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SEQUENTIAL LINEAR RANK TESTS FOR TWO SAMPLE
CENSORED SURVIVAL DATAl

By ERIC V SLUD
University of Maryland

Under extremely general patterns of patient-arrival, allocation to treat-
ment and loss to follow-up-in (randomized) clinical trial settings, the sequen-
tially computed logrank statistic (Mantel, 1966) is shown (under the, null
hypothesis of identically distributed lifetimes) to have exactly ‘uncorrelated
increments, and is shown via Rebolledo’s (1980) martingale invariance prin-
ciple to satisfy a functional central limit theorem, justifying sequential logrank
tests of Jones and Whitehead (1979). Generalizations are made to other two-
sample rank tests for censored survival data, and practical apphcablhty to
real randomlzed clinical trials is dlscussed

¢

1. Introduction. Human survival testing and randomized eclinical trials
have come in recent years to be regarded as a class of biostatistical applications
where the standard arguments in favor of sequential analysis have special force
(cf. Armitage, 1975, Pocock, 1977). Because of the large ethical and financial
costs entailed in protracting a clinical trial beyond the earliést point when one
of two treatments seems definitely superior, many ‘trials can and should be
stopped early. (In survival testing with laboratory animals thére are convincing

purely economic or decision-theoretic justifications for sequential"procedures') ,

However, the theoretical basis for equential or repeated slgmﬁcance tests is only
now advancing to the point of allowing realistically general patterns of patlent
arrival, allocationr to treatment and withdrawal.

- The important paper of Breslow (1969) was ‘the first to use weak-convergence
theory to provide a rigorous basis for parametric seéquential analysis of two-
sample exponential survivorship data when patients enter study at random times
but are never lost to follow-up. Then, for the case where two large groups of
patients with identically distributed lifétimes enter ‘treatment $imultaneously
and are progressively censored (but never lost to follow-up), Chatterjee and Sen
(1973) proved martingale and weak-convergence results for a large class of linear
rank statistics, one of which (the modified Savage statlstlc = the négative of the
Mantel- Haenszel or logrank statistic of Mantel, 1966) was adopted for sequential
testing by Koziol and Petkau (1978). Following heuristic but i 1mprec1se martingale
formulations due to Mantel (1966) and Cox (1975) of rank statistics for censored
data, Aalen (1978) and Gill (1980) introduced countmg process methods and
square-integrable martingale theory into censored survwal analys1s ‘Aalen (1978)
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gave a stochastic-integral representation for the linear rank statistics on censored
data, and he proposed to apply general martingale invariance principles like
those of McLeish (1974) to their asymptotic distribution theory. Gill (1980)
proved under fixed and random censorship models for two groups of simultane-
ously entering patients with identical lifetime distributions that a broad class of
linear rank statistics if evaluated continuously in time would in the large-sample
limit converge weakly (in D[0, »)) to time-changed Brownian motion. Sen (1981)
in a similar setting gave the large-sample theory for sequential (progressive-
censoring) hypothesis testing in Cox’s (1972) proportional-hazards regression
model.

Sequential statistical procedures based on general arrival patterns and cen-
sored data have developed along a different line. In a series of Biometrika papers,
Whitehead (1978), Jones and Whitehead (1979) and Whitehead and Jones (1979)
introduced the continuous-time sequential logrank test for the analysis of large
clinical trials. Because of the generality of the stopping boundaries discussed in
the last of these papers, it emerges that Whitehead and Jones interpret the
logrank statistic (defined in Mantel, 1966, Peto and Peto, 1972) computed at
successive death times as forming asymptotically a Brownian motion under the
null hypothesis of identical lifetime distributions. Whitehead and Jones (1979)
place no specific restrictions on the mechanisms of patient entry and allocation
to treatment group, but rely for the validity of their procedures on a heuristic
argument of Whitehead (1978) analogizing a “partial likelihood” (Cox, 1975) for
ranks of two-sample censored survival data with the likelihood of partial sums
of independent normal variables. This same argument of Whitehead (1978) is
used to imply in Jones and Whitehead (1979) also that the sequentially computed
modified-Wilcoxon statistic (originated by Gilbert, 1962, and Gehan, 1965) forms
asymptotically for large trials an independent increment process, but a correction
by Jones and Whitehead (1981) acknowledges that this is wrong under staggered
patient entry. Slud and Wei (1982) have shown that modified-Wilcoxon incre-
ments for censored survival data are generally correlated except in the case of
simultaneous patient entry with progressive censoring (the one case simulated
by Jones and Whitehead, 1979). Therefore the application of Whitehead’s (197 8)
sequential W, test to sequential logrank testing requires new justification. In the
meantime, Tsiatis (1981, 1982) has provided a rigorous asymptotic distribution
theory for the logrank statistic (and other linear rank statistics) evaluated at a
finite number of chronological times in a fixed interval [0, T], in the setting
where patient entry is staggered, random and independent of the (independent)
survival and censoring times. In the same setting as Tsiatis (1981), Slud and Wei
(1982) have proved weak convergence in D[0, T} (under null and alternative
hypotheses) for the sequentially computed modified-Wilcoxon statistic in the
large-sample limit, using a U-statistic representation. Their results can, as they
show, be implemented in a practical repeated significance test, and Tsiatis (1982)
remarks that such tests can similarly be constructed for all the linear rank
statistics he studies. Most recently, Sellke and Siegmund (1983) have proved
theorems on weak convergence of normalized time-changed partial-likelihood
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score statistics in general proportional-hazards settings. However, as we describe
further in our discussion at the end of Section 4, the sequential hypothesis tests
provided by Sellke and Siegmund are applicable only to large clinical trials of
indefinite duration and of size much smaller than the ultimate “horizon” of
patients with iid data and random group-allocation.

The present paper provides an extremely general theoretical framework for
two-group clinical trials, allowing random or fixed patient arrival times, random
or fixed allocation to treatment group, and random censoring time which may
depend both on treatment group and on survival time (but must be “uninforma-
tive”). Definitions, assumptions, and an appropriate null-hypothetical model for
a finite-sample clinical trial are formulated in Section 2. Discussion of the
martingales associated with the linear rank statistics then leads (Proposition 2.5)
to martingales approximating an important subclass of statistics containing the
logrank. A striking corollary is that these statistics have exactly uncorrelated
increments in chronological time. Square-integrable martingale methods and
stochastic integrals with respect to counting processes are used throughout, and
our general reference for these is Liptser and Shiryaev (1977, chapters 5, 18). For
the small amount of “random measure theory” we introduce, see the survey of
Shiryaev (1981, Section 4) and references cited there. Section 3 contains examples
showing that the sequentially computed logrank statistic in settings other than
simultaneous entry need not form a martingale. Section 4 gives general asymp-
totic conditions under which Rebolledo’s (1980) martingale invariance principle
applies to prove weak convergence in the large-sample limit for the logrank (and
other linear rank) statistics as continuous-time processes. In Section 5 we apply
our results to justify and generalize the sequential logrank tests of Jones and
Whitehead (1979). The discussion concluding the paper in Section 6 points out
some extensions and limitations of our proof techniques and addresses some
practical questions in the implementation of sequential nonparametric survival
tests in medical trials.

Readers interested primarily in applicable results rather than techniques of
proof should proceed from the notational discussion of Section 2 preceding
Lemma 2.1 directly to the statement of Corollary 2.4 and then to Theorem 4.2,
the discussion following it, and Sections 5 and 6.

2. Notations and martingale results. Throughout this section, {(E;, Z;,
X;, Y;)}%, denotes a fixed sequence of independent quadruples of data for patients
in a clinical trial: E; denotes the time of entry for the patient labeled i (who is
not necessarily the ith to enter); Z; is the indicator equal to 1 if patient i is
allocated to treatment group A and 0 if to group B; X; denotes the latent random
time for patient i until the endpoint (death, tumor recurrence, etc.) under
investigation; and Y; denotes the time from entry until patient i is lost to followup
(whether because of administrative censoring, withdrawal from study, or death
from competing risks). The sequence {(E;, Z;)} of pairs may be fixed or random,
but we assume that the joint conditional distribution function of (X;, Y;) given
(E;, Z;) is Fy;(-, -) if Z; =1 and Fy,(-, -) if Z; = 0, not depending on E;. For all
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bivariate distribution functions F defined in this paper, we use the notation
F for the complementary function F(s, t) = 1 — F(s—, ©) — F(o, t—) +
F(s—, t=),eg Fi(s,t)=P(Xi=s, Y= t|Z;=1). -

Although we do not assume that X; and Y; are conditionally independent or
that (X;, Y;) are identically distributed, we are interested in a two-sample
hypothesis test of equality of death hazards, so to ensure that censoring be
“uninformative”, we assume throughout the paper the null hypothesis

t (o '
(%) H(t) = f f [Fci(x’ x)]-lFei(dx’ dy) for &= O’ 1; i = 1’ 29 M
0 x— .

or informally, H(dt) = P(X; € [t, t + dt)| Z; = ¢, min(X;, Y;) = t) does not
depend on Z; or i. If X; and 'Y; are independent given Z;, H(-) is the ordinary
cumulative hazard function for X;. Note that the definite integrals [ b denote
[ Iapp so that % means [ I,5. The function H(-) is non-decreasing right-
continuous. '

At chronological time ¢ > 0, the only data observable is {X;(t), Z;, A:(t), E;:
E; < t}, where X;(t) = min(X;, Y;, t — E;) and A;(¢t) = I[X; < min(Y}, t — E))].
Let Ng(t) = Y., I[E; < t] be the counting process for entering patients, which
we assume to satisfy E(Ng(t)) < o for all ¢. For each i = 1 and u, ¢t = 0, we define

Ni(u, t) = AOI[X(t) < ul, ri(u, t) = I[X:(t) = ul.

Throughout the paper, ¢t indexes chronological time while u indexes time-on-test.
Thus r;(u, t) indicates whether patient i is observed by clock time ¢ to have been
“at risk” after time u on test. For patient i with X; < Y; who enters at E;, the
random measure N;(du, dt) on [0, ©)? (cf. Shiryaev, 1981, Section 4) is simply
the point-mass é(x, x+£). Next we define the numbers-at-risk and counts of
observed deaths from which the linear rank statistics are constructed. For 0 < u,
tlet ‘ ' .

r(u, t) =3, r,-(u, t) = 2 I[Xi(t) = ul, o(u,t) =Y Ziri(u, t)
N(u, t) = 5i Nilu, £), Na(u, ) = i ZiNi(u, t) |
I'(u, t) = p(u, t)/r(u, t) (with 0/0 = 0).

For each j = 1, on the completed probability space (2, #, P) where {(E;, Z,,
Xi, Y;)} is defined (with _7 denoting the P-null sets), we define U, =
min(X;, Y;) and

Fi=0a(MIE; < t), Z,IE; < t], A;(t), IIU; < t — E;], UjI[U; = t — E;))
<l =0o(ME;, Z;, I[X; < min(u, Y;)], I[U; < u], U;I[U; < u)).
In addition, the increasing right-continuous families of o-fields
Fi=a(Fijzl), Y=0Yjz1)

respectively describe the information available by chronological time ¢ and time-

on-test u.
Let ¢(u, t) denote a random & N ¥, measurable scoring function, which as
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a function of (w, u, t) on @ X R X R is P({¥4,}) X B(R) measurable, where
P({%,}) is the predictable o-field generated by left-continuous ¥,-adapted
processes on €. Typically ¢ is of the form P(u, t) = ®(u, p(u, t), r(u, t),
S’KM(u, t)), where S’KM(~, t) denotes the left-continuous Kaplan-Meier (1958)
survival curve estimator for { X;} based on the data from the combined treatment
groups observable up to time ¢, and & is continuous on [0, ©)® X [0, 1]. The
general linear rank statistic with score ¥ adapted to # is defined as in Tsiatis
(1982) by

Se(t) = X Ai(0)P(Xi(¢), t)(Z: — p(Xi, 8)/r(X;, ).

We assume that for all ¢ > 0, E([#*(u, t)r(u, t) H(du)) < % so that Se(-) will be
locally square-integrable. The modified partial-likelihood score statistics of Peto
and Peto (1972) correspond to S, with ¥ depending-only on S’KM(u, t); when ¢
depends only on p(u, t) and r(u, t), Sy is a censored data analogue of the
regression rank statistics of Sen and Ghosh (1972); and the class of statistics of
Tarone and Ware (1977) is the class of Sy, with ¥ depending only on r(u, t). The
common member of all these classes, with ¥ = 1, is the Mantel-Haenszel
numerator or logrank statistic (due to Mantel, 1966)

MH(¢) = X: A;(t)(Z: — p(X;, £)/r(Xid, ¢)).

We now construct counting-process related martingales and stochastic integral
formulas for Sy. The following Lemma follows immediately from a standard
result for point-processes (Liptser and Shiryaev, vol. II, Theorem 18.2, 1977;
Shiryaev, 1981, page 204) and is closely related to Proposition 3.1 of Jacod (1975).

LEMMA 2.1.

min(u,t—Ej)
Nj(u, t) — f ri(v, v + E,)H(dv)
0

= J(: j(: ri(v, 8)[éx,x,+5,(dv, ds) — g +,(ds) H(dv)]

is a { 7 4} martingale for fixed u < o and a { <} martingale for fixed t < o, where
b, and 8.,y denote delta measures on [0, ©) and [0, ©)? respectively.

At this point it is convenient to introduce the notion of martingale random
measure (Shiryaev, 1981, Section 4; Jacod, 1975): we say m(du, dt) =
m(w; du, dt) is a { 4,} (respectively { #,}) martingale random measure on [0, %)
X [0, ), if m(w; -, -) is a Borel signed measure on [0, «)? such that for each u,
t=0

(%) m(u, t) = m(w, u, t) = j; j; m(w; dv, ds)

is 9, X A(R) X AB(R) (respectively Z; X A(R) X #(IR)) measurable and is a
¢, (resp. #.) martingale for fixed t < o (resp., fixed u < ©). We say that m is
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(locally) square-integrable if m(-, u, t) is square-integrable (for finite u, t). For
two such locally square-integrable random measures m and m’ (with respect to
both { %}, { 4.}, and with m and m’ defined as in (*)), the covariance process
(m, m’)(u, t) is uniquely determined (Shiryaev, 1981, Section 4; Liptser and
Shiryaev, vol. I, Theorem 5.2) as the difference between two increasing (in both
uand t) ¥, N Z,-predictable processes such that for v < u, s < t, almost surely

Efm(u, t)ym’(u, t)| 4, N F}

=n'1(v,8)rﬁ’(v,8)+Elf f (m,m')(dx,dy)l%ﬂﬁ'}}-

Moreover, if J(u, t) and K(u, t) are jointly measurable and ¥, -predictable as
random functions of u, then

rh(u)=j; J; J (v, s)ym(dv, ds) and n’t'(u)=j; J; K(v, s)m’(dv, ds)

are ¥, martingales such that almost surely

(i, ) (u) = fo fo J (v, $)K(v, s)(m, m")(dv, ds)

(Shiryaev, 1981; for covariance process of stochastic integrals with respect to
square-integrable martingales, see Liptser and Shiryaev, vol. I, chapter 5).
From Lemma 2.1 we observe that

m;(du, dt) = r;(u, t)(8x;x;+£;)(du, dt) — og;+.(dt) H(du))

is a martingale random measure with respect to both { %} and { ¥, }; and from
Shiryaev (1981, page 204), using mutual independence for different j of the
families { ¥ 1 N ¥4}, we have almost surely

(myi, m;)(du, dt) = é;r;(u, t)(1 — AH(u))dg;+u(dt) H(du)

where AH(u) = H(u) — H(u—). Summing the martingale random measures m;,
with and without the multiples Z;, now yields martingale random measures

M(du, dt) = 3, [N;(du, dt) — r;(u, £)3s,+u(dt) H(dw)]
Ma(du, dt) = 3; Z[N;(du, dt) = (s, £)3g,0.(d) H(du)]

with M(u, t) = [§ [ M(du, dt) = N(u,t) = ¥; [4 ri(v,v+ E;)I[v+ E; < t]H(dv)
= N(u, t) — [ r(v, t)H(dv) (here we make use of the identity r;(v, v + E;)I[v +
E; = t] = rj(v, t)). Similarly M, (u, t) = Na(u, t) — Iy o(v, t)H(dv). Defining

also Mg = M — M4, we have

PROPOSITION 2.2. M,(du, dt) and Mg(du, dt) are {<,}, {F.} martingale
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random measures on [0, ©)* such that (Ma, Mp) = 0 and

(M4, Mp)(u, t) = J; p(v, t)(1 — AH(v))H(dv)

(Mg, Mg) (u, t) = J; (r(v, t) = p(v, 1))(1 — AH(v))H(dv).

Since P (u, t) is assumed to be ¥, -predictable for fixed ¢t and T'(-, t) is left-
continuous, the discussion above implies

Se(u, t) = J; J; P(v, )1 = T (v, £))Ma(dv, ds) = T (v, t) Mp(dv, ds)]

is a Y,-martingale, which = [% ¢(v, t)[Ma(dv, t) — T(v, t)M(dv, t)]
[§ @ (v, )[Na(dv, t) — p(v, t)H(dv) — T' (v, t)N(dv, t) + I' (v, t)r(v, t) H(dv)]
YA MIX; = ulP(X;, t)(Z; — T'(X], t)). Thus we have proved

COROLLARY 2.3. Se(u, t) is a ¥,-martingale which for u = +o equals S¢(t).
If all E; = 0, then M, (du, dt) and Mg(du, dt) are random measures a.s. supported
on the diagonal {u = t}, and S¢(u, ©) = Se(u) is a { 4, } (= { Z.}) martingale.

COROLLARY 2.4. If ¢(u, t) = q(u) is a.s. constant in t, then Se(t) has
uncorrelated increments.

PROOF. Fors <t, Se(t) — Se(s) = [§ [§ q(u)(T (u,s) — T'(u, t)) M(du, dx) +
51 a1 = T'(u, s))Ma(du, dx) — T (u, s)Mg(du, dx)] by the calculations
preceding Corollary 2.3 and a little algebra, while

Se(s) = fo J; q(w)[(1 = T'(u, s))Ma(du, dx) — T (u, s) Mp(du, dx)].

Since all integrands are ¥,-predictable, our discussion of covariances for sto-
chastic integrals with respect to martingale random measures implies

E{(Se(t) — S¢(5))Se(s)} = E{ 5 [ ¢*(u)(T (u, s) = T'(u, t))-[(1 — T'(x, 5))
(M, My)(du, dx) —T'(u, s) (M, Mg)(du, dx)|} =0
by Proposition 2.2. 0
The following Proposition is motivated by a setting, to be made precise in
Section 4, where ¥(u, t) is closely approximated by a ¥, -predictable random

function q(u) of u alone, as is T'(u, t) by L(u). We provide an %, martingale
M,,.(t) which is to approximate Se(t).

PROPOSITION 2.5. Suppose q(u) and L(u) are ¥,-predictable measurable
random functions satisfying 0 < L(u) < 1 and for each t, E{[§ q*(u)r(u, t) H(du)}
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< oo; and suppose that H(-) is continuous. Then

M,(t) = My,L(t) = J; j; q(W)[(1 = L(u))Ma(du, ds) — L(u) Mp(du, ds)]

is a locally square-integrable &, martingale with

(Mq, Mg)(2)

= fo ¢*(w){(1 — L(w)?o(u, t) + L*(u)(r(u, t) — p(u, t))}H(du).

Moreover, Re(t) = Se(t) — M, 1(t) satisfies
ER%(t) = E{ fo (P(u, t) — q(w)?
|

[(1 = L(u)?o(u, t) + LAu)(r(u, t) — p(u, t))]H(du)[
+ E{ J; P*(u, t)(L(w) — T (u, 1))’r(y, t)H(du)} ,

PrOOF. Follows immediately from the &, -predictability of integrands, the
general discussion of martingale random measures, and Proposition 2.2. 0O

3. Special examples for the logrank. We have seen (Corollary 2.3,
following Chatterjee and Sen, 1973, Gill, 1980, and Sen, 1981) that if all E; = 0—
the so-called progressive censoring case—then MH(-) (= Sy(-) with® = 1) is an
7, martingale. If there is no censoring, i.e., Y; = o, and patient entry is purely
sequential, with E;,, = E; + X; = t; a.s., then Sen and Ghosh (1972) show that
MH(t:) is an %, martingale. We give three examples to show that in other
situations MH(-) may not be a martingale. In Example 3.3, t; < t, < ... denote
the ordered death times, i.e., the ordered elements of {E; + X;: X; < Y;}i=;.

ExAMPLE 3.1. MH(¢) need not be a martingale when E; and Y; are fixed.
Suppose X, = 1 or 25, each with probability Y2, and Y, = 2 with probability 1,
fork=1,2,3,4. Put Z,=23=2,=1,Z,=0; E, =0, E, =5, E; =10, E, = 15;
and E; = » for i > 4. We compute MH(¢) at ¢ = 13, 20. Denoting A, = Iix,<v,),
we note that MH(13) is computed from the 2 X 2 table

A1+A3 2—A1—A3
A, 1-A,

as MH(13) = A, + Az — 2(A; + Ay + A3)/3 = (A, + Az — 2A,)/3. Similarly
MH(20) = (A; + Az + Ay — 3A,)/4. Now given MH(13) = 15, we know A, = 0,
A, + Az = 1, and therefore E(MH(20) | MH(13) = ¥3) = (4)(1 + E(A,)) = % #
Y5, Hence E(MH(20)| MH(13)) # MH(13). However, it is easy to check that
E((MH(20) — MH(13))MH(13)) = 0 as in Corollary 2.4.
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ExAMPLE 3.2. Logrink statistics are usually comiputed after fixed intervals
of real time (rather than after a fixed nuthber of deaths). Already in the case of
purely sequential eritry, however, it may happen under some (random) arrival
patterns that E(MH(t)) # 0, even when there is no censoring.

Consider twb individudls with Z, = 0,Z,=0; Ei=0,E, =Xy, X, and X; i.i. d.
with continuous d.f. F such that F(0) = 0, F(1) = 1, and Y, = Y, = o. Then for
1=st<?,

E(MH(t)) = % (P{X; =< min(Xs, t — X))} — P{X, < min(X,, t — X1)})
v, E[F (min(Xs, ¢/2)) — F(min(Xy, t — X,))] > 0

as long as F is not constant on (¢/2, 1] or on [0, /2], since min(X’l, t— X)) <
min(X;, t/2) almost surely.

Such phenomena are well known iri the context of size-biased sampling of
renewal processes, but do not seem to have been mentioned as a danger in
applying Mantel- Haenszel tests. Of course, the possibility of uncentered logrank
statistics is ruled out as soon as the two groups under study are entered and
allocated precisely symmetrlcally

l

EXAMPLE 3.3. An anonymoué referee gives an example with fixed entry times
and no censoring where {MH(t)} is hot a martinhgale. Let (E,, Z;) = (0, 1),
(Es, Zy) = (1,0), E; = for i = 3, Y1 =Y; =, X; and X, independent exponential
variables with mean 1 Then MH(tl) =0 iff X1 <1+ X, (in which case X; = t3),
and given MH(¢;) =

MH(tz) =% (I[X; < X5] — I[ X, < X; < X + 1)).
Hence
E(MH(t,) | MH(ti) = 0)

"2( P(X, < X, + 1) )_2(ze D7 #0.

4. Weak convergence for large samples. We continue to assume the
null-hypothetical model (&) of Section 2, but we introduce an index » to
parameterize the size of the clinical trial. All the notations of Section 2 (except
H, which is assumed the same for all ») should now be written with superscripts
® (e.g. EV, X(”), ru, t), 90(”) N, _97"’)), but when there is no danger of
ambiguity we suppress superscrlpts Our interest in this section lies in proving
functional central limit theorems for statistics (N¥(¢))"/2S$’(¢) as » — . To
this end, we list some assumptions governing passage to the limit.

(A.0) For v = 1, {(E", Z¥, X, Y")};2, is a sequence of independent quad-

ruples with P(X{" < x, Y < yIE(”), ZW =g =F%x,y)fore=0,1,i=1.In
addition, for all », ¢, {

t ‘00
H(t) = f f (FP(x, x))~ 1F ®(dx, dy) is continuous in t.
4 0 x—
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(A.1) For each v = 1, {7")(s): 0 < s < 1} is a family of strictly increasing
continuous (in s) c({E!": E{” < .}) stopping times such that ’(0) = 0. We
denote N (7(1)) by n(v) and assume E(n(r)) < o for each ». In addition, as
v — o, n(») IN(+(s) — u) —p J (4, s) for all u, s = 0, where J is a nonrandom
function, continuous in s, such that J(0, s) > 0 for s > 0.

(A.2) There exists a constant K > 0 and distribution functions G§(-), G¥(-)
not depending on » such that uniformly in ¢ (= 0, 1), i and u > 0,

F¥(u, u) = K-G¥u)
where G} (u) =1 — G¥(u —) and [5(G§(u) + GH(u)) H(du) < .
(A.3) Foreach v,i=1,and u = 0, F (u, u) = F {?(u, u) with
Nior(t) = )™ Sensror-u F(, 1) —p Gilw) = Go(w)

as v — © whenever J (i, t) > 0. The sequence {Z "}, is i.i.d. with P(Z{" =1) =
v, where 0 < y < 1, and is independent of {E"},,.

(A.3’)Foreachv,i=1,e=0o0r1,and u = 0, F¥(u, u) = G.(v). In addition,
for a fixed v, 0 <y <1, as v — o, whenever J (u, s) > 0

Y ZIE; = 7(s) — ul/N®((s) —u) —>p v
and

j(: NP(s) = w)(y = X; Z{[E; = 7¥(s) — ul/NgH((s) — u))”

(yGi(u) + (1 = v)Go(w))H(du) = p(log’n(v))

where the integrand is understood to be 0 when Ng(7(s) — u) = 0 and A, =
Zp(B,) means for all § > 0 there exists M (5) so large that P{|A,| = M(8)| B, |}
=1 -6 for all ».

(A.4) There exist { '} stopping times {s{”}70, 0 =sp < 8 < -+ < Sp(y) =
7¥(1), with m(») = .(n(v)/log’n(r)) as v — , such that as » — o,

r(X;, sjs1) — r(X;, s;)
r(Xi, Sj+1)

(2) . n(r)™"2 maxosj<mm) (N“(sjx1) — N¥(s;)) —=p 0.

1) n(v)™2 maxo<jcme) 2 Ails)) —p 0.

In (A.4) and in what follows we make use of the abbreviated notations
N@(t) = N¥(+o, t), N{(t) = N{(+, t).

Of these assumptions, (A.0) simply repeats the setting of Section 2, and (A.1)-
(A.3’) are large-sample regularity properties for fixed sequences
(EM), (2, Y?)} which can serve in place of the laws of large numbers which
hold when these sequences are i.i.d. On the other hand, (A.4) is a purely technical
and artificial assumption required for the weak-convergence proof of Theorem
4.1(2) below. The author had succeeded in proving (A.4) only for very special
arrival processes before the independent work of Sellke and Siegmund (1983)
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appeared. In fact, the powerful technical Lemma 4 of Sellke and Siegmund (in
the case 8 = 0) with only minor notational changes proves in the general setting
of (A.0) that (A.4) holds with sequence {s!"}/2}’ given by s’ = jth smallest time
E + min(X", Y¥) for 1 < j < n(»)* = j,, and

1

s = min[r" (1), inf{s: s = s, E(N“(s)) = (j — jo)'*}]

for jo<j < n(y)/0*

where 0 < ¢ < Y and m(v) = greatest integer < n(r)"**?. For this reason, we
will not specifically list (A.4) as an assumption in our Theorem 4.1 although we
will use it in the proof.

REMARKS. (a) For fixed v, 7¢'(-) is the “operational clock” for the clinical
trial, whose speed may vary with the patient accrual rate. Assumption (A.2) is a
uniformity condition on {F i;')} which is satisfied, with K = 1, if X" =
min(X?, C), Y = min(Y?, D) where (X?, Y?) are conditionally i.i.d. given
Z? = ¢ with P(min(X?, Y?) < u| Z{"” = ¢) = G.(u). In other words, (A.2) holds
if all min(Xf-"), Yf")) are stochastically less than or equal to variables
min(X?, Y?) which are conditionally i.i.d. given Z; = ¢ with law not depending
on v. In particular, (A.2) follows from (A.3").

(b) In the special case of Tsiatis (1981, 1982) and Slud and Wei (1982), 7*)(s)
= sT for fixed T > 0, for all » = 1; (X\", Y!") are conditionally i.i.d. given Z; =
e; n(v) = NY(T) is a fixed increasing sequence and (E", Z): EY < T}isiid.
with P(E; < sT|E; < T) = AGST)/A(T), P(E; = sT, Z;, = 1|E; = T) =
A4(sT)/A(T). In this case, if As(sT)/A(sT) = v for all s, then (A.1) and (A.3")
are easy to check, with J (u, s) = A(sT — u)/A(T). The point is that {Z;} L, are
then i.i.d. with P(Z; = 1) = v and are independent of { E;}%,, so that the expected
value of the integral in (A.3") is

y(1 =) fo (yFuly, u) + (1 = v)Fo(u, w)H(du).

(c) In the special case of simultaneous patient entry, where all EY=0,1<1i
< n(v), whenever t, = t, and A;(t,) = 1, it follows that r(X,, t;) = r(X;, to). Hence
(A.4) (1) is trivially satisfied for any choice of {s,")},'l({') for which m(») =
-(n(v)/log?n(v)), and (A.4) (2) is obvious if s;” = inf{r"’(1)} U {t: N"(t) =

jn()/m»)}.-

LEMMA 4.1. Under assumptions (A.0) and (A.1) along with either (A.3) or
(A.3'), for each u, s with J (u, s) >0, as v — ®
Ty, 7(s)) —p L(u)
where L(u) = v if (A.3) holds, and L(u) = vGi(u)/(vGi(u) + (1 — v)Go(w)) if
(A.3") holds.

PROOF. Foru=0,0<s=<1,let ZV(u,s)={i=1:E" <“(s) — u}. Given
NP(x"(s) — u), #"(u, s), and {Z;: i € R"(u, s)}, p(u, 7)(s)) is a sum over
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R (u, 8) of indicators Z;I[min(X;, Y;) = u), and r'(u, r*(s)) is a sum of
I[min(X;, Y;) = u]. Whenever J (i, s) > 0, we have N (+*)(s) — u) —p ® by
(A.1). Then the simplest non-i.i.d. variant of the law of large numbers (Loéve,
1955, page 277) implies as » — o almost surely

n()[r(u, 7(s)) = Tie s (ZF 1y, w) + (1 = Z)F§(u, u))] —»p 0
n() e, 7(s) = Tiestuw ZiF 1 (4, u)] —p 0
and under either (A.3) or (A.3"), n(v) = #,(r(u, 7*(s))) and
n() ™" [Sie muwn ZiIF 17 (4, u) — L(u)
Yie sus (ZiF 2w, u) + (1 = Z)F 62(u, w)] —» 0.

From the three preceding statements, the Lemma follows immediately. 0O

We are now in a position to combine our assumptions and Rebolledo’s (1980)
martingale functional central limit theorem to prove weak convergence in
DI0, 1] of n(»)7!S¥(+(-)). For the rest of the paper, we denote conditional
expectations given {E{"};>, by ¥

THEOREM 4.1. Assume (A.0) — (A.2) and either (A.3) or (A.3"). In addition,
assume P (u, t) = ¢ (u) is a & ) -predictable process with | ¢(u)| = C < » for
all v, u, and such that ¢ (u) —p q(u) as v — ®, where q(u) is nonrandom. Let
M{(.) denote the { F ("'} martingale defined in Proposition 2.5 in terms of ¢"(-)
and L(-), where L(-) is as in Lemma 4,1, and define R¥(.) = 8¢ — M{" and
J (u, t) =J (u, t)(yGi(u) + (1 = v)Go(u)). Then

(1) if V(t) = [§ L(u)1 = L(u))q*(u)d (u, t)H(du) and B(x) = inf{t: V(¢) >
x}, then as v — ®, n(v) 2 M (+(B(-))) — . W(-) in D[0, V(1)) where W(-) is
a Wiener process, and for 0 < t < 1, R (""(t)) = #p(log n(v)) as v — o;

(2) n()28P(r"(B(-))) = . W(-) in D[0, V(1)] and n(v)"*R¥(+"(-)) = .,
0. In this case, if 8'(x) = inf{s: n(v)™ < MY, M > (7(s)) > x|, then
n(v) 28 ((BY(+))) — . W(-) in D[0, V(1)].

PROOF. By the integral expression for M{” in Proposition 2.5 and the
definition of M4 and Mg, we have

MY(t) = J(: q"(u)[Na(du, t) — L(u)N(du, t)]

t—E;
-2 J; q‘”’(u)ri(u, u+ E)[Z; — L(u)]H(du)

and AM{P(t) = MP(t) — MP(t—=) = 3 ¢(X)I[X; + E. =t X, < Y]]
(Z; — L(X;)) by continuity of H(-). Thus sup;| AMﬁ,”’(t)l < C by continuity of
H(.), implying Rebolledo’s (1980) “asymptotic rarefaction of jumps” condition
for n(v)"V2M ().
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Now by Proposition 2.5,
n@) (MY, M) (r(¢))

=n()™! f (@ (w)*(1 = L(u)T (u, 7(¢))
0
+ L*u)(1 = T(u, 72()r(u, 7“(¢)) H(dw)
which we will show converges in probability as » — . Fix arbitrarily small 6 >
0, and find B large enough that [5 (G§(u) + G¥(w)) H(du) < 6 (cf. (A.2)) but also
H(B) < ». Then using | L(u)| =1 and | ¢"(u)| < C, we find

£ | n() MY, MY ("(t))

- f g (w)*L(w)(1 = L(w))J (u, t) H(du)

= ¥ L C?r(u, 7(t))n(v)'H(du) + L C*J (u, t)H (du)
B .
+ ¥ J; C?| r(u, 7”(t))n(»)™ — J (u, t)| H(du)
B
+ ¥ f I[J (u, t) > 0]C*| L(u) — T'(u, 7"(t))| H(du)
0
B
+ ¥ j; I[J (u, t) = 0]C?r(u, 7 (¢))n(v)"*H(du)
B
< 2C*Ké + C* J(; I[J (u, t) > 0] | L(w) — T(u, 7(t))| H(du)
B
+ C? J(; C | r(u, 7@)n(p) ™t = J (u, t)| H(du)

B
+C? f I[J (u, t) = 0INY (" (t) — u)n(v)*H(du)
0

for all », where K is as in (A.2). As v — o, dominated convergence, Lemma 4.1
and (A.1) imply that the final three integrals converge in probability (with respect
to the law of {E{"};=,) to 0. Since 6 > 0 was arbitrary, we conclude as v — ©
(using ¢ — q and dominated convergence once more)

n(n) (M, M) (¥ (1))

—p f ¢*(w)L(u)(1 — L(w))dJ (u, t)H(du) = V(t)

which is continuous nondecreasing in ¢ by (A.1) because ¢/ (u, t) is. Letting 8(x)
= inf{t: V(t) = x} we have V(8(x)) = x for x € [0, V(1)]. Rebolledo’s (1980)
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Theorem 2.2 and Propositions 1.5 and 2.1 now applied to the % " martingale
n )M (+(B(-))) give weak convergence in D[0, V(1)] to Brownian motion
wW(.).

To get the last statement of (1), we appeal to Proposition 2.5 (with expectations
replaced by conditional expectations given {E;};>;), uniform boundedness of
g"“(-), and the following Lemma.

LEMMA 4.2. Under either assumption (A.3) or (A.3'),
¥ ( f (L(u) = TP, 7(s)))?r(u, 7‘”’(3)))H(du)> = Z(log’n(v)).
ProoFr. First, if (A.3) holds, then L(u) = v and given r(u, t) and Ng(t — u),
with t = 7)(s), p(u, t) has Binomial (r(u, t), v) distribution. Hence
FHL(u) = T(u, 1)) r(u, t)} = y(1 = v)/r(u, t),

and

fr"f (L(u) — Tu, t)*r'"(u, t)H(du)

= ¢ f y(1 = y)I[r(u, t) = 1]H(du)
< v(1 — v) ¥ [(max{H(X)): E; < t})] = .7(log n(v))

since H(X;) are independent random variables each stochastically smaller than
an exponentially distributed variable with mean 1.

Second, if (A.3’) holds, then we introduce notations for fixed », t = 7")(s) and
urny =Y, ZIE; <t —u],no= Ng(t — u) = ny, pr = Gi(u), p» = Go(w), i = mps
+ n,p,. Our assumption implies that given n; and n,, £ = p(u, t) and n = r(u, t)
— p(u, t) are independent with Binomial (n,, p;) and Binomial (n,, p,) distribu-
tions. Then

Y UL(u) = T(u, t))°r(u, t)]
= L [(L(u) — &/(E + )& + )]
= (L) = mp/R)*n — & [En(E + 1) — nipinapf”’]

and using the binomial distributions of ¢ and 7 it is easy to check that

1
“ (En(E + m)7") = mipinep; J(: x(1 = p1 + p1x)"" (1 — p2 + px)™7! dx.

Now, breaking the integral into integrals over intervals [0, 1 — ] and [1 — 6, 1],
where § = 27 'log n(v), bounding the terms log(1 — p;(1 — x)) by — p;(1 — x) for
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0 < x =1 — é and Taylor-expanding them for 1 — 6 < x < 1, one finds as v — ®

(nipinopo) ™ & (En(E + 1)7")

It

Anw)™) + (1 + .26 + 6%)) f exp[—a(1 — x)] dx
1-6

= a1 + .2(n log n(v))]
where ./ is uniform with respect to u, s. Reassembling terms and making use of

the estimate | L(u) — nip1 /A | < | v — ni(ny + ny) ™' | /min(y, 1 — v), we have

?ff (L(u) — T'(u, t))*r(u, t)H(du)
= ﬁ( f [v = ni/(n1 + n2)?Ne(t — u)(Go(u) + Gl(u))H(du)>

+ ﬁ’( f I[max(n, p;, napy) > log n(v))log n(v)H(du)

+ Wf I[{max(n,p;, naps) < log n(v)]r(u, t)H(du))
= .7 (log’n(v)),
where we have used (A.3’) and the fact that H(x) < — log Gi(x) fori =0, 1. 0O
The first statement of (2) in Theorem 4.1 will follow from (1) if we show
n"2()RY(+“(-)) — . 0 in D[0, 1]. Let {fi”)}}';({’ be the sequences guaranteed to

exist by (A.5), and without loss of generality we assume max;<j<m) | 77'(s;) —
771(sj-1) | = 0 as v — o, where 77'(-) exists for each v by (A.1). Then as v — o,

n(v)™ Flmax,<jsmw | MY (s;) — S$(s;) %]
< n) ' TRV LRY ()] = Op(m»)n(v) og*n(v)) —p 0.
Also, for s; < s < §j41,

| S¥(s) — S¥(s;) |

= f 14" (w) | (N(du, ) = N(du, 5,))

+ f | ¢” (W) |IT (u, s) — T'(w, s;)| N(du, s;)

- C<N‘”’(s,~+1) _NOs)) + 3 Ads) HX;, sj) — r(X;, sj)>’

r(Xi, sj+1)
so that by (A.4)

MAaXosj<m()SUPs;zs<s,,, ¥) V2| SE(s) — SP(s;)| »>p 0 as v — o,
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By the weak convergence already prdved in (1),
MAaX)<j=m()SUPs <5<, B (1) | ME(s) — M$(s;)| »p 0 as »— o,
Finally, since
n(v)™'/* supos,=.ay | R¥'(s) |
< n(v) "V’ maxi<j<ne) | RY'(s;) |
| RE(s) — RY(s;)| —p 0

as v — %, we conclude n(v)"?R%(+*(-)) — . 0 in D[0, 1].

Finally if 8“(x) is as defined in (2), then it is a nondecreasing (in x) F ("
stopping-time sequence. The Rebolledo (1980) theorem applied to the martingale
n~2() MY (BY(-)) gives weak convergence to Brownian motion Win D[0, V(1)]
as » — o, while again n”V2(»)RY(8“(-)) —. 0 in D[0, V(1)]. Hence
n~2)SY(BY(-)) -» . Win D[0, V(1)]as v — . [

-1/2
+ n(v) 7/’ Maxoj<m ) SUDPs,<s<s

REMARK (d). It is a corollary of the foregoing proof that the assertions of
Theorem 4.1 remain valid if 8'(-) is everywhere replaced by

B“(x) = min[1, inf{s: 3 Ai(r(s)g*(X)T (X;, 7(s))
- (1 = T(X,, 7(s))) = xn()}].
We summarize the most easily applicable staggered-entry case of our theorem,

together with the technical comments on assumptions contained in Remarks (a),
(b) and (d), in the following theorem.

THEOREM 4.2. Assume for v = 1 that n(v) is nonrandom and
WEY, Z&, X YWY is a sequence of i.i.d. quadruples satisfying (A.0) such

that P(Z{" =1)=1-P(Z"=0)=~v#0,1; P(E{" <s) = A(s) for 0<s =< T,
where T is fixed, A(T) = 1, and A(-) is continuous; and fore =0, 1, F9(x, y) =
F.(x, y) does not depend on v or i. Let G,(x) = F.(x, x), and let ?(u, t) = q(u) be
nonrandom and uniformly bounded. Then as v — o,

n@)28P(BY(-)) =, W(-) in D[0, Vil
where W(.) is standard Brownian motion, and
 B“(x) = min[T, inf{s € [0, T]: ¥; Ai(s)q*(X:)T (X, s)
| S (1= T(X,, 5)) = )]

Ax — u)Gi(u)Go(u) g (u)
vGi(u) + (1 = v)Go(u)

and for 0 < x < Vy.y, whenever V ~'(x) is a point of right increase for V,

B"(x) —p min{t € [0, T], V(t) = x}.

H(du).

Vimax = V(T) where V(t) = v(1 — v) L

This Theorem, which follows immediately from Theorem 4.1 and Remarks
(a), (b), and (d), is the direct generalization to continuous time of the finite-
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dimensional distribution convergence theorems of Tsiatis (1981, 1982). As ob-
served by Tsiatis (1981) and Slud and Wei (1982), the setting of i.i.d. quadruples
(E;, Z;, X;, Y;) essentially covers the case of arrivals from a nonhomogeneous
Poisson process.

The results of Sellke and Siegmund (1983) in our setting are on the one
hand more special than our Theorem 4.1 in considering only i.i.d. sequences
{(Z;, X:, Y:)} and not triangular arrays, but on the other hand more general in
allowing unrestricted arrival mechanisms and proportional-hazards alternatives
to the null hypothesis (<&); however their weak-convergence theorems are
expressed (according to our notations) in terms either of the intrinsic time-scale
(M,, M,) or of a time-change

B(x) = inf{t: 3, Ai(t)q2(Xi)F(Xi7 (1 - I'(X;, ¢) = 2(v)x}

where Z(v) is an artificial parameter which is »(n(v)) as » — . In other words,
by not imposing regularity conditions like our (A.1), (A.3’), Sellke and Siegmund
cannot make use of a natural time-scale f}‘"’(-) scaled by sample-size n(v) but
must instead use 3(-) which asymptotically increases at a much slower rate.
This means that a sequential test based on their results can make use only of an
asymptotically small fraction of the n(v) patients.

5. Application to sequential survival testing. Consider a clinical trial
with two treatment groups, A and B, in which patients enter according to a
nonhomogeneous Poisson process—with large continuous cumulative arrival
intensity A(-) as long as patient-accrual continues—and are independently
allocated with probability v to treatment A, and with probability 1 — v to
treatment B. Assume that latent patient survival and censoring times are inde-
pendent identically distributed pairs within each treatment group and do not
depend in any way on time of arrival. We want to test (sequentially in real time)
the null hypothesis of no difference in death hazards between groups A and B,
where the trial is.to continue at most until time T, or 7T time units after a
maximum of n patients are accrued, whichever comes first. This description is a
reasonably accurate idealization of a great many large two-group clinical trials
(except for the common use of block-randomization—which falls well within
assumption (A.3’)—and for the occurrence of trends in patient populations,
which we discuss in Section 6). If a nonparametric test is desired, as is more and
more often the case, a natural choice of test statistic is one of the partial-
likelihood score statistics of Peto and Peto (1972), which for particular parame-
terized families of alternatives (and before modification by Kaplan-Meier esti-
mates) are precisely of the form Sy(t) with ¢(u, s) = ¢(u) nonrandom, not
depending on s, and usually bounded. The logrank statistic corresponding to ¢
= 1 is the most frequent choice.

Our objective in this section is to show how the theory of Section 4 justifies
in the situation of the previous paragraph a sequential S, test generalizing the
sequential logrank test of Jones and Whitehead (1979). First of all, to formalize
the description above, n(v) is Poisson with parameter A (7T}), and given n(»), we
assume {(E;, Z;, X;, Y:)}:»: independent with E; > T, for i > n(»), and E; i.i.d. for
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1 < i < n(v) with continuous d.f. A(.)/A(To) on [0, Ty]. The sequence {Z;} is
Bernoulli (y) independent of {E;}, and we assume (<&,) of Section 2 with
continuous H(-) and {X;, Y;} i.i.d. We define times 7(s) for 0 < s < 1 as follows:
7(s) = sTy for s = s, = min{s: Ng(s To) = n}, and for s = s,, 7(s) =
min{sTo, s, To + ((s — s,)/(1 — s,))T}. The numbers n < A(T,) are assumed
large (e.g. one hundred or more). As n approaches «, Theorem 4.1(2) applies (cf.
Theorem 4.2), and we define V(s) as in Theorem 4.1 and estimate nV(s)
consistently by

Ve(s) = 3i A(r())*(X)T(X;, 7(s))(1 = T(X;, 7(5))).

If b_(-) < b.(-) are continuous functions with b_(0) < 0 < b,(0) (determining a
“stopping boundary”) then for large n

| <V¢<s)> Se(7(s)) (%@) l
_ =< -—= < b, f <s<
Plb n (V¢(s))1/2 b n or O S ].l

= P{b_(u) <= u™*W(u) < by(u) for 0<u=< V(1)

where W(.) is a Wiener process. Therefore if V.., < V(1) and n are known
parameters, the sequential test of (&) which rejects at the first time 7(s) for

which
Ve(s)/n < Vmax and Selr(s)) ¢ {b—<viz(8)>, b+<V¥;1(S)>J

(Vie(s))?
and accepts if there is no such s, has approximate size (for large n) =
1 — P{u'?b_(u) = W(u) < u?b,(u) for 0 =<u =< Vil

This test procedure generalizes Jones and Whitehead’s (1979) sequential logrank
test (in which Vi(s) = v(1 — v)N(7(s))). See Whitehead and Jones (1980) for
discussion of the choice of boundaries b. and for some approximate size, power
and sample-number calculations, and see Jones and Whitehead (1979) for nu-
merical worked examples. These authors implicitly restrict attention to trials
terminated after fixed numbers of deaths.

If n and V. or V(1) cannot be treated as known parameters, the unorthodox
notion of stopping-boundary in the paper of Slud and Wei (1981) can be used to
construct a repeated Se-based significance test. The extension of that idea to
give continuous-time sequential tests is a topic of current research.

6. Extensions and discussion. The techniques of the present paper can
be used to prove many other results, of which we mention one in particular.
In the case of alternatives (<&¢;) to (&) of the special form H(dt) =
exp(d - C(t))Ho(dt), where H,.(t) = [§ [= (F.(x, x))"'F.;(dx, dy), it is not hard
to show that [¢ (Na(du, t) — I'(u, t)N(dy, t)) is a <(-, t) martingale, where

p(u, t)exp(6C () I[r(u, t) = 1]
r(u, t) + p(u, t)(exp(8C(t)) — 1)

and that the other tlleorems of Sections 2 and 4 have analogues for Se(t) =
J q(u)(Na(du, t) — T(u, t)N(du, t)). In this way, the asymptotic efficiency

I'(y, t) =
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calculations of Schoenfeld (1981) for contiguous alternatives can be reproduced
rigorously. Within the framework of Section 5, it turns out that if 6 ~ Dn™"/* as
n — oo, under ( ;)

n"28e(B(-)) = W(-) + D f qW)C(w)L(w)(1 — L(u)J (u, B(-))H(du)

in D[0, V(1)] if the integral is absolutely convergent. This gives an explicit drift
term for calculating the power of sequential S, tests against contiguous alterna-
tives.

The main technical improvements needed in Section 4 concern the weak
convergence of n(»)"28¥(*)(.)) in cases where #”’(u, t) has nontrivial depen-
dence on t. When #(v, t) has the Peto-Peto (1972) form ®(u, S{,(u, t)), where
S.(-, t) denotes the left-continuous Kaplan-Meier (1958) surv1va1 curve esti-
mator based on data {X"(t), (”’(t) i = 1}, the author has been unable, even
under stringent conditions on ® and {(X;”, W y®w gV z ("))} to prove the uniform
in-probability bounds as v — o« on expressions like

(log n(»)~* f (P (u, 7(s)) — q(u)?r(u, 7)(s))H(du),

(@)™ f (P(u, 7(s)) — q(u))
- (Na(du, 7*(s)) = T (u, 7 (s))N(du, 7(s)))

which would be needed to extend Theorem 4.1 (here q(u) = ®(u, exp[— H(u)]).)
Such bounds seem to require extension of the recent powerful results of Gill
(1983) to the two-parameter stochastic process S @ (u, t). Another, more funda-
mental, type of dependence of ¢ on t occurs in statistics such as the modified-
Wilcoxon, with ¢ (u, s) a function of r*’(u, s), for which our approach via
approximating martingales M{" fails utterly and a new idea is needed.

In spite of the appeal of sequential designs for medical trials, three commonly
cited obstacles suggest directions for further research. The first and most obvious
difficulty is the administrative impossibility of instantaneous and simultaneous
reporting of events in multicenter clinical trials. For this reason Pocock (1977)
has proposed group-sequential methods of analysis (by batches of entrants,
batches of deaths, or fixed intervals of time). The second difficulty is that
followup data and further deaths will often be observed after the batch of data
on which an ‘early-stopping decision is based (i.e., before the decision to stop the
trial is implemented). There seems to be no statlstlcal theory on how to handle
such delayed data, although Anderson (1964) has recognized the problem and
treated a simple model. A group-sequential approach will to some extent diminish
the practical importance of this technical objection. The third and most serious
obstacle to sequential analysis of randomized clinical trials is that the character-
istics of arriving patients typically change with time. Even for fixed-sample
analysis, patient-trends raise problems in specifying the family of alternatives to
test against. If the patient population does not change too rapidly or unpredict-
ably, nothing prevents the form of the stopping boundary from taking the change
into account. In fact, estimation of the population trend could be an important
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function of followup data, including the delayed followup data mentioned above.
However, the theoretical work on these problems remains to be done.
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