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A GENERALIZED KAPLAN-MEIER ESTIMATOR!

By JAMES B. ROBERTSON AND V. R. R. UPPULURI

University of California, Santa Barbara and Institute for Energy Analysis

In the theory of competing risks, the nonparametric Kaplan-Meier esti-
mator plays an important role. In this paper, a bivariate nonparametric
estimator for the competing risk problem is given, which for the special case
of independent causes gives the Kaplan-Meier estimator. This paper also
introduces a matrix w, through which dependent models for the competing

_ problem can be studied. These results also indicate the special case on the
matrix w for which the bounds to the survival function given by Peterson [4]
can be obtained.

1. Introduction. The nonparametric estimation of the survival function
from incomplete or censored data was first considered by Kaplan and Meier [3]
in 1958. Further ramifications of the two sample problem with censored data
were given by Efron (1967). Several authors have remarked (cf. [2]) that the
validity of the “independence assumption of the Kaplan-Meier estimator” cannot
be checked from the actual data. In this paper we consider the general situation
when the time to death and the time to loss (censored part) are not necessarily
independent.

In Section 2 we derive a class of nonparametric maximum likelihood estimates
(MLE) for the survival function given the censored information. In Section 3 we
show that the Kaplan-Meier product limit estimator is a distinguished member
of this class. In Section 4 we discuss a general procedure for constructing other
ML estimates. Section 5 discusses some special cases and has additional remarks.

The results in this paper provide insights for the Kaplan-Meier estimator and
the bounds given by Peterson (1976). It is once again brought out that the
“independence” assumption in the use of Kaplan-Meier estimator cannot be
checked from the data. The weight matrix w introduced in Section 4 is a possible
way to study various dependent models.

2. Maximum likelihood estimators. In this section we shall derive a
nonparametric MLE for the survival function. Let D denote the time to death
and let L denote the time that a loss occurs. We consider D and L to be
nonnegative random variables of which only the first one to occur is observed.
Thus an observation consists of a bivariate random vector (T, 6) where T =
min(D, L) is the time of observation and 6 = 1 or 2 according as T'= D or L
indicates the nature of the observation. We suppose that 6 is well defined, that
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is, that P[D = L] = 0. The basic problem is to estimate the survival probabilities
S(d) = P[D > d]. For the purpose of estimation, we suppose that we are given a
random sample of (T, &) of size n. That is, (T4, 6,), (Ty, 6,), - -, (T, 6,) are
independent ragdom vectors, each with the same distribution as (T, §) given
above. A MLE P will be concentrated only on values (d, I) that give rise to actual
observations (T}, 8;). The largest observation, T\,), requires special attention
since it implies the existence of a death or loss that has not been observed. Let
2 ={d,, d,, - - -, d.} be the observed deaths, let < {l, , L, - - -, ,} be the observed
losses,and let 7 = U & ={T, T, ---, T.,} be the set of all observations.
Let @ = (9U {T(n)}) X (_7 L{ {T(n)}). ThUS, if 5(,,) =1 (resp. 6(,,) = 2), Q has
r(s + 1) (resp. (r + 1)s) points. Q will be the support of the MLE measure P. This
is illustrated for n = 7 and deaths at times 1.0, 3.1, 5.4, 12.1 and losses at times
0.8, 2.7, 9.2 in Figure 1.

Any of the individual observations (T3, 8;) could be realized on the sample
space QIfs;=1 (resp. 6; = 2), the observation (T3, ;) corresponds to the set

A= {(d;, [):l; > di} U {(di, Tiny)}
(resp. A; = {(d;, }):d; > L} U (T, B)Y).

In particular A, = {(T(n), T(n)}.- The sets {A;, A,, ---, A,} form a partition of
Q. Let p; = P(A;). Then the likelihood function

L(pi, P2, -+, ps) = In P(NL, [(D;, L) € Ai]) = In []% p;

is easily seen to be maximized by p; = 1/n for all i. Thus, we have proved:

THEOREM 1. A probability measure P on Q is a MLE for the distribution P of
(D, L) ifand only if P(A;) =1/nforalli=1,2, -.-, n.

We remark that if §,, = 2, we are assigning mass to the event [D = T|,,]. This
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should be interpreted to say that D > TY,, and the precise value of D cannot be
determined (cf. Peterson (1976) for a discussion).

3. Independence. In this section we prove the following:

THEOREM 2. There is one and only one MLE probability P on Q such that D
and L on (Q, P) are independent. This is given by the Kaplan-Meier estimator.

PROOF. Suppose first that P is given by
31) P(d;, ) = p(d:)q(k).
If 5; = 1 (resp. 6; = 2), we then have
(1/n) = P(A;) = p(T)[1 — Xy<r, q(}))]
(resp. (1/n) = P(A;) = q(T)[1 — Zg<r, P(d))]).

Let Ty < T < - - - < T(n be the natural ordering of the observations. Proceeding
by inductiononi=1,2, ---, n, if §; = 1 (resp. §; = 2), we get

p(Tw) = {n[l = Fy<r, g}
(resp. ¢(T(w») = {n[1 — Ya<1,, P(d)]}7).

Since at the ith step the right hand side of (3.3) is uniquely determined, the
distributions p and g are uniquely determined.
Conversely, if p(d;) and q(/;) are defined inductively by (3.3) and if (3.1) holds,
then (3.2) implies that PA) = 1/n for all i. Thus, Pis a MLE by Theorem 1.
Kaplan and Meier (1958) derived their estimator under the assumption of
independence and so by the uniqueness results, it is given by (3.3) above. [

(3.2)

(3.3)

4. Distribution of mass to the right. We now describe a general proce-
dure for calculating the marginal distribution P(D =d;) of a MLE. This procedure,
in the case of independence, was first considered by Efron (1967).

We say that w on 9 X 7 is a redistribution to the right (RR) matrix if

(1) wj=0foralli,j
(2) Ej Wi = 1: and
B) wy=0if j<iorifj=i<n.

w; represents the proportion of the mass of T\, that is transferred to 7.

We will be given an initial distribution m on 7, m; = m{T;}. The expression,
“redistribute the mass of T(), B < n according to w,” will signify the linear
operation acting on the “vector” m given by

m! =m; if i<k,
m}/ =10, and

m! =m; + mywy if 1>k
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We shall denote this operation in matrix notation by m’ = m - w,. Thus the
matrix w; is obtained by replacing the kth row of the identity matrix by the kth
row of the w matrix.

We shall apply the above procedure in two different cases.

Procedure 1. Start initially with m equal to the uniform distribution on
i.e., m; = 1/n for all i. Inductively redistribute the mass of each loss to the right
according to w. That is

m' =m. wl(ém) e wn(a(n))

where wy(6) = I (the identity matrix) or wj according as éx = 1 or 2. (In Fig. 1
m’ = mw,wsws.) The results of this operation is a probability distribution p(7T(x))
=m’on D U {Tw)}. (In Fig. 1, p(Tw)) = Y6, p(Tw)) = p(T(5)) = %24, and p(Tr))
= 5/3.)

Procedure 1 will be described by saying that p is obtained by redistributing the
masses of the losses to the right for the uniform distribution on 7 according to
the RR matrix w.

Procedure 2. For each T; let m be defined by m; =0ifi # jand 1/nifi =
j. (This distribution is not a probability.) For simplicity we assume that 6, = 1,
i.e., that T is a death. If §; = 2 then a similar result will be obtained by
interchanging “losses” and “deaths.” Now redistribute the masses of the deaths
to the right according to w, i.e.,

m' = mw1(5(1)) e wn(a(n))

where now wx(¢)) = ws or 1 accordmg as 6 = 1 or 2. We define Pon Aw by
P(T(,), l) = m, (In Flg 1 with i = 2 P(T(z), T(g)) =135 and P(T(Q)T(G)) = P(T(Q),
T(z)) = %3s.) Carrying out the above procedure for each i results in a probability
distribution P on © such that P(A)) = 1/n for all i.

The crucial connection between these procedures is given by the following

LEMMA. Let w be an RR matrix, then the distribution p on I U {T(,,,}
obtained in Procedure 1 is the marginal distribution of P defined on Q as in
Procedure 2.

PRrROOF. Define the usual basis vectors e; by e; =0if j # iand = 1if j = i.
Fix an i such that §; = 1. Then the marginal distribution of P is given by

Y5 P(Twy, Ty) = {Zsy=2i<i €i1(0) -+ @aldm)el + 1}/n

where e/ denotes the transpose of the vector e.

If 6, = 1, then e;ivx(3(x)) = ¢;and ejef = 01if j # iand 1if j=i. If 6 = 2 and
i > j, then all the components of ;it,(6a)) -+ Wn(dn)) are 0, so e;iwy(dy)) - --
wn(a(n))ezT= 0.
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Thus
2 P(Tw, Ty) = 3; e@i(3wy) - Balbim)el/n
= 1/n, -+, 1/n)@1(8)) -+ Wn(dim)el
=p(Tw). O

THEOREM 3. A probability distribution p defined on & U {T,)} is a MLE if
and only if there exists an RR matrix w such that p is obtained by redistributing
the masses of the losses to the right for the uniform distribution on 7 according
to w.

PROOF. Suppose that RR matrix w is given. Then p obtained by Procedure
2 above is a MLE for P by Theorem 1 since by constriction P(4;) = 1/n for all
1€ 7

Conversely let p be a MLE. By Theorem 1 there exists a MLE PonQfor P
such that p is the marginal dlstrlbutlon of P. Lt i be given such that §; = 1. Then
i={(T;, §):[; > Ti} and Y4, BT, ) = P(A) = 1/n. Let m be concentrated on
{T(l,} with m{T(l)} = 1/n. Define w; = n - P(T, T) if i < j and Thy€E L U
{T(n} and zero otherwise. If §; = 2, then replace &Z by 2 in the above sentence.
It is clear that w so defined is an RR matrix and that an application of Procedure
2 above will produce the probability measure. P. [

We remark that for a given MLE p there may be many different MLE Pong
with this marginal, and for every MLE P on Q there may be many different RR
matrices w for which Procedure 2 will yield P.

5. Special cases and remarks.

(a) If w; = wy, for all j, k > j, then we are redistributing the mass “equally”
to the right. This is the kind of procedure considered by Efron (1967) and
yields the Kaplan-Meier estimator.

(b) If w;;+1 = 1 (resp. wi, = 1), then we get the largest (resp. smallest) MLE
for the survival function S(¢). These bounds have been considered by
Peterson (1976).

(c) Maximum entropy. It is frequently useful to ask for distributions that
maximize entropy (cf. e.g. Rao (1973), page 162-163, page 172-173, page
217). This technique can be used in our situation to select a specific ML
estimator from the class of all such estimates. Subject to the constraint
that P(A;) = 1/n the entropy of P is maximized by assigning each of the
points within A; equal probability. This corresponds to an RR matrix
which redistributed the mass of each loss (death) uniformly on the deaths
(losses) to the right. This procedure will put less probability on the longer
lifetimes than the Kaplan-Meier estimate.
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