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ASYMPTOTIC PROPERTIES OF CENSORED LINEAR RANK
TESTS

By Jack Cuzick

Imperial Cancer Research Fund, London

A conjecture of Prentice is established which states that for censored
linear rank test, exact scores based on conditional expectations can be replaced
by approximate scores obtained by evaluating the score function at an estimate
of the survival function. We show that under minimal conditions, asymptot-
ically equivalent tests are obtained when either the Kaplan-Meier, Altshuler,
or moment estimator of the survival function is used. Asymptotic normality
is also established for a general random censorship model under the null
hypothesis, and for contiguous alternatives. This is used to calculate efficacies,
and when the censoring times are i.i.d., an expression for the asymptotic
relative efficiency is given which is a natural generalization of the one for
classical uncensored linear rank tests.

1. Introduction. Prentice (1978) has constructed a general class of linear
rank tests for a regression model with censored data. His approach was to specify
a score function for a classical linear rank test in the absence of censoring
(Chernoff and Savage, 1958; Hajek and Sidak, 1967), to construct all possible
rankings of the (unobserved) uncensored values which were consistent with
observed censored sample, and then to assign to each observation the average of
all possible scores it could have received in the absence of censoring, giving equal
weighting to each possible uncensored ranking. Except for a few special scoring
functions (notably logarithmic or power-law scores), these averages are unwieldy
when there is appreciable censoring, and Prentice suggested that asymptotically
equivalent tests might arise if the score function was evaluated at some suitable
estimate of the survivor function. This is well known to be true for uncensored
data, but requires further justification when censoring is present, because the
estimate of the survivor function is more complicated.

In this work we show that Prentice’s conjecture is true under minimal condi-
tions and also we show that it remains true if Prentice’s moment estimator of
the survivor function is replaced by either the Kaplan-Meier estimator or
Altshuler’s estimator. Asymptotic normality of these tests is established under a
random censorship model for the null hypothesis and contiguous alternatives by
martingale methods. This is used to compute efficacies for a general random
censorship model and asymptotic relative efficiencies for i.i.d. potential censoring
times, where fully efficient linear rank tests exist. Asymptotic normality for
general alternatives has been established in Cuzick (1982) by more complicated

methods.
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2. Approximate scores. Let {T;} be a sequence of random variables. We
observe the sequence of pairs (X;, ¢;) where X; < T; and ¢; = 0 if T} is uncensored
(i.e. X; = T;) or g, = 1 if T; is censored (i.e. X; < T;). To each observation we
attach a covariate z;. The 2-sample problem is obtained by letting 2; denote group
membership. Prentice’s generalized rank vector for the X;,i =1, ---, n can be
represented as follows:

Rn=(R1m'"ann) and for i=1’"'yn Rin=(jyl)

where j is the number of uncensored observations less than or equal to X; and /
is an indicator function for a censored observation, i.e. | = ¢;. Given a score
function ¢, the score assigned to an observation with generalized rank R;, =

Gy D) is
IG5 60 = [

0=y -<y=

1(bl(u'j) d(uly ""u’k)’ ‘l=09 ]—9 ]=]—9 "'9k

where ¢o = ¢, ¢1(u) = u™' [§ ¢o(v) dv, k is the total number of uncensored
observations,
d(u, -+, w) = [Tk nul™ du;,

m; is the number of censored observations between the ith and (i + 1)st
uncensored observation, and n; = Yk; (m; + 1) is the number of observa-
tions greater than or equal to the ith largest uncensored value. By convention
J((0, 1); x) = 5 x (u) du. We note in passing that under a progressive type II
censoring model J(R;,; ¢) = E(¢ | R;,). In particular this holds when there is no
censoring. (See Kalbfleisch and Prentice, 1980, for a discussion of censoring

mechanisms).
Prentice’s test statistic takes the form

(1) T* = (1/n) Ti1 zd (Rin; ¢1),

and he conjectured that an asymptotically equivalent statistic would arise if
J((j, 1); ¢) were replaced by

di(JI((, D; w)) = ¢u(FY),
where
FY¥ = L ni/(ni + 1)

which is the right continuous version of the moment estimator of the survival
function when the {T'} are i.i.d.
This leads to the alternative statistic

1 A A A A A
@ T =>Thandl) = f do(FH) dfs + f ou(FH) dfs,

where
f5(t) = (1/n) i 2:(1 — e)ix>g

Fi(t) = (1/n) Yia zieid x>y,

and the integrals are over (®, —»), i.e. the whole real line but with reversed
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polarity since F§ and F3 are decreasing. We also record here the notation
Foty =n? 32, (1 - &)ix>u, Ft)=n™ Y1 elixy
and F = F o+ F 1
The correctness of this conjecture is confirmed by the following:

THEOREM 1. Assume that the score function ¢ is twice continuously differen-
tiable on (0, 1) and that

(3 [te’(t)| + | t20"(t) | < Kt~

for some o < Ve and K < .
Also assume that the {T;} have continuous distribution functions and that

lim inf,_,.n Var(9) > O
Then the statistic (1) is asymptotically equivalent to (2), i.e. J(Rin; ¢1) may be
replaced by ¢,(F%¥).

An asymptotic approximation for Var(.7) under a random censorship model
with the {T} i.i.d. is given in the next section, from which the growth condition
may be checked. An expression for general alternatives is given in Cuzick (1982).
We also note that Theorem 1 remains true if either the Kaplan-Meier (1958)
estimator

FM = ] ((ni = 1)/ns)
or Altshuler’s (1970) estimator
Fr = exp(-3is; ni)
is used in place of F'¥.

THEOREM 2. The results of Theorem 1 remain valid if either Fror FEM is
used in place of F¥ in (2).

Before proving these results we require the following:

LEMMA. Letn,>n, ... > n, =1 be positive integers. Then foranyj <k

.o : 1 . n;
I <exp)—Xio —r <Ilk
=1 n; p{ i=1 ni} H =1 n; +1

(3

;=

and

i ni o o nmi—1 < j n; 2
(4) =1 n; + 1 H =1 n; =1 n; + 1 n,'.
PrOOF. A Taylor expansion of e ™ gives
1-1/n<e"<1-1/n+ 1/2n°
and1 —1/n+1/2n2<1— (n + 1)7! for n = 1, from which the first pair of
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inequalities follow. To establish the final inequality, the left-hand side of (4)
equals

{Tl4=1 ni/(ni + DL — [T (1 — 1/n?))

and the second factor of this is less than or equal to

00
lan?< f x~2dx + nj? < 2nj%.
n,

ProOF OF THEOREM 1. Note that
(5) J((j, 1); uf) = [Iisj ni/(n; + B), when p; + 8> 0.
Expand ¢(u;) around &; = J((j, l); u) to see that for any j < k

lo (@) — J((j, ); ¢) |
(6) = f lo(%) — ¢ (w) | d(w, -~ -, ug)

= f Vo (4 — )| ¢”(Au; + (1 — A)G) | d(w, «- -, wr)
where 0 < A =< 1, and the integrals here and throughout the remainder of
the proof are over the set {0 = u; = --- = u, < 1}. It follows from (3) that

|¢”(Au; + (1 — A)g;) | < K(uj® + 4;?) for some K < « and 8 < %. Thus (6) is
bounded by a constant times

(7 a4 f (w— G)* d(ug, -+, ) + f (wj — @) %ui® d(ug, - -, w).

As in the lemma it follows from (5) that

A n; A
f (uj:_ uj)2 d(uy, -+, ug) = Hisj m - uf

vy __1___} _ ]
= ujzl:Hisj‘ll + ni(ni i 2) 1

< (2¢%*/n))a?, for n;=1.

Thus the first term in (7) is less than a constant times (n;) 477" It will now be
shown that this is true for the second term. Making use of (5), the second term
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of (7) equals
n; n;

” n; N
u}*’(H,-s,- m_—ﬁ) - 2u,-<1],~<, T) + Ilis S -
= exp{2,<, 2 log( " 1) + log( .n ﬁ)}
I n;
-9 exp12,<, log + 1 + log m

I n\l
|t )
From log(1 + x) = x + O(x?), it follows that for n; = 6 this is

()]

el 2 8 },
= exp‘lzisj i+ 1 + n+ ﬂ + O(n,- )

1 g-1
2exp s~ o Y T 6

+ 0(n72)}

-2
+ exp{zisj E%:B + O(ni—Z)}

= [exp{Zisj 'g;—i}'][exp{zz'sj O(n®)} — 2 exp{Yis; 0(ni®)}

+ exp{Yi<; O(ni?)}]

= [exp{(B — 2) Jis; (n; + )HHO(Zi<j ni?)}.

Now exp{—Yi<; (n; + 1)} = &;(1 + O(n; ")) and so (8) is bounded by a constant
times nj'4?7?, as required. It is easily checked that ¢, also satisfies (3) and a
similar argument can be used to bound the difference between ¢; (J(R;,; ©)) and
J(Rin; ¢1). Thus, if we let R(t) equal the rank of the largest observation less than
or equal to t and N (t) denotes the number of (censored or uncensored) observa-

tions greater than or equal to ¢,

1/2

f (G0 (R(1); ) — J(R(®); d0)} dF
N(t)=6

n

+ f (61T (R(®); w) — J(R(®); $1)} dF}
N(t)=6

e f (F¥()>* dF
nF

< (Const){max | z;|}n

which tends to zero as n — « if 8 < 2. If 8 > 2, then this is bounded by a constant
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times
n~12 f F'dF -0, as n—
N(t)=6

since ¥ = F'. The finite number of terms when N(t) < 6 are easily seen to be
negligible. Since lim inf n~'Var(.7) > 0, it follows that (7 — 7*)/Var'/*( .7)
— 0, as required.

PROOF OF THEOREM 2. Since F < Fr < F¥, we need only establish the
equivalence of the forms with F% and F¥. By (3) and the lemma there exists a
K < o such that

nl/zf | po(FY) — do(B5M) | dES
< {max | z;| }Kn'/? f | M — FEM| (FEM)=0+e) g for some o < %
< (const){max | z|}n""/? f (FFM)~«(F)™ dF

= (const){max | z;| }n~* f (B)-0+ g

< (const){max | z|}n™*2 ¥, (i/n)"*** >0, as n — o.

A similar argument shows that

n'/? f |¢1(F¥) — ¢ (FFM) IdFﬁ —0, as n— o,
which completes the proof.

3. Asymptotic normality and efficiency. Another type of rank test used
for censored data consists of weighted sums of the differences between observed
and “conditionally expected values” of the covariate z; at each uncensored
observation. Such statistics are of the general form

9) I =@1/n) Tk (1 — &)z — 2)®(Fr(X:))
where
zZi= Y sz{ijXi}/ 2 Iixexy

is the average value of the covariates for those “persons at risk” at the time of
the observation of X;.

Mehrotra, Michalek, and Mihalko (1982) have shown that if ®(u) = ¢o(u) —
#1(u) and ®(Fr(X;)) is replaced by the conditional expectation E(® | R;,), then
(9) is equal to Prentice’s linear rank test with score function ¢. The methods of
the previous section can be adapted to show that the use of approximate scores
does not asymptotically affect the statistic, so that (2) and (9) are asymptotically
equivalent under the conditions of Theorem 1. If we define 9 (t) as at (9) except
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that the summation is only over terms with X; < ¢, then, when the {T}} are i.i.d.
and under general assumptions on the censoring mechanism,  (t) is a square-
integrable local martingale with respect to the o-field % (t7) generated by all
observations less than ¢ and the indicator function of {some X; = t}. Rebolledo’s
(1980) results can then be used (cf. Gill, 1980, and Anderson, Borgan, Gill and
Keiding, 1982) to establish asymptotic normality. In particular it is not difficult
to establish the following:

THEOREM 3. Under the conditions of Theorem 1, and the additional assump-
tions that the {T} are i.i.d. with survival function Fy and that a random censorship
model holds, i.e. X; = min(T;, C;) for {C;} independent (not necessarily identically
distributed) and independent of the {T;}, then as n — o

n'2% [en— 4 (0, 1)
where

o= f P*(F(t))Var(z| F (t7)) dFo,

Var(z| # (t7)) = F&(t)/Fc(t) — (F&(t)/Fc(t))?,
Fo(t) = E(Fo(t)), Felt) = (1/n) ki P(C;>t)
Fe(t) = (1/n) Tka zP(C; > t), etc.
The variance o2 can be consistently estimated by
(1/n) T (1 = &)@*(Fr(X:)Var(z)
where

Var(z) = 3.1 (3 — 2)°[ixxg/ T i1 Lixzxy-

A contiguity argument can be used to extend these results to regression
alternatives. In particular if T has a continuously differentiable density function
f and survival function Fy, T; = T + bw; and b ~ n™*2, then nY*( I — u,)/0, —
#(0, 1), where

Hn = f ®(Fr(t)) [dF§(t)/dFo(t) — F*(t)/F(¢t)] dFo(2).

(F(t) = EF(t), etc). Under the assumptions of Theorem 1 and this additional
assumption on f, du,/db and ¢, are uniformly continuous in b for b in a neighbor-
hood of zero and some calculation shows that the efficacy of .7 is given by

eg = lim, e (Opn/0b | p=0)%/0?

1 Y ] ,
(f <I>(u)<I>*(u)[ we(p) — Mc(_v)] du)
o Fc(v) b= F )

= limn_,w 1 (Fz (v)) 5 _
2 2y — S C\VW))
J; ® (u)[Fc (v) Folv) :Lp?(u) du

’

provided the limit exists. Here ®*(u) = ¢§(u) — ¢¥(u) where ¢§ and ¢F are
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generated from the score function ¢* = f'(F7* (u))/f (F7'(u)) and F&*(v) = (1/n)
Y&, wiziP(C; > v). As anticipated by Prentice (1978), the efficacy is maximized
by taking z; = w; and & = &*. However these tests are not fully efficient with
respect to their parametric analogues unless the {C;} are i.i.d. In that case the
efficacy factors into two terms:

eg= Bfﬁ%

where

2 (2 — 2)(w; — w)
i (2 — 5)2

B% = limn—)m

provided the limit exists, and

1 2 *
ﬁ%=<Ef0 é(u, C)o*(u, C) du) /Ef$2(u, C) du,

where ¢ (u, C) is the censored influence curve defined by

[ o), u = Fp(C)
1¢1(F(C)), u < Fr(C)

and ¢* is defined accordingly in terms of ¢*(u) = f'(F*(w))/f(F~%(u)). In this
form, these expressions lead to formulae for asymptotic relative efficiencies which
are natural generalizations of those found in Hajek and Sidak (1967, Chapter
VII), the only difference being that one now correlates the censored influence
functions ¢ and ¢* instead of the original score functions ¢ and ¢*.

¢, C) ="

REMARKS. (i) For the two-sample case, these formulae are equivalent to
those obtained by Gill (1980) and Leurgans (1984) and provide an alternative
interpretation of their results in terms of the classical (uncensored) theory of
rank tests.

(ii) It should be possible to weaken the condition that the {z;} are bounded.
This would be important for example when the {z;} are i.i.d. random variables
drawn from some unbounded distribution. The condition that ¢” exists is
probably also superfluous. It would also be nice to handle ¢ functions with a
finite number of jump discontinuities, as in the median test. However, all the
commonly used tests, e.g. the logrank test (¢ = —1 — log t), the generalized
Wilcoxon test (¢ = 1 — 2¢t) and Harrington and Fleming’s (1982) intermediate
family of tests (¢ = o — (1 + a)t*, 0 < a < 1) are easily seen to be covered.
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