Cramér and Leadbetter, 1967, page
170), the above integrals are well defined as sample path integrals in the ordinary
sense. Since max{| W(x)|, 0 =< x < t}(2 log t)™"2 tends to 1 almost surely as
t — o (Pickands, 1967), each of the four integrals is finite with probability one.
Therefore D and D* are well defined random variables for all A <0 and .

The following theorems give the asymptotic behaviour of D, and D}.

THEOREM 2. Let ¢, be defined by (2.2), (2.5) and (2.7). Suppose that (2.1),
(2.3), (2.4), (2.6), (3.2), (3.3) and (3.11) hold.
(i) If v =1 then
(3.12) nhiD, —4 d’(c)f(c)D(n, \),
where A = —d’(c)f(c)*? and n = —u(c)f (c)*%
(ii) If v> 1 then
(3.13) nhiD, —q %d’ (©)™MU + f(c)*ulc)},
where U is a normally distributed stochastic variable with expectation zero and
variance equal to [ K(z)® dz.
THEOREM 3. Suppose that the conditions of Theorem 2 are fulfilled. Let ¢}, be
the monotonized version of ¢, defined by (2.8) and (2.9).
(1) Ifv =1, then, with n and \ as in Theorem 2,
(3.14) nhiD}% —q Vad’ (c)f (¢)D*(n, N)*.
(ii) If v > 1 then nh3D}¥ converges in distribution to the r.h.s. of (3.13).
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In the next section Theorem 2 will be proved. Since the limit behaviour of D}
easily follows from that of a,, — a (see (3.7)), and the expressions for D, and «a,
— o are very similar (cf. (3.5) and (3.6)), the proof of theorem 3 is essentially the
same and is therefore omitted.

4. Proof of Theorem 2. Let é > 0 be such that [¢c — §, ¢ + §] € (a,-b), and
define (cf. (3.5))

c c+6
(4.1) D; = fﬁ I[dn(x) > o] g(x) dx — f I[dn(x) =< 60] g(x) dx,
then it follows from (2.6) and the fact that d is strictly increasing that D}, — D,
= 0,(B%). According to Theorem 1, d, can be approximated in distribution by
dn(x) = d(x) + Buf ()™ 2W(x/hy) + Yntn(x). Let D2 be defined by substituting
d, for d, in (4.1). In Lemma 1 below it is proved that D% =, D% + 0,(8%). Therefore
it is sufficient to derive the limit distribution of D%. .

Let ¢n(x) = f(x)V2(60 — d(x) — Ynln(x)), then d.(x) > 6, is equivalent to
Wi(x/h,) > B2, (x). With x = ¢ + B8y, D can be written as

0
D} = [3"'{ e I [W<#ﬁ)> Ynlc + Bny)/ﬂn]g(c + Bry) dy

4.2)
8/8n
- J; I[ W(f—-%ﬂ—"z) =< Ynlc + ﬁny)/BnJg(c + Bny) dy}-

n

Since W is a stationary process, the distribution of the r.h.s. of (4.2) does not
change if W((c + 8.y)/h.) is replaced by W(8,y/h,). From the definition of 3,
(see Theorem 1) and (3.11) one can see that W(8,y/h.) =4 W(Coy), with Cy = 1
if » =1, and Cy = 0 if » > 1. Further, since g(c) = 0, g(c + B.y) behaves
asymptotically as 8,yg’(c). Finally one can easily verify that y,(c + 8,y)/8, —
—f(c)2{d’ (c)y + u(c)}.

Taking these limits in (4.2) yields

B22D% —q g’ (c) { I _IW(Coy) > —f(©)"*(d’(c)y + ulc))]ly dy
(4.3)

|

- J(: I[W(Coy) < —f(c)"*(d’(c)y + u(c)]y dy g

A formal proof of (4.3) is given in Lemma 2. For » = 1, (4.3) yields the first part
of Theorem 2 (observe that g’(c) = —d’(c)f(c)). If » > 1, then Cy = 0 and the
r.h.s. of (4.3) reduces to

168’ (c) d’(c)2(W(0)f (c)™/% — u(c))®
Since W(0) = _7 (0, [ K,(2)* dz), this yields the second part of Theorem 2. 0

LEMMA 1. Under the conditions of Theorem 2, D%, =, D%, + 0,(82).
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PROOF. Let D’ be defined by substituting d, + R, for d, in (4.1). Then,
according to Theorem 1, D! =, D, so we have to prove that | D} — D%| =
0,(82). With S,, = sup{| R.(x)|, | x — ¢| < 8} we have

c+o
| D}, - D} | sf_b I[1du(x) = 60| < Sa]l 8(x)| dx,

and we can write
c+6
) LA Z16)]
| D¢ — D} | SJ;_'; I[ W(h,,) 8

Since S, = 0,(8,hY?) and f is bounded on [c¢ — §, ¢ + 8], it is sufficient to prove

that
c+é
- x\ ¥
I n\wl—-)-—
‘[—5 [ ’ <h'n> ﬁn
We shall prove this by showing that the expectation of the Lh.s. tends to zero.
With x = ¢ + 8.2 this expectation can be written as

f /on ¢<w_+ﬂ__> N ,,},4) _ ¢<u¢§_> _ ,,1,4)
~5/6, Br - B "

where & denotes the distribution function of _# (0, [ K3(2) dz) distribution. Since
(e + Br2) = 2g'(c + B,.2*) for some 0 = |2*| = {1z| and g’ is bounded on
[c — 8, ¢ + §8], it is sufficient to show that (use the Mean Value Theorem)

< Suf ()" 265‘} |g(x)| dx.

< h,l,/“}l g(x)| dx —p 0.

Br'1g(c + Bn2)| dz,

5/6n
(4.4) f_ e | 2| @' (Ynlc + Bn2)/Bn + hEY*) dx,

with 0 < | h¥| < h,, is bounded. One can easily check that there exist positive
constants M; and M, such that | ,.(c + 8.2)/B. + R4 = M| z| + M, for n
and | z| large enough. Therefore (4.4) is uniformly bounded in n. This completes
the proof. 0

LEMMA 2. Under the conditions of Theorem 2, (4.3) holds.

PROOF. Define for arbitrary & > 0 (cf. (4.2))
3 c . c+kB, .
(45) Ar= f I[d(x) > 6o) g(x) dx — f I[dn(x) = 6o g(x) dx.
c—kB, c
Since (i) W is a stationary process, (ii) ¥x(c + 8,y)/y — Ay + 1 uniformly in y
and (iii) 85! g(c + B.y) — yg’(c) uniformly in y, it follows that
BrlA% —a g’ (c)
(4.6) [ 0 k
e IW(Coy) >Ny +nly dy — | I[W(Coy) < Ay + nly dy

where C, is a constant equal to 1 if v = 1, else Cy, = 0. Notice that the r.h.s. of
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(4.6) tends to the r.h.s. of (4.3) as & — . Therefore the proof is completed by
showing that for arbitrary ¢; > 0 and e, > 0 there exist ny and k, such that

4.7 PB;2|Bt| > &) <e for n=ne and k = k,
where B = D2 — A%. From the definition of B it is easy to see that 8;2E | B |

is bounded by
—k
S, o~ B o+ o ay
—5/Bs Bn
(4.8) o
+ j; Q(W)' Br'g(c + Bny)| dy.

Since | 87  g(c + B.y) | <M |y | and —¢,(c + B.y) < May + M; for some positive
constants M;, M, and M3, the integrand of the first term of (4.8) is bounded on
(—o0, —k] by the integrable function M, |y | ®(M,y + Ms3). A similar statement
holds for the second term of (4.8). Taking limits, one can easily see that (4.8)
tends to a constant that depends on k and converges to zero as k — «. Now (4.7)
follows. This completes the proof. 0

5. Discussion. Theorems 2 and 3 enable us to compare the asymptotic
properties of ¢, and its monotonized version ¢}. Of course, since ¢, is generally
not monotone, the small sample behaviour of ¢} will be better than that of ¢,.
It turns out that the two EBT’s are asymptotically equivalent when » > 1.
However, when » = 1, the monotonized version is more efficient, because it holds
that P(¥aD*(n, \)2 < D(n, A)) = 1 for all A < 0 and ». This can be verified as
follows. Let A ={y>0: W(y) <Ay +n}and B={y <0: W(y) > Ay + 5}. Then
we can write

D*(y, A)2=<Ldy—Ldy>2<<Ldy>2+<Ldy>2
=2j;J;I[x<y]dxdy+2LLI[x>y]dxdy

s2fydy—2fydy=2D(n,>\).
A B

Theorems 2 and 3 give the limit distributions of the conditional risk of ¢, and
¢¥ for the special case h, = Cn~®*¥ The more general case h, = Cn~’, with
0 < 8 < Y3, can be handled by the same methods. For a detailed discussion, the
reader is referred to Stijnen (1980). It is interesting to compare the asymptotic
behavior of ¢, with that of ¢ ¥ in the general case h, = Cn~°. Therefore we present
in Figure 1 the graphs of the convergence rate of D, and D} as a function of é.
Let 80(8) and 6,(8) be functions of § such that n%*D, and n®D* have a limit
distribution that is not degenerate in zero. Then 8, and §; turn out to be piecewise
linear. Their graphs are shown in Figure 1. From this figure one can see that
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U:1
%0 89
1 1
5 5
' o L\ @2
12 131
513
v>1
2v 5 2 v 2
2v+3 2v+3
5 L\
2 1131
2v+3 3 2v+35 113

F1G. 1. Convergence rates of D, and D}.

the convergence of D} is faster than that of D, if § > %. For 6 < % the conver-
gence rates are equal and also the limit distributions are identical. If
6 = Y, convergence rates are equal, but the limit distributions are not. This
situation is already considered above for the case » = 1. If » > 1 an analogous
phenomenon occurs.

If in the definition of u (see (3.10)) ¢ is replaced by f, then theorem 2 holds for
the class of EBT’s introduced by J & VR (1972) (they used the usual kernel
density estimators instead of (2.2)). For the monotonized versions of these tests,
Theorem 3 holds. The proof is completely analogous to the proof in Section 4.
For details the reader is again referred to Stijnen (1980). Our results are not
directly comparable with those of J & VR, because they investigated the uncon-
ditional risk and gave upper bounds for its convergence rate. However, since
usually convergence in distribution indicates convergence in absolute mean, our
results provide at least a good guess for what the unknown exact convergence
rate and limit constant of the unconditional risk will be.

Sequences a, and b, that satisfy (2.4) and (2.6) are easily constructed if some
knowledge is ‘available about the rate of convergence of t¥ (i = 0, 1) in the
supremum norm. Suppose for instance that for some sequences a, | a and b, 1 b
it holds that '

(5.1) SUPpg; 4y | ED(x) — tO(x)| = 0p(kn),

for some sequence k, | 0. Such results are widely available for the usual kernel
density estimators (see Singh (1978), e.g.). These results are easily adapted for
the special kernel estimators used here. If (5.1) holds, we can define [a,, b,] as
the longest interval contained in [a/, b,] on which ¢,(x) = kY and ¢, (x) < k2.
Since ¢ is analytic and strictly positive on (a, b), it follows easily that (2.4) holds.
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In order to show that (2.6) holds, we notate || f|| = sup{| d(x) |, x € [an, b,]}. Then
we can write

t_t

n t

SUP[q, b1 | dn(x) — d(x) | = ‘

IA

N1/t ll Nee =t 0+ W1/eall NE 0 NL/eN Nen — 2l
k' P0p(ka) + En'/20p(k7"°)Op(k:")0p(kn) = 0p(1).
Therefore, (2.6) is satisfied for [a,, b,] defined as above.
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