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Consider a sample from a normal population with mean, u, and variance
unknown. Suppose it is desired to test Ho:u < uo versus Hy:u = uy, with the
region Hi:puo < u < p; being a (nonempty) indifference zone. It is shown that
the usual Student’s t-test is inadmissible for this problem. An alternative test
is proposed.

The two sided problem with indifference region is also discussed. By
contrast with the above result, the usual Student’s ¢-test is admissible here.
However the two sided version of the alternative test mentioned above does
offer some practical advantages relative to the two sided i-test.

A 3-decision version of the two sided problem is also discussed. Here the
t-test is inadmissible, and is dominated by the appropriate version of the

alternative test.
The results concerning tests are also reformulated as results about confi-

dence procedures.

1. Introduction. Consider the classical problem of testing the mean, u, of
a normal sample having variance, ¢% In many situations it is possible to identify
an indifference region of u values in the alternative hypothesis adjacent to the
null hypothesis. These are values for which the decision to accept is not a
significant error.

The idea for such a formulation can be found in the pioneering work of
Neyman and Pearson (1933). They wrote

“There is an essential difference in character between errors of type I and
IT ... if Hy is accepted when some alternative [u € H;] is true the
consequences that follow will depend upon the nature of [u] and its
difference from H,. . .. Problems may occur in which all type II errors can
be . .. divided into two classes—those which do not matter and those which
do—all the latter being treated as of equal consequence.”

Introduction of an indifference zone can be motivated as a crude approximation
to a more precise formulation which would give type II errors continuously
greater significance as the “distance” increases between the true parameter and
the null hypothesis. The latter situation can of course be mathematically modeled
and treated by assigning a loss function to type II errors; the loss increasing as
the distance increases from the null hypothesis. Procedures would then be
compared by comparing their risk functions. In the one-sided problem of testing
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Hy:pu < po versus Hy:pu > po if the loss from type II error were small for po < u <
w1 and rose steeply as u increased past u; then this comparison would lead to
much the same choice of procedure as would the easier analysis based on the
cruder assumption of an indifference zone H::uo < u < u;. An explicit discussion
along these lines can be found, for example, in Arrow (1960).

For the one sided problem we propose a test which dominates the usual ¢-test
in the presence of such an indifference zone. Figures for the power presented and
discussed here indicate that this test offers a noticeable advantage over the usual
t-test only when n is small to moderate and when o is rather small relative to
the length of the indifference region.

For the two sided problem with indifference zone we propose using the two
sided version of the above test even though in the classical formulation we show
it does not dominate the ¢-test. Furthermore, as we.argue with much precedent,
an appropriate solution to the familiar two sided problem involves a three decision
formulation; and for such a formulation the appropriate procedure is indeed a
combination of two one sided procedures.

Part I: one sided problems.

2. Notation and definitions. In a statistical problem with sample space
Z and parameter space O it may be desired to test a null hypothesis H, versus
an alternative H, = ® — H,. However, there may be a set of values H{ C H,
which represent deviations from the null hypothesis whose detection would be
virtually inconsequential. This is the indifference region.

A test corresponds to a critical function ¥: 2 — [0, 1] describing the
probability given x € 2 of rejecting. The power of the test is denoted by

we(0) = E4(P(X)).
It is primarily desired that the power 7(6) be small on Hy. Thus a test is called
level « if
(2.1) Supgen,me(0) = a.

Subject to this restriction, it is desirable for the power to be large on the
effective alternative, H; — H{. Thus, if ¥; and ¥, are two level « tests we say ¥,
dominates ¢, if

(2.2) 7e(0) = e (0) for 6 € H, — HY,

with strict inequality for some 6 € H, — H.. We say that ¥, completely dominates
¢, if (2.2) holds and also

(2.3) 7!'¢2(0) = ‘ll"pl(O) for 6 € H,.

We will say that a level « test ¥ is admissible if there is no other level « test
which dominates it.

Note that values of wo(f) for 8 € H! are irrelevant for domination and
admissibility considerations. In fact, admissibility as defined by (2.2) is iso-
morphic to admissibility in a statistical testing problem with null hypothesis H,
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and alternative H, — H{. A third formulation which leads to a closely related
definition of admissibility involves the action space {a, = accept, a, = reject} and
the loss function

1 0 € H,, i=1, or
(2.4) L6, a;) =- bEH, —H, i=0
1 0 otherwise.

Admissibility of ¥ with respect to this loss function means there does not exist
another procedure which completely dominates it (apart from the minor technical
point that now the strict inequality may occur in (2.3) instead of (2.2)).

Throughout this paper let X, ..., X, be a sample from a normal population
with mean u and variance ¢% Let © = {(u, ¢%):u € R, ¢ > 0}. The customary
sufficient statistics are .

(2.5) X=(01/n) 34 X, §*=@1/n) T4 (Xi - X)2

Fix po, u1. The null, alternative, and indifference regions for the one sided
problem are

(2.6) Ho:p < po, Hyp>po and Hitpo < p < p.
Student’s t-test (one-sided) is given by

]- (x_ - /"'0)/ s> Ca
0 otherwise.

(2.7) Pux, s) = <|[

C, is chosen as t,/vn — 1 where t, can be found in the usual tables of Student’s
t-distribution for (n — 1) degrees of freedom. Of course, me, (1o, 6%)) = « for all
a>0.

In the classical formulation, for which H! = ¢, Student’s t-test is Uniformly
Most Powerful Unbiased and admissible. However, when H! # ¢, Student’s
t-test is not admissible. A test which completely dominates it (when o« < %) is
described in Section 3 and is easily implemented with the aid of tables contained
in Chow (1982).

- Note that the indifference region has been carved only out of the alternative
hypothesis, and not also out of the null hypothesis. This is a reflection of the
asymmetry present in the conventional theory of hypothesis tests which grants
primary importance to the significance level of a test and a secondary status to
the type II error.

There are situations for which an asymmetric formulation is not appropriate.
For example, in testing the mean yields u, and u, of two equally new processes it
may be desired to decide either wu; = u, or wy = u;. (There may also be an
indifference region in a problem of this type.) In such a situation the two
decisions—whatever they are labeled—possess a symmetric logical status. The
asymmetric formulation used in our paper is then not appropriate. (Some of the
technical results of our paper do however remain useful after an appropriate
reinterpretation.)

It should also be noted that there are existing approaches to the question of
how to “test hypotheses,” or of what to do instead. The mathematical results of
this paper would be of interest in some of these approaches and not in others.
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///— Rejection region of @,
\\\ - Rejection region of (pt

(x - )
§=u0+g(u1_u0)_/x _x—uojc

Ml

F1G. 3.1. Rejection regions of ¢, and ¥,.

3. The new test; description and power. It is convenient to describe
and picture the new test in the (%, s) coordinate system. The reader should refer
to Figure 3.1, which shows both the rejection region of the new test and of the
classical one-sided ¢-test as defined in (2.7).

The new test, with critical function ¥,, is defined by

1 if % — po < &(ur — mo) and
§2 4+ (& — m)? < p*(u1 — po)®
or X — uo=E(uy —mo) and (X — po)/s > C,
0 otherwise.

(3.1) Pux,s) =

Chow (1982) contains unique values of £, p, and C, for tests at various levels and
for various values of n. Precise analytic definitions of £ and p are given in Section
4, C, is of course the critical value for the usual Student’s t-test if based on
(X — wo)/s. Thus, C, is t,/vn — 1 where t, is available from ordinary tables for
Student’s one-sided #-test. (It can be seen from (3.1) or Figure 3.1 that £ is
actually an algebraic function of p and C,.)

The procedure ¥, is not scale invariant in the usual sense. This is due to the
fact that a fixed indifference region is not invariant with respect to scale changes
of the variable to be observed. However, it is important to note that the procedure
¥, is invariant relative to (what we call) the overall formulation of the problem.
That is, making the transformations £ — ax + b, s — as (@ > 0) and w; — au; +
b, i =1, 2 does not change the value of ¥,. Although the classical definition dces
not include the transformation on y; it seems reasonable here and has the
following effect. If we make a change of units (for example) from feet to inches,
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TABLE 3.1 Power of level a test—¥,—when u = uo for various values of o, n, a.

a=.05 a=.025
n o/ (u1 — po) = o/ (u1 — po) =
5 1 2 5 1 2

5 027 .049 .05 .009 .024 .025

7 .036 .05 .05 .014 .025 025
10 .043 .05 .05 .020 .025 .025
15 .05 .05 .05 .024 .025 .025
20 .05 .05 .05 .025 025 .025

our decision will remain the same provided only that we change from feet to
inches in the description of the indifference zone. From a practical point of view,
this would seem to be quite satisfactory.

It is of interest to compare the power of ¥, with that of ¢,. Lengthy tables of
the power are available in Chow (1982), from which the following is taken. Table
3.1 shows the power of the alternative level o test (¥,) when u = uo for a few
values of ¢%, n and a = .025 or .05.

All entries in Table 3.1 are no more than «. (To a sufficient number of
decimals, all entries would be strictly less than «.) This is guaranteed by the
construction of ¥, and Theorem 5.1. What is of more interest to note is that the
power is near «, the power of ¥;, unless both n and o¢/(u; — o) are rather small.
However if both are small, then the power may be much less than a. Thus for
such values of n and o/(u; — o) the probability of type I error (= power) of ¢, is
markedly superior to that of ¥,.

On the alternative of interest, u = u;, the power of ¥, is very slightly greater
than that of ¥,. However the difference in power is practically negligible (less
than .001 when n = 4) in all the cases examined in Chow (1982). Thus the
performance of @, on the alternative of interest is technically superior to that of
¢,, but it appears that for all practical purposes the tests perform equally well on
this region.

Two other qualitative features of the power function of ¥, may be worth
noting. (i) On most of the indifference zone, uy < u < u;, the power of ¥, is less
than that of ¢,. This would of course be undesirable if points of the indifference
zone were instead to be considered part of the true alternative. The difference in
power here is negligible unless both n and ¢/(u; — o) are rather small (as in
Table 3.1) and u is not too close to w;. (ii) For values of u < 0 the pattern
of Table 3.1 persists only when u is moderately close to u,—for example when
(u — mo)/o = =V, all the figures in Chow (1982) show a practically negligible
difference in power (less than .001).

Section 5 contains further comment on the practical implications of these
results on the power of ¥, as compared to ¥;.

4. The new test; theoretical results. This section contains a formal
description of the new test and a statement and proof of the fact that it dominates
Student’s t-test in the indifference zone formulation.
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It is more natural to state and prove the results of this section in terms of the
usual canonical parameters and statistics of the exponential family corresponding
to (X, S?). It is also convenient to assume that uo = 0, and we shall do so
throughout this section without loss of generality. Thus, let

V=YX=nX, W= X?=n(S?+ X?,
and let
n=pu/c? and 0= —lke>

The joint density function of (V, W) in terms of the natural parameters
(n,0) € 4 ={(n,0):0<0}is

K(n, 0)(w — v3/n)"¥2exp(qv +-0w) if w = v¥/n
0 otherwise

(4.1)  frolv, w) = {
where
K(n, 0) = (VnaI((n — 1)/2))7(=20)"?exp(nn?/40).
For simplicity write
f0(0, w) dv dw = K(n, B)exp(nv + 6w) w(dv, dw)
where w is defined by
(n=3)/2

W(E) = ff (“’;”2> dv dw.

Eﬂl(v,w):wzuz/ni

In terms of (V, W) the critical function of the usual ¢ test when o < % is given
by

1 if v>0 and w < kyv?
0 otherwise

(4.2) P(v, w) = {

where k, = (1 + C%)/nC2. The rejection region for this test is depicted in Figure
4.1, along with the rejection region for the new test. In terms of the param-
eters (n, 0) the basic hypotheses are Hy, = {(n, §) € #:n < 0} and H, =
{(n, 8) € _# :9 > 0} and the indifference zone H:0 < pu < p, is

Hi = {(n, 0):0 < n < —2uu.0}.

This region is also shown in Figure 4.1.
In order to define the new test, introduce the sets

Eo(c) = {(v, w):max(2u0 + ¢, v%/n) < w < k3
Ei(c) = {(v, w):kv? = w < 2u0 + c}.

Again see Figure 4.1. It is clear from the geometry and the absolute continuity of
w that there is a unique value, call it ¢*, for which

w(Eo(c*)) = w(E;(c*)).
Define the point (v*, w*) by {(v*, w*)} = E¢(c*) N Ey(c*).
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w:2u1v+c*

wave/n

M= -2u19

Fic. 4.1. The rejection region of %, is R, = {(v; w):k,v% = w = v%/n}. The rejection region of Y, is
R.— Ey+ E,.

In terms of V, W the critical function for the new test is
N [O if w = max(k,v?% 2uv + ¢*) or
(4.3) Po(v, w) = - 2uv + ¢* < w < w*

11 otherwise.
In words, the rejection region for &, is that of ¥, except for Eo(c*), and with the
addition of E,(c*). (Ei(c*) thus denotes the set where ¥, and ¥, differ and #,
decides on H;.) It can easily be seen that in terms of X, s the new test is described
as in Section 3.

THEOREM 4.1. If a < Y the usual one-sided t-test is inadmissible in thg
indifference formulation (2.6) of Section 2. The test Y, completely dominates ¥,
and is admissible.

PRrROOF. Note that, since (v*, w*) = E, N E;,

(4.4) inf{e™*%: (v, w) € Eo} = e™*"" = sup{e™*™:(v, w) € E,}
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for all (4, ) € Ho, and
(4.5) sup{e™*®: (v, w) € Eo} = ™" = inf{e™*™:(v, w) € E:}

for all (y, ) € H, — Hi. To verify (4.5) it is important to observe that the line
2u1v + ¢* (which bounds E; and E, on opposite sides) contains (v*, w*) and
is perpendicular to the line n = —2u;0 which forms the lower boundary of
H, - Hi.

Hence, for (n, §) € H, we have for the difference in power

g (n, 0) — T, (n, 0) = Epp(PUV, W) — GV, W)

= K(n, 0)[L e™"u(dv dw) — L

= K(n, 0)e™ " (w(Eo) — w(Ey)) = 0.
And, for (n, 8) € H, — HI, we have similarly

e™ %y (dv dw)}

1

7¢(n, 0) — wg,(n, 0) = K(n, 0)[ fE e™* " w(dv dw) — fE e™* " w(dv dw)}

< K(n, 0)e™*" (w(Eo) — w(Ey)) = 0.

This proves that é, completely dominates ?,.

The admissibility of @, follows easily from the Theorem of Stein (1956). (See
also Birnbaum, 1955.) The key observation here is that the acceptance region for
@, is the intersection of the domain of (V, W) with half spaces whose outward
normals (eventually) lie in the effective alternative.

REMARK. Lehmann and Stein (1948) show that for a = % the t-test is
uniformly most powerful. Hence the assumption in the theorem that o < % is
necessary as well as sufficient for validity of the conclusion of the theorem.

It should be clear from the above proof how to construct a variety of other
tests which dominate the t-test in the indifference formulation. Here is a formal
statement.

COROLLARY 4.2. Let Fy, F; be two measurable sets such that

(i) Fy and F, are separated by some line with slope 2u, and by some line with
slope 0, with F, below and to the left of Fy,
(i) F, is below w = k,v? and F, is above w = k,v?,
(iil) w(Fo) = w(Fy) #0.

Let

[1 if Gv,w) =1 and (v, w) & Fo,
Pv,w) =41 if (v,w) EF
10 otherwise.

Then ¢ completely dominates ¥, in the indifference formulation.
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ProoF. The proof follows the pattern of the proof of Theorem 4.1.0

It is of considerable interest to discover whether there may exist some alter-
native test dominating ¥, which noticeably improves on the power of ¥; (and ¥,)
over some substantial part of H; — H. We have not found such a test, and
examination of Figure 4.1 and the power figures for ¥, has made us skeptical
concerning the existence of such a test.

5. Discussion. The tables of power summarized in Section 3 withdraw
much of the potential direct practical importance of the theoretical result con-
tained in Theorem 4.1. It is clear from the figures in Section 3 that the new
procedure, ¥,, is virtually equivalent to the usual ¢-test unless n is moderately
small or o/(u;.— mo) is quite small. (This is also to be expected on theoretical
grounds since as n grows the t-test begins to mimic closely the normal test for
known ¢, which is U.M.P.) Still, the ¢-test is frequently used in situations where
n is indeed small, and occasionally ¢/(u; — wo) may be quite small. Hence, it is
worthwhile to further discuss some aspects of the figures in Section 3.

In the case of ¢, relative to ¥., there is no -appreciable gain in power over
H, — Hi. The only real difference in performance is the reduction in power over
H,. Is such a reduction of sufficient merit to justify the postulation of an
indifference zone and the surrender of similarity?

It seems to us that this question does not have an unequivocal answer. Two-
decision procedures have a variety of applications. One class of applications
involve what Fisher (1955) called “acceptance procedures” as a “technological
and commercial apparatus.” This is to be contrasted with Fisher’s original
conception of a significance test as a tool in “the work of scientific discovery by
physical or biological experimentation.” (Again, see Fisher, 1955.) Of course, both
of these categories are fairly general and each involve a variety of possible criteria
and goals for the statistical procedures. There are also a variety of other current
uses of two decision procedures.

For a situation fitting Fisher’s original conception of a test as a tool in
scientific discovery, it may well be that the only important feature of the type I
error is its supremum which is of course the level of the test. Thus, here, reduced
power only over a (small) part of Hy seems a questionable benefit. (This would
be so even if it were possible to identify a valid indifference region in H;, which
would rarely be the case in applications of this sort.)

In the case of acceptance procedures, any rejection may be followed by a costly
reevaluation or realignment. If so, it would be an economic advantage to control
the rate of type I error over any part of H, which might obtain. (In such cases
the role of the significance level is often reduced to a mere description of one
facet of the procedure being used, rather than a fundamental feature of it. Also,
these are often situations where one should contemplate the use of procedures at
various levels, not merely the conventional .05, .01, or etc.) This, then, is a type
of situation where it could be worthwhile identifying a valid indifference zone in
H, and then adopting the procedure, ¥#,, which reduces probability of type I error
over part of H, (in return for reduced power over part of H?).
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In Section 9 we consider the construction of two-sided confidence intervals.
Here some of the hesitation disappears. Suppose it is not a serious error to cover
parameter values u’ with |u’ — u| < 6 where u represents the true value. Our
proposed two-sided confidence intervals have greater probability of covering the
true value and not significantly greater probability of covering values of u’ with
| w’ — u | > 6. Again, the probability of correct coverage is noticeably greater for
smallish n and ¢/6. Thus for the construction of confidence intervals the intro-
duction of an indifference zone leads to a more clearcut advantage.

In summary, Theorem 4.1 shows that it is in principle possible to take
advantage of the identification of an indifference zone. This may also be true in
situations other than the ones discussed in this paper. In the Student’s ¢ problem
under consideration the advantage is somewhat limited in practice, as shown by
the power function of ¥, described in Section 3. Whether it is really desirable to
substitute ¥, for ¥; must depend on many factors. There are relatively concrete
factors such as the sample size and a (crude) a priori determination of the likely
range of values of o/(u1 — wo) (and possibly of (u — uo)/(u1 — mo)). But it is
equally important to consider the purpose and philosophy of the particular
statistical test in question, and the true practical meaning in this context of an
indifference zone and of the decisions “Accept” and “Reject.”

Part II: two-sided tests.

6. The customary formulation: definitions and theoretical results. It
is possible to routinely extend the one-sided formulation of Section 2 to the two-
sided case. In this routine extension u; < uo < up are given constants, Hy, =
{(u, 0% = pol, Hi = {(1, 0®):p # po} and H = {(p, o®):my s p<moor mo< p =<
uz}. To simplify the notation set uy = 0, without loss of generality. Let y, denote
the critical function of the usual symmetric two-sided ¢-test for this problem:

1 if |x|/s> Cup
0 otherwise.

YelX, s) = <||

Then, another test, with critical function ¥, dominates y; if
My((0, 6%) < I,((0, 6®)) =a for ¢*>0
and
My((p, %) = Iy ((u, ¢®) for (u, 0®) € Hy — Hi

with strict inequality for at least one value of (u, 02 € Hy U (H; — HY). If no
test dominates ¥, then it is admissible.
Here is the major theoretical result in this setting.

THEOREM 6.1. . is admissible in the above setting.
(The proof is fairly technical though of some interest for its relation to other

general results on testing in exponential families, such as those in Marden and
Perlman (1980) and Marden (1981). It is deferred to the appendix.)
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7. The customary formulation—an alternative to the #-test. The
admissibility of ¥; does not necessarily compel its use. The proof of Theorem 6.1
shows only that for any level « procedure ¥ # y;, one will have IT,((g, ¢%)) <
I, ((g, 0%)) for some values of (n, 0%) € H, — H] with ¢® sufficiently large. But
when o2 is very large, both y; and ¢ will have power nearly a.

In searching for an alternative to ¥, the obvious choice is the two-sided version
of ©,. Suppose for simplicity u; = —ua. Then this obvious choice is the level «
two-sided procedure, Y, related to the level a/2 one-sided procedure, ¥,, by

Ya(X, 8) = Pu(1 %], 9).

(When p, # —pu, the same principle can be followed of combining two level «/2
one-sided tests. The resulting procedure will not, of course, be symmetric.) It can
be easily shown that y, is admissible.

The power of y, at (0, ¢?) € H, is exactly twice that of ¢, at the same point.
Hence powers of ¥, on H at levels .05 and .1 may be found by doubling the
figures in Table 3.1. Obviously v, is level « as a consequence of Theorem 4.1.

Tables of the difference in power, II, ((, ¢%)) — I, ((g, ¢%)) for u # 0 may be
found in Chow (1982). These tables show that this difference in power is indeed
negative for u sufficiently near u;,. However all differences in power for (u, o?) €
H, — HY appear to be negligible (less than .001).

From a practical perspective, within this customary formulation, y, may
be substituted for .. As in the one-sided situation, one then sees a reduction
in type I error rate for small to moderate values of n and smallish values of
o/(u1 — po) and the type II error rate of over H; — Hi is virtually unaltered. In
this sense the two-sided case is a duplicate of the one-sided case, and the
discussion of Section 5 applies to this two-sided case as well.

8. Alternate formulations: discussion and results. Concerning two-
sided testing problems like the two-sided ¢-problem, Lehmann (1950) wrote,

“It seems that in nearly any problem of this kind that would arise in
practice one would want to decide when rejecting the hypothesis,
whether the true parameter value lies above or below the hypothetical
one. . . . It would therefore seem most natural to formulate such problems
as 3-decision problems.”

To emphasize this point of view (with which we agree) we present another
quotation; this one is from Cox and Hinkley (1974, page 106).

“In the overwhelming majority of applications it is essential to
consider the direction of departure in interpreting the result of the
significance test; that is, to conclude that there is evidence that § > 6,
when in fact § < 6, would normally be very misleading. Yet the composite
power function treats such conclusions in the same way as the correct
conclusion.

“This argument shows that we are really involved with two tests, one
to examine the possibility § > 6, and the other for § < 6. [The
recommended procedure is essentially] the commonly used procedure of
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forming a critical region of size a by combining two regions each of size

¢/2, one in each direction. It is different in many cases from the unbiased
. »

region.

These authors were addressing only the two-sided problem without indiffer-
ence region, but their remarks have equal force also when there is such a region.
In that case there are three possible decisions: dy = accept H,, d- = decide
u < uo =0, and d; = decide u > puo = 0. There are 5 regions of the parameter
Space—(_°°, :u'l)) [”’1, O)) {0}) (Oa ,Ll.2], (”’21 00)

One may introduce suitable admissibility criteria involving error probabilities
as was done in Section 2. However it is slightly more convenient here to use
a loss function formulation. Thus, dominance and admissibility considerations
may reasonably be based on one of the loss function L; or L, summarized in
Table 8.1. With either L, or L, one could define the level of a procedure p as
sup Ri((u, 0?), p) where, as usual, Ri((u, 0?), p) = E, (Li(n, ¢?), p)).

This table can be compared with the loss structure corresponding to the
formulation in Section 6, which is summarized in Table 8.2.

Both loss functions L, and L, seem to us quite reasonable for this three
decision indifference formulation. The loss function L, is given in Sobel and
Wald (1949), who presented two-sided, three decision formulation with indiffer-
ence zones for a sequential testing problem. The loss function L, appears to us
to be the correct indifference zone analog of the loss functions presented in
Lehmann (1957). Fortunately the theoretical results and the qualitative numer-
ical results agree here for both these loss functions, so at present we need not
choose between them.

The obvious extensions of ¥; and y, to this setting are p, and p, with p; given
at level o by

d, if x>0 and Y%, s) =1
p(x, s)) = 1do if ¥Pu(x,s) =0
ld it ¢0, ) = eu-i,5) = 1

TABLE 8.1 Values of L,(Ls).

True Parameter Value: pe

Decision
(=, 1) [11, 0) {0} (0, pe] (p2, ®)
d 0 (0) 0 (0) 1(1) 1(1) 12
do 1(1) 0 (0) 0(0) 0 (0) 1(1)
d, 1(2) 1(1) 1(1) 0 (0) 0 (0)

TABLE 8.2 Values of the loss function for “the customary formulation.”

True Parameter Value: ue¢
(=0, 1) (11, 0) {0} (0, us] (2, )

Accept 1 0o 0 0 1
Reject 0 0 1 0 0

Decision
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Hy = by Ho = O

F16.8.1. Decision regions for p,.

where ¢, is the level a/2 t-test. p, is defined by

d,y if e, s) =1
pa((%, 8)) = 1do if PP(F,8) =0=¢(%, )
ld_ if ¢O(x, ) =1

where @ () is the level a/2 alternate procedure for testing u < 0 versus
u>0 (u> 0 versus u < 0) with indifference zone 0 < u =< ug (u1 = u < 0). See
Figure 8.1.

Here is the main theoretical result for this setting.

THEOREM 8.1. With respect to either L, or L, p, is admissible and dominates
p:. (Hence, of course, p, is inadmissible.)

ProoOF. The admissibility of p, can be proved from Stein (1956) as was the
admissibility of ¢,. For loss function L, the dominance of p, over p, follows from
that of ¢, over ¥, upon application of the methods of Lehmann (1957). Thus, let
¢ = ¢ (-7, s), etc. Then if u < 4,

E(.on(La((, 0, pa)) = Hew (u, ¢?) + (1 — Hep (g, 0?))
< My, 0% + (1 = Hep(p, 0%) = Eqer(La((p, 0%), pr)

by Theorem 4.1. The desired comparisons of values of the risk function on other
portions of the parameter space can be obtained similarly. The proof for L, is
also similar to the above since

E»(Li((g, 0%, pa) = (1 — Heo(p, ), ete. O
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(Note that p, actually dominates p; also in the sense of decreasing Pr, 2{d.}
for u € (-, uy), etc.)

The preceding theoretlcal result can leave one slightly more reassured that p,
is to be preferred to p, than was the case in comparing ¥, to Y;—there is no need
here to rely on the partial results for power in the numerical tables. However, it
remains true here, as in previous cases, that the only appreciable differences in
risk between p, and p; seem to occur when p = 0, n is small to moderate and
o/(po — p1) or o/(pe — po) is rather small. These differences in risk may again be
obtained from Table 3.1. If we restrict attention to the symmetric case which has
u1 = —pus then the difference in power is 2((entry in Table 3.1) — «). Consequently,
the discussion of Section 5 still applies here with obvious alterations to fit the
different formulation.

9. Confidence intervals. Conditionally on S the acceptance regions for
the one-sided test ¥, are translation invariant intervals so long as £ < 1. (This
occurs for a = .025 and a = .05 except for a« = .025 and n = 2, 8.) This is also
true regarding ¥, in the two-sided case. Hence in either case these procedures
may routinely be used to form confidence intervals. As the two-sided case is of
more interest, we will concentrate on that. We also discuss the relation of
Theorem 8.1 to these confidence intervals. .

Let ¢, denote the level o procedure of Section 7 with o = 0, as before, and
—u1 = ps = 6. Define the confidence set

Il—a(j S) = {ﬂ'\ba(j ll'y S) - O}

Then I,_ a(x s) forms a system of location invariant (1 — «) confidence mtervals
for u. Although in the usual sense these procedures are not scale 1nvar1ant they
are invariant relative to the overall formulation (as discussed in Sectlon 3 of the
confidence interval model). These confidence intervals have the following prop-
erties:

(1) inf2Pr,fp € 1o} =1 — a3
so the intervals truly have confidence coefficient (1 — «). However

(2) as can be seen in Table 3.1, if n is small to moderate and o/d is small then
Pr, .2{u € I,_.} exceeds (1 — a) by a noticeable amount. Hence the confidence

procedure may have a markedly better probability than (1 — «) of containing the
true value. (The usual ¢ intervals have exactly probability (1 — «) no matter what

(u, o) are.)
(3) On the other hand, the numerical results indicate that if |u" — u| > 6
then
lPI'#{p,' € I(l—a)} - Pl'#{p,' € T(l—a)} | <.001

where T_, denotes the usual level o two-sided Student’s ¢ confidence interval.
Hence the I,_, intervals have virtually the same probability of covering false
values of u’ not too close to u as do the T intervals.
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(4) The I intervals are noticeably deficient in classical terms with respect to
the T intervals only in the respect that they have a higher probability of covering
false values of u’ near u (i.e. |u’ — u| <9).

In many circumstances it is a minor or even negligible disadvantage to cover
false values of u’ which are near u. On the other hand it is a definite advantage
to increase the probability of including the true value (other important factors
being equal).

Thus, in forming confidence intervals it is a clear advantage to use the intervals
I,_, in place of T_, if one can identify a zone of the form | 4’ — x| < 6 for which
one is indifferent to false coverage. The advantage increases as n and o/ decrease.

The preceding discussion relates to the classical formulation aiming to increase
the probability of covering the true value and decrease the probability of covering
false values. The inadmissibility result of Theorem 8.1 is relevant to a modifica-
tion of this formulation. We now present this modification as a logical comple-
ment to Theorem 8.1. We are not at present convinced as to the utility, or
disutility, of this formulation in statistical practice.

Let (u, u’) be a pair of possible mean values. u represents the true value, and
u’ represents some other value which may be covered. If u” # u then u’ is a false
value. Because of the indifference formulation we will be primarily concerned
only with values (u, u’) for which u’ = por [u’ —pu| > 6.

Let V be a system of (1 — «) confidence intervals—that is, V(%, s) = [v1(%, s),
Uo(%, s)]. The objective is now to make large

9.1) Pr.fu € V};
and for u’ = u + 6 (' < u — ) to make small
9.2) Priu’ = va(%, s)} (Prin’ = vi(%, s)}).

This latter criterion should be interpreted as follows: If 4 + 6 < u’ then it is an
equally serious mistake when p is true to (i) state a confidence interval containing
u' (i.e. vy = pu’ < vy) or to (ii) state a confidence interval falling to the right of u’
(i.e. u’ < v;. This of course implies, in particular, that u & V.) A symmetric
criterion holds when u — 6 > u’. Condition (9.2) above, is what distinguishes this
formulation from the classical formulation. It must be based on the premise that
for any u’ significantly to the right of the true value, y, it is as serious a deficiency
to state an interval clear to the right of u’ as it is to state an interval which
contains u’.

THEOREM 9.1 In the preceding formulation the usual Student’s t intervals,
Ta-o = (t1, t2) are inadmissible, and are dominated by the admissible intervals
Iq-o) = (i1, iz). Thus, in particular

(9.3) l—a= PI‘,‘{M (S T(l—a)} = Pl‘”{/.t (S I(l—a)}
and, for u + 6 < pu’
(9.4) Pru’ <t} = Prju’ < iy},
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and for uy — 6>y’
(9.5) Priu’ =t} = Prju’ = ii}.
In addition, it is also true that for u < up’ < pu+ 6
9.6) Prfu’ <t} = Pr.ju’ <ii}
with a similar statement being valid for p — 6 = u’ < u.
(Property (9.6) is also a desirable feature of the intervals I. At least, it is not

undesirable—one could reasonably argue that it is irrelevant what happens when
| — u’ | < 6 due to the indifference formulation.)

PrOOF. The proof relies on Theorem 8.1 and a standard trick. For example,
for the situation u + 6 < u’ one has

Priu’ < iz(X, S)} = Prf0 < in(X, S) — u'} = Pr,f0 < ix(X — u’, S)}
= Pr,_{0 = is(X, S)} = Pr,_p{pa(X, S) = do or dy}.

Similar statements are, naturally, true for T and p;, and (9.4) then follows from
Theorem 8.1. The rest of the theorem is proved similarly. [

APPENDIX

This section contains the material necessary to establish Theorem 6.1. The
following simple lemma is used several times in the proof of Theorem 6.1. The
variables V, W and other quantities which appear here are defined in Section 4.

LEMMA Al. Let m:R X (=, 0) X (0, ®) - R and p:R X (0, ©) — [—1, 1]
(both measurable). Let S C R X (0, ») (again, measurable). Suppose

(i) V(v, w) € S, m(v, w, ) is nonnegative and monotone nondecreasing,
(ii) sup{|m(v, w, 0) |:w = v?%/n, (v, wW) &S, -1 =<0<0} <,
(iii) p(v, w)ym(v, w, ) =0 Vo, w € S,
(iv) limy -om(v, w, 8) = m(v, w, 0) exists and is finite for all (v, w) € R X (-, 0),
v) w(S°) < o, ,

Then

limy o f p(v, wym(v, w, O)w(dv dw)
(1)
= f p(v, wym(v, w, 0)w(dv dw) = —o

(thus the limit in (1) exists as an extended real number.)

A symmetric result holds if the inequality in (iii) is reversed.
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PrOOF. Split the region of integration in (1) as [ = [s + [s. Then,
limg »¢ [se exists and has the desired value by condition (ii), (iv) and the boundness
of p. And, limy »o [s exists and has the desired value by (i), (iii), and (iv).O

PROOF OF THEOREM 6.1. Let ¢ be the critical function of a level « test at
least as good as the t-test with critical function .. Let

p(v, w) = Y(v, w) — P (v, w)

and

(2) A, 0) = f p(v, w)e™* ™ w(dv dw) = K~'(n, 0)(Iy(n, §) — Me(n, 6)).

Let a = uV(—m) so that H D {(4, 0%):u = *a}. Recall that x = —z/26. Since ¢
is at least as good as ¥, (2) yields

A(0,0) =0, A(—2a0,0) <0, A(2a8,0)<0.

To simplify notation, combine terms and rewrite this as

(3) Ao(8) = A0, 0) = 0, Ay (8) = Ya(A(—2a8, §) + A(2a8, 8)) < 0.
Suppose we can show

(4) f wp(v, w)w(dv dw) =0

and

(5) f v2p(v, ww(dv dw) < 0.

Then [ (w — kv?)p(v, w)w(dv dw) = 0 where k = k,/, as defined in (4.2). But,
(w — kvH)p(v, w) < 0 for all v, w by the definition of y;. Thus (4) and (5) imply
p(v, w) =0 a.e. (w); and this means that ¢, is admissible. The proof will therefore
be complete when (4) and (5) have been established.

Examining ¢,, we note that its acceptance region is bounded by the parabola
w = kv2 The slope of this curve is dw/dv = 2kv. Hence for |v| = a/k the
perpendicular ray to the tangent at (x| v |, kv?) goes out away from the acceptance
region to + inside the effective alternative, H; — H = {(n, 0):| n| = —2a6}. It
follows from the Stein-Birnbaum argument (Stein, 1956) that p(v, w) < 0 a.e. (w)
on {(v, w):w = kv or w < 2a|v| — a?/k or w = a*/k} D A U B where

A={v, w):w=a%*k}, B={v,w:w=2a]|v|}
By Lemma Al with S = A and m(v, w, §) = ™

0 < limy ~Ao(8) = f (v, w)w(dv dw).
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Similarly with S = B and m(v, w, 8) = 4(e?®@ 2% 4 gftw+2a))

0 = limg »A1(8) = f p(v, w)w(dv dw).
Hence
(6) limg 79Ao(f) = 0 = limg A1 (6).

Standard theory of exponential families yields that A, and A, are infinitely
differentiable and that derivatives can be computed under the integral sign.
Again apply Lemma A1. This time let S = A and m(v, w, §) = we®™ to get

7 limg »o (% Ao(0) = f wp(v, w)w(dv dw).

Similarly, letting S = B and m = %[(w — 2av)e’™ 2 + (w + 2av)e’@*?™)] yields
8) limg ~o % Aq(0) = f wp(v, w)w(dv dw).
In particular, the limits in (7) and (8) exist and so by (3) and (6) must satisfy

. d . d
llmg/v() % Ao(ﬂ) =0= llmg/g % Al(ﬂ)

This verifies (4) since in fact

. d . d
limyg o 2 Ao(8) = limg o 2 A(0) = f wp(v, w)w(dv dw).

Again using Lemma A1 and (3) and (6) yields
2

. d
0 < limg o p7D

Ao(0) = f w?p(v, w)w(dv dw)

and
2

. d
0< llma/() 302—2 A1(0)

= lim, 20 f p(v, w)(%)[(w — 2av)%" 2 4 (w + 2a)%e" @2 (dv dw)

= f (w? + 4av?)p(v, w)w(dv dw).
This verifies (5), and completes the proof. 0
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