The Annals of Statistics
1984, Vol. 12, No. 2, 612-623

UNIFORM CONSISTENCY OF A CLASS OF REGRESSION
FUNCTION ESTIMATORS!

By W. HARDLE AND S. LUCKHAUS

University of Frankfurt and University of Heidelberg

We study a wide class of nonparametric regression function estimators
including kernel estimators and robust smoothers. Under different assump-
tions on the kernel and the sequence of bandwidths, we obtain weak uniform
consistency rates on a bounded interval. The uniform consistency is shown
in a “stochastic design model” and in a “fixed design model”.

1. Introduction. Let (X;, Y1), (X, Y3), --- be independent bivariate
random data sampled either with stochastic design rv’s X;, X, - - - or with fixed
design points x;, xs, - - -. In the stochastic design model (X, Y,), (X;, Y2), - - -
are independent bivariate random variables identically distributed as a bivariate
random variable (X, Y) whose joint cumulative distribution function is F' and
whose joint probability density is f (x, ¥). In the fixed design model (noisy sampled
data) we have an underlying family of probability density functions {f(.; x):
x €[0, 1]} and £, = {x1, X3, - - - %,} where 0 < x; < x, - - -, < x,, = 1 is a partition
of [0, 1] determined by the experimenter.

The nonparametric regression problem is the problem of estimating the
regression curve of Y on X. Equivalently, the nonparametric regression problem
requires finding m(x) = my r(x), given observations

{ X, m(X)) + Nij.

The function ¢ is used here as an indexing parameter, since, as is shown in
examples below, the shape of ¥ determines the regression curve m(x). Different
choices of ¢ yield the conditional mean or the conditional median for instance.
The N; being an independent noise variable which may depend on X; and m, r
being the trend satisfying

(1.1) EN(Y —m(x) =0

where E,(-) = E(- | X = x) in the stochastic design case or E.(-) = [-f(y; x) dy
in the fixed case and /() is a monotone continuous function.
We propose to estimate m(x) by m,(x) a solution (with respect to §) of

(1.2) 2 ai(x)Y(Y; —60) =0

where a;(x) = a{™(x) are (localizing) weights depending on X. In the present
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paper we derive—under mild conditions on the weight sequence a!™(.)—the
uniform consistency of m,(-) on the interval I = [0, 1]. We show that

(UC) ratsuposi<i| ma(t) — m(t)| = O,(1)

with rate r = r,. In the derivation of this result we shall need bounds on moments
of sums of independent rv’s, as given by Whittle (1960), Theorem 2.

The quite general setup of m,(x) as the solution of (1.2) and m(x) as the
solution of (1.1) allows us by tuning «;(-) and ¥(-) to obtain a wide class of
estimators and regression functions as will be shown in the following examples.

One of the following examples (Example 5) will give a partial answer to a
question raised by C. J. Stone in his special invited paper on optimal rates of
convergence (Stone, 1982, page 1044, Question 4).

ExXAMPLE 1. Take ¥(u) = u in both (1.1) and (1.2) and define
ai(x) = nT'hT'K((x — Xi)/h)

for kernel K(-) and a sequence of bandwidth h = h(n) tending to zero. The
resulting regression curve in the stochastic design case is

myr(x) = m(x) = E(Y| X = x)
and the estimator is
mi(x) = (nh)™ T K((x — X;)/h)Yi/[(nh)™" T1=1 K((x — X;)/h)].

The estimator was proposed independently by Nadaraya (1964) and Watson
(1964). Rosenblatt (1969) and Collomb (1977, 1979) computed bias and variance
rates. Schuster (1972) demonstrated the multivariate normality at a finite number
of distinct points; Schuster and Yakowitz (1979) derived uniform consistency of
m7(x) on a finite interval. Recently, Johnston (1979) in his thesis proved a
uniform consistency result (with rates) for the related estimator

mi(x)-[(nh)™ T K((x — Xi)/h)/fx ()],

fx(-) denoting the marginal density of X. Further (uniform) consistency results
for m}(x) were obtained by Major (1973), Konakov (1977), Nadaraya (1973,
1974), Stone (1977) among others. A bibliographic review on the estimation of
m(x) = E(Y| X = x) may be found in Collomb (1981).

ExXAMPLE 2. Take ¢(u) = u and define in the fixed design case

ai(x) = b f K(x ; “) du

where so = 0, sj-1 < x; < sj, 8. =1, [ K(u) du = 1 and h = h(n) is as above a
sequence of bandwidths tending to zero as n — . Since Y, ai(x) = 1, the
resulting estimator is

ma(x) = Y ai(x)Y;,
first discussed by Gasser and Miiller (1979) and recently considered by Cheng
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and Lin (1981) (with s; = x; in a;(x)). The Priestley and Chao (1972) estimator
does not fall in the class of estimators here, but is, as shown by Cheng and Lin
(1981), also uniform consistent obtaining the same rate as m,(x).

In the following example we will assume symmetry of f(y | x). Note that for
the results of this paper neither symmetry of f(y | x) nor antisymmetry of y are
required. This assumption is only made to obtain in a convenient way the
conditional mean from equation (1.1).

ExXAMPLE 3. Take f(y| x) respectively f(y; x) be symmetric and y a bounded,
antiasymmetric function. Then again (1.1) gives for the stochastic design case
my,r(x) = m(x) = E(Y|X = x)

respectively

m(x)=fyf(y; x) dy

in the fixed design case. The regression curve is thus a quantity my, »(x) which
minimizes (w.r.t. §)

fp(Y - 0)f(ylx)dy

where we assume p to be positive, even, convex and differentiable with derivative
p’ = . This is exactly the notation of a M-functional (Bickel and Lehmann,
1975, page 1053) and shows that m,(x) from (1.2) (with weights {a;(x)} as in
example 1 or example 2) is a robust estimator of m(x).

In the stochastic design case m,(x) is a solution (with respect to 6) of

n"h7 T K((x — X)/h)Y(Y: — 6) = 0.

In the fixed design case the estimator is a solution (with respect to 6) of

Rl YR, { f_l K(" ; “) dngI/(Yi —9)=0.

Pointwise consistency and asymptotic normality along with some numerical
results are shown in Hardle (1983) and Hardle and Gasser (1982). In the last
paper it is also shown that the robust estimator m,(x) proves to be useful in the
evaluation of Laser spectra (Raman spectra). If we take for instance

Y(u) = max{—«, minfu, «}}, «=0

we obtain a Huber-type (Huber, 1964) robust nonparametric regression function
estimator. Bias and variance rates for this Huber-type estimator with a uniform
window, i.e. K(u) = I_ 5 5(u) were computed by Stuetzle and Mittal (1979).

EXAMPLE 4. Taking ¢(u) = au*', u = 0 and ¢(u) = —a(—u)*"Y, u < 0,
1 < a < 2 allows us by tuning « to steer from the (local) least square estimator,
which is m} (x) as a = 2, to the (local) median (as o — 1) and vice versa. The
whole class of these estimators will also be covered by our theorems.
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ExXAMPLE 5. Take y(u) = % — I(u = 0), a y-function leading to the
conditional median m(x) = med(Y | X ='x) as the regression curve. Stone (1982)
raised ‘the question if {n™"} (r = (p — m)/(2p + d) in’his notation) is still an
achievable rate of convergence. The results of this paper give a partial answer to
that question. We show that for p = 1, d = 1, m'= 0 a subclass of his {T(9)}
indeed, {(n"'log n)"}, the optimal rate of his Theorem 1 (for the type of distance
considered here) is achieved. To see this in the “stochastic design model”, note
that assumption (A4) of Section 2 is trivially fulfilled /a d assumption (A3) is
satisfied if there exists a constant c, such that f (m(x) } ‘{[> 2¢9, x € I. 'Assump-
tions ‘(A1) and (A5) are only technical and (A2) is the definition of m(x) =
med(Y | X = x). Assume now that m is continuously/ differentiable so that the
modulus of continuity wn,(8) is linear in §. Then, Thedrem 1 below says that with
o ~ h, and r, ~ (log n)?(nh,) "2 uniform consistency of m, can be achieved
with rate r, = n™/® (log n)/* which is the optimal rate given in Stone (1982).
Quite analogous conclusions can be drawn in the fixed design model.

We present the result (UC) for «;(x) as in example 1 and example 2 for the
stochastic design case in Theorem 1 and a followli:g/ remark. Theorem 2 shows
(UC) in the fixed design case with «;(x) as in example 2. All theorems require a
certain amount of smoothness of m(-), expressed/}hrough the behaviour of the
modulus of ¢ontinuity of ‘'m which we denote by @,,. These results are improve-
ments over some previous work. Our assumptions are weaker than those of Major
(1973) in that Y is not required to be bounded a.s. and our results are stronger
than those of Schuster and Yakowitz (1978) because we were able to compute
uniform convergence rates for m}(x) as in Mack and Silverman (1982).

2. Results. We will make the following assumptions on the kernel function
ar}d on moments of [Y(Y — m(x) + s)].

(A1) The kernel K is positive, coﬁtinuously differentiable with compact support

0 A 1
[-A, A] and f K(u) du = f K(u) du = =.
_a o 2

(A2) yisa monptone, locally bounded function vyith E(Y —m(x))=0.
(A3) There are éonstants Co, €1 > 0 such that for every chE I=[0,1]

| |EQ(Y - m(@) +9)| > alsl, |s|<a
(A4,k) For some k = 2 let sup,erE, | (Y — m(x) + ¢1) | ¥ < 0.
(A4,%0) ¥ is bounded, supuem | ¥/(1) | < B, < o.
(A5) The marginal density of X is bounded from above and below

| 0O<as<feu)<b<ow forall uel
(A6) There exists a constant C, such that for every x € I
| Ep(Y — m(x) + )| < Cols|.

Some remarks about the assumptions should be made. The first assumption is
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very common in nonparametric regression and needs no further explanation
(Collomb, 1981). The second assumption is just the proper (implicit) definition
of the regression function. Assumption (A3) needs some more motivation. Assume
for simplicity that we have a homoscedastic error structure that is f(y|x)
= f(y — m(x)) and f(y|x) is symmetric. If we have that Y(u) = u then
(A3) is trivially fulfilled. For the nonlinear ¢ functions, (A3) is satisfied if
| [ ¥(y + s)/sf(y) dy| > co for small s. So (A3) can be interpreted as a criterion
for E.y’(y + s), (s small) staying away from zero, provided it exists at all.
Assumption (A6) is trivially fulfilled for ¥ (u) = u. For nonlinear ¢ functions (A6)
is obviously fulfilled if | [ Y(y + s)/sf(y) dy| < Co, which can be interpreted as
an upper bound for E.¢'(y — m(x) + s), s small. We have chosen this quite
technical way of formulation to include the conditional median corresponding to
Y(u) = %2 — I(u < 0) which is nondifferentiable at u = 0. The assumption (A4,k)
will be used for unbounded ¢ functions only, (A4,%) is just the definition of a
bounded ¢ function making m, a robust estimator of m.
As already mentioned, the modulus of continuity of m will be denoted by

wm(8) = SUP.esSUP |- |<s | M(x) — m(x’)]|.

As long as there is no confusion, the index “n” will be dropped in the sequel.
The following theorems will split up into a statement on unbounded
functions (i.e. containing as a special case the Nadaraya-Watson estimator) and
a statement on bounded ¢ functions. The theorems tell us how we have to choose
the sequence h = h(n) in dependence of the sample size n and the rate r = r, in

order to obtain (UC).
We begin with the uniform consistency in the stochastic design case.

THEOREM 1. Let the data be generated with stochastic design {X;},, and let
a;(t) = (nh) K ((t — X;)/h). Assume that (A1)-(A5) hold and let

wm(24h) <r, nh*/logn=d>0.
If (A4,k) holds let
R0 242/ 1) o
and if (A4,0) holds
nhriflog n = &

¢, depending on co, ¢, By, a, b. Then m,(x) satisfies (UC). If in addition (A6)
holds, only

nr2h1+2/(k—1) —> 00

and (A4,k) suffice to establish (UC).

REMARK. It can be shown that (UC) also holds for the situation described in
example 2 for the stochastic design case. Very similar arguments that are used
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to prove Theorem 2 yield that if

nh1*/k=Dp2+2/ (k=1 log n — o in case of (A4,k),
nhr?/(log n)* = & in case of (A4,0)

the uniform consistency (UC) with rate r = r, follows.
THEOREM 2. Let the data be generated with fixed design points {x;}%,, satis-

fying sup; | xi — x;_1 | = O(n™Y) and set «;(t) as in example 2. Assume that (Al)-
(A5) hold and w,(2Ah) < r. If (A4,k) holds, let

nh1+2/(k—1)r2+2/(k—1) —> 00
and if (A4,%) holds
nhri/log n = &,

£, depending on ci, co, By, [ K®. Then m,(x) satisfies (UC). If in addition (A6)
holds, the condition

nh1+2/(k—1)r2 — 00
together with (A4,k) suffice to establish (UC).
3. Proofs. To show that the class of estimators defined through (1.2)

satisfies (UC) for the various choices of y-functions and weights {a;(x)}%,, we
have to show that

Pisup.er| ma(x)—m(x)| > ra}
is arbitrarily small. Now by monotonicity of ¢, this can be estimated by
P(Q,) + P(Q)
where
Q, = {sup:eiga(x, —r) = 0}, Q = {infier8a(x, r) < 0}

and
&n(x, 8) = Yt ai(x)Y(Y; — m(x) + s).

By the symmetry of the problem it will suffice to consider P(2,).

The principal idea of the proof is to lay an equidistant mesh 0 =, <t; < - - -
< t, = 1, where 4, < n, to sum the probabilities at the meshpoints and to use
the mean value theorem applied to «;(t) between them. More precisely we have

P(Qn) = /;zsupt=tjP[{gn(t, _rn/2) = _nn} N Mn]
+ /;lsupt=tjP[tsup|u_t|</;1gn(LL, _rn/2) > Mn + gn(t’ —rn/2); N M"]
+ P(M7) = /1,[Sl1p:=t,.U1n(t) + SuPt=t,U2n(t)] + Usn,

where 4, 5, are arbitrary sequences to be specified later and M, is an arbitrary
set to be chosen for the different cases (stochastic/fixed design and the particular
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{a;(x)}1). We will also make use of the following fact that in the fixed design
Sriak(t) =0(nh un1formly in t
(Gasser and Muller, 1979) and in the stochastic design '
‘ | S Ea?(t) = O(nth™Y) uniformly in t
(Johnston, 1979). ' |

PROOF OF THEOREM 1. Suppose that (A4,k) holds, then with 5, = 8r,, 8
small enough to satisfy the assumptions of Lemma 1, we obtain from (A.1)

supe=, Urn(t) < vlr'k(nh)_k/z,
and if 7, < Ah we have from (A.3) ‘
‘ SUPi=t, Uza() < wa(rsn) ™ [h™* + (nh®)~*2),
and if (A6) holds
’ supi=e, Unn(t) < v3(r£) h™"* + (nh?)2]

where » denote large constants and M, is chosen as in Lemma 3. Then w1th /2
= nh™! (such that h‘ < /4, < n) we have from Lemma 3 :

P(R) < ms{(nhr?) ™ + (ZP°R2) ™ + [nh(Zr°h?)]™)
+ ustnexp(—usnh?)
= “4(nh_1)1/2(nhr2)_k/2 + ps exp(log n — usnh?)

which is small by the assumptions of the theorem. A similar inequality shows
that if (A6) is fulfilled, P(Q,) can be made arbitrarily small Suppose now that
(A4, ) holds and choose 4, such that

=1 |a, (] =< supIK’In‘lh 24be_1n(Ah +n ) < na4/(2By)

to fulfill the assumptions of Lemma 2. This can be made for 9, = Bra and rs, h >
us, us a large constant. So we get by Lemma'l and Lemma 2

P(Q,) < ue exp(—mr nh —logr—log h) + us exp(—e 'nh? — log r— log h)

which is small by the assumptions of the theorem.

PROOF OF THEOREM 2. Define M, = {(x1, %z, - - -, %s): SUPasizn1| Si1 — Si-1]
<v/n}. If v is chosen large enough we have that M = ¢ by assumptlon on the

ﬁxed design. Since
ai(t) = h-lf K(i_“) du
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we have

DN | =

Y ait) = f K(u) du =
(t—Ah,t+Ah)NI

il ai(t)|® < h7'sup | sip1 — sia | f | K|

Ty lal(t)| = kT f | K"|.
Choosing 7, = 8r,’ 8 small enough, we get from (A1) and (A4,k)
Uin(t) < por™*[1/(nh)]**
Usn(t) < mol(4rh)™* + (1/(nh®)**(r4,)7*].
Respectively if (A6) holds
Usn(t) = uul(4R)™F + (1/(nh?)¥*(r4)7*]
taking #2 = nh™" respectively #2 = nh™'r? (for the (A6) case) shows that P(Q,) is
small. Now in the case that y is bounded we see that
4 = ¢ 'By f | K’ |/(coh), e small
ensures
U,.(t) =0
and
U, (t) < pio exp(—uisrinh — log h).

APPENDIX

It is shown here how the terms U;,(t), U;.(t), Us, may be estimated in the
different cases (stochastic design, fixed design). Lemma 1 and Lemma 2 are
shown for the fixed design case only. The proofs for the stochastic design case
are essentially the same by conditioning on { X, - - -, X,.}.

LEMMA 1. Suppose that the modulus of continuity of m(-) satisfies wm(Ahy)
< r,/4 and let 9, < cydr,/8 where § is a small constant, c, is the constant of (A3)
and M, C {3%; a;(t) > 6}. Then if (A4,k) holds

Uin(t) < n7* AL [supxen, (St a?(2))*?]
(A1)
X supo=z=<1 Ex(| ¢ (Y — m(x) £ ¢1)*).
Otherwise if (A4,%) holds
(A.2) Uin(t) < exp[— APn2(BS Yk af(8)7]

where A" denote constants.
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Proor. Using the assumption on w, and the monot0n1c1ty of ¥ near the
origin we have

E (Y — m(t) — ra/2) < E (Y — m(x)—rn/4)
foralli € {j: |t — x;| < Ah} and therefore
21 ai(O(Y: = m(t) — ra/2) — Ex¥(Y: — m(t) — r,/2)]
> corn/4 Xit1 ai(t) + galt, —1a/2)

by assumption (A3). So by Chebychev’s inequality and Theorem 2 of Whittle
(1960) we have that

Uin(t) = P{Z1 i)Y — m(t) — ra/2) — E(Yi — m(t) — ra/2)] > .}

= nnkxk[Zt—l o (t)]k/2
X Sup|t—xi|<AhEx,-[| \D(Y - m(t) - rn/2) - Exi¢(Yi - m(t) - rn/2)|k]

in the case that (A4,k) is used. Otherwise, if (A4,) holds, by an easy extension
of Whittle’s Theorem 2

Uln(t) = eXp["??»(‘ieB?p 2;—1 az(t)) l]
for bounded ¥ functions which shows that (A.1), (A.2) hold. O
The next lemma estimates Us,(t).
LEMMA 2. Suppose that the modulus of continuity of m(-) satisfies wm(Z5* +
Ah) <r,/2. Then, if (A4,k) holds
UZn(t)
< 12" A2 {supen,uer | Bt af (W) |*supuerEx | (Y — m(x) — r,) |*
+ Supxem,uerl X1 [ef (W)P*?supuerE, | Y(Y — m(x) £ ¢1) |4,
Ak a constant.
On the other hand if (A4,) is true, then U,,(t) = 0 provided that
Mn C M4, = {Ztn=1 laz,(t)l < nn/n/[zB\P]}'

PrOOF. By the assumption on the modulus of continuity of m(-) and the
mean value theorem we conclude that

Uzn(t) = P{ f
T (t)

n

=1 af (WYY — m(t) — r./2) | du > nn}

where T'n(t) = {u: |u — t| = 2;'}. This already shows that U,,(t) = 0 if
M, C #, and (A4,%) holds. '
We now further estimate the RHS of the inequality above using Chebyshev’s
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inequality. We then have

[ smawe,
T'n(2)

j;(t) ( 22 af (WYY = m(t) — ra/2)

Y(Y;i — m(t) = ra/2)| dul®

Usn(t) = Af)n;k{E

+ E

k
Y(Y; — m(t) —r,/2)|1]| du }

- E,

= Vln + Vgn, say.
Now by Hoélder’s inequality (with p = k) and Theorem 2 of Whittle (1960), we

have *
k—1
Von < l: f du] E f
T o(t) T

n

Y | 2 el (WY (Y — m(2) — ra./2)
— E 1Y (Yi = m(t) — r./2)|11* du

< (277 supucracn, (S8 la? (W)1H22¥
X SupuEI,lu—x.|<Ah+/;‘Ex; [¥(Y; — m(u) — 1./2) lk}

Applying now the assumption on the modulus of continuity, we have the desired
upper bound for both V,, and Vs, (after an application of Hélder’s inequality to
Vin, too). O

In the following lemma we estimate the term Us, for different sets M,,.

LEMMA 3. Let
M,={(X;, -+, Xn): Y ai(t;j) >a/4 and
#IX —tj| < Ah + 7'} < 4bn(Ah + 7. e Y for j=0, -+, Zn, 0 < e < 1}
in the stochastic design case. Then
Us, = A®Z,exp[—Nse'n(hZ + 232)],

where A®, \; are constants.

PrROOF. Since Ea;(t) = n™' [—an+tansaniK(W)f(t + uh) du. = a(2n)7,
Yo ai(t) < a/4 implies | Y&, [ai(t) — Ea;(t)]| > a/4. Now by Whittle’s theorem
we have

sup K2

P(|X% [ai(t) — Ea;(t)]] > a/4) = exp(—)u m n), A1 = const.



622 HARDLE AND LUCKHAUS

On the other hand
#HIXi—t] <Ah + 7Y = Yk Ino(Xo) = n7' X Z;
where
An(t) = {u: |u — t] < Ah + 27%).

Since nT'EZ;(t) = [a,@ fx(w) du < 2b (Ah + #,") we have by Whittle’s theorem
that

P(n' 3%,y Z; = 4bn(Ah + 7;)e™) < exp[—An(Ah + £;)], X2 = const. O
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