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For two linear experiments d; = L(X;8, V) and d, = L(X,8, V,) where

the covariances V; and V; are known and can be singular or nonsingular, we

characterize the following relations: d; at least as good as d,, d; better than

- dz, and d; equivalent to d,. Sometimes only a subset of parameters is of

interest to the experimenter. We extend the above relations between d; and

d; to estimation of a common subset of parameters and give analogous
characterizations. Three examples are given.

1. Introduction. A linear experiment with known covariances, denoted by
L(XB, V), is represented by

y=XB+e E()=0, Var(e) =V,

where y is an n X 1 random vector of observations, X is an n X p (design) matrix,
B is a p X 1 vector of parameters of interest, and ¢ is an n X 1 random vector of
errors with mean 0 and covariance matrix V(singular or nonsingular). Ehrenfeld
(1955) defined that d; = L(X,8, Vi) is at least as good as d» = L(X28, V,),
denoted by d;, = ds, iff for any c¢’g estlmable in d, it is also estimable in d; and
Var(c’B,) < Var(c’B,) for all such ¢, where 61 is the best linear unbiased estimator
(BLUE) of 8 under d;. She proved that d; = d, if X{Vi'X, — X} V3;'X, is
nonnegative definite when V; and V, are nonsingular. Subsequent results were
given by Kiefer (1959). Comparison of linear experiments was also considered by
Hansen and Torgersen (1974) and Stepniak and Torgersen (1981), using more
general concepts like risk function, statistical decision rule, etc. For known
covariance, this more general comparison of linear experiments is equivalent to
the previous one in terms of performance of linear estimation. For comparison
of general statistical experiments, see Goel and DeGroot (1979) and the review
paper of Torgersen (1976).

In Theorem 1 of Section 2 we extend Ehrenfeld’s result to linear experiments
where V) and V; can be singular or nonsingular. We then consider in what ways
experiment d, is strictly better than experiment d, and characterize such an
ordering relation in Theorem 2. A definition of equivalence of experiments is
considered and a characterization is given in Theorem 3. An alternative charac-
terization of d; = d, is given in Theorem 4.
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Two experiments can be compared in terms of their performances in estimating
a subset of parameters. For example, treatment effects in a block design are of
more interest to the experimenter than block effects. Block design d, is said to
be at least as good as block design d, if any (estimable) treatment contrast can
be estimated at least as precisely under d; as under d,. A precursor is Kiefer
(1959). In Section 3 we extend all the results of Section 2 to the situation where
estimation of a subset of parameters is of interest. In Section 4 we give three
examples to illustrate the main results of the paper.

2. Comparison of linear experiments with known covariances. We
first state two lemmas. For a matrix A denote its column space by .#(A) and any
g-inverse of Aby A™,i.e. AA”A = A.

LEMMA 1. For any symmetric nonnegative definite (n.n.d.) matrix A,

w [('y)?
plz’A‘z

12#0,2z € //{(A)} = y'Ay,

and equality attains when z = kAy, k # 0.

PrOOF. From the Cauchy-Schwarz inequality, we have (x’Ay)? =<
(x’"Ax)(y’Ay). By taking z = Ax and the definition of g-inverse, the result is
proved. O

Note that z’A~z is independent of the choice of A~ since z € #(A). In the
case of nonsingular A, Lemma 1 was used fruitfully in another context (Wu,
1980a).

For any two n.n.d. matrices A and B, A = B means A — B is n.n.d. The
following lemma provides the key tool of the paper.

LEMMA 2. For any two n.n.d. k X k matrices §, and Q,, @, = Q, iff

(i) #4(Q,) C #£(Qy),
(i1) v’Q7 v = v’'Qzv for any v € #(Q.), where Q7 is a g-inverse of ;.

PROOF. “Necessity”. (i) is obvious. To prove (ii), note that the expressions
in (ii) are independent of the choice of g-inverse Q; . Since @, = Q,, from Theorem
5 of Wu (1980b), there exist a pair of g-inverses Q7 and Q3 such that Q7 < @3,
thus proving (ii). “Sufficiency”. We warit to prove y’'@,y = y’Q.y for any k X 1
vector y. From Lemma 1, y’'Q;y = sup{(2’y)?/2’Q; 2: 2 # 0, z € .#(Q;)}. For each
2 € #(Q.) C #(Q), we have z’Q71z < 2’ Q3 z, which together with (i) proves the
result. 0

We are now ready to prove the main result of the paper.

THEOREM 1. For two linear experiments d; = L(X.8, Vi) and d; =
L(X,8, V), d, = d, iff

(1) Xi(Vi+ kX, X{) X: = X5(Vy, + kX, X5)™ X, for any scalar k > 0.
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PROOF. According to Rao (19:73’ page 300), a BLUE of an estimable function
¢’Bunder d; is given by ¢’8; with 8, = (X! T; X;) " X! T y;, where y; is a realization
ofd;, T;= V;+ kX;X!, and k is any positive scalar. The variance of ¢’3; under
di is

2) Var(c’;) = ¢/ (X! T7 X;)"c — ke’c.

From the definition and (2), d, = d, iff

(3) MX3) C MXT)

and

(4) ¢/ (XiTi X)) ¢c=<c¢'(X5TsX,) ¢ for any ¢c € _#(X3).

Since .#(X;) C #(T;) from the definition of T;, X! T; X; is independent of the g-
inverse T'; and is therefore n.n.d.

It remains to prove (1) is equivalent to (3) and (4). From Lemma 2, (1) is
equivalent to

(3)’ MX;5T: X,) C MX1TTXh)
and
(4)’ ¢ (X{TTiX1)¢c<c'(X;T:X;)"c for any ¢c € #(X;T3 X,).

To prove (3) and (4) are equivalent to (3)’ and (4)’, it remains to prove
MX!T; X)) = #MX]), i =1, 2, which follows from Rao (1973, page 300). O

REMARK. Condition (1) can be replaced by a more general one

(1)’ Xi(Vi + XiUX1{) X5 = X3(Vy, + X, UX3) ™ Xo,
where U is any symmetric matrix satisfying, for i = 1, 2,

(5a) rank(V; + X;UX!) = rank(V;: X;)

and

(5b) V. + X;UX! are n.n.d.

This more general version of Theorem 1 was originally given in Wang and Wu
(1981). It can be proved in exactly the same way except that Example 30 of Rao
(1971, page 77) is used instead. Condition (1)’ was independently conjectured by
D. A. Harville. .

It is easy to see that U = 0 satisfies (5) when #(X;) C .#(V;) or V; is
nonsingular, i = 1, 2. With this remark the following result follows as a special
case of Theorem 1.

COROLLARY 1. Letd;,=L(X;8,V:),i=1,2.
(@) If £( X)) CHV))fori=1,2,dy=do iff X{ VI X, = X;V35X,.
(b) If V, and V, are nonsingular, d, = d, iff X{V1'X, = V} V3l X,.

We should point out that, if V, is nonsingular and V;, is singular, U = 0 does
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not necessarily satisfy (5) and a condition like X{V7'X; = X575 X, does not
characterize d; = d,. In this case we should use Theorem 1 or its more general
version in the above remark.

The “if” part of Corollary 1(b) was proved in Ehrenfeld (1955) and Kiefer
(1959). Corollary 1(a) was noted in Remark 2 of Stepniak and Torgersen (1981).

We next investigate in what sense d, = L(X,8, V) can be strictly better than
dy = L(X28, V.). We say d; > d, iff d; = d, and either one of the following holds
true:

(a) #(X3) E//Z(X{), (b) Var(c’Bl) < Var(c'[§2) for some ¢ € #(X3).

THEOREM 2. d, > d, iff
M,(k) = My(k) and M,(k) # M,(k)
for any k> 0, where M;(k) = X! (V;+ k X; X!) X..

Theorem 2 can be proved in the same way as Theorem 1 except that the
following variant of Lemma 2 replaces the role of Lemma 2 in the proof:

“@Q = @, and @, # Q, iff conditions (i) and (ii) of Lemma 2 and either one of
the following holds true: (iii) .#(Qs) E//Z(Ql), (iv) v'Q1v < v’Qz v for some v €
M (Q2).”

A natural definition of equivalence of experiments is: d, is equivalent to d,,
denoted by d1 = dz, iff dl = d2 and dz = dl.

THEOREM 3. d, = d, iff M,(k) = M, (k) for any k> 0.

This follows trivially from Theorem 1.

As in Corollary 1, when .#(X;) C .#(V;) or V; is nonsingular, i = 1, 2, we can
take k = 0 in M;(k) in Theorems 2 and 3 to simplify conditions.

An alternative characterization of d, = d, can be provided via the following
lemma.

LEMMA 3. Let P be the orthogonal projection matrix onto .#(X{ V1), where
Yf is any matrix of maximum rank s.t. V, Vi = 0. Define the “new” experiments
di=L(X;(I - P)B, V;). Then d, = d, iff d, = d,.

PROOF. Let n, m be the numbers of rows of X, and X;. The conditions d, =
d; and d; = d; can be written, respectively, as 1) and 2),
1) for any vector b € R™, there is a vector g, € R" s.t.
(6) 86 X1 = b’ X, and g¢ Vg, < b’ Vb,
2) for any vector b € R™, there is a vector h, € R" s.t.
h{Xi(I — P) = b'X,(I — P) and h{ V hy, < b’ V,b.

By taking h, = gy, 1) implies 2) trivially. Suppose 2) holds. Then ¢ = X{h, —
Xib € #(X{ Vi) from the definition of P. Therefore there exists a vector
a €ER"s.t.c = X{a and V,a = 0. By taking g, = hy, — « in (6), we obtain 1). 0
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THEOREM 4. Let P and Vi be defined in Lemma 3. Then d, = d, iff

(7 MX3 V) C HMX{VT)
and
(8) (I-P)XiViXi— X;V:Xe)I — P) = 0.

PROOF. Writing~ X: = X;(I — P), observe that, as a consequence of the
definition of P, .#(X{ V1) = 0 which implies

9 MXy) T MVy).
From the definition of P, (7) is equivalent to (I — P)X4 V3 = 0, and hence to
(10) MX;) T MV).

Suppose d; = d,. Then (7) holds by noting that .#(X/ V) consists of all vectors
¢ such that ¢’8 can be estimated unbiasedly with zero variance in d;. Consider
the experiments d; = L(X;8, V;). From Lemma 3, d, = d, implies d; = d,. Under
(7), (10) holds. Therefore recalling (9) and applying Corollary 1(a) to d; and d,,
we obtain (8). Conversely, (7) and (8) imply (8)-(10), which imply d;, = d, via
Lemma 3 and Corollary 1(a). O

Conditions (7) and (8) are usually not as easy to verify as condition (1) of
Theorem 1.

By using a standard method (Rao, 1973, page 544) for re-expressing a multi-
variate linear model as a univariate linear model, the results of this section can
be extended to the comparison of multivariate linear experiments in a straight-
forward manner.

3. Comparison of linear experiments for estimating a subset of pa-
rameters. A linear experiment ofen involves two kinds of parameters, those of
interest to the experimenter and the remaining ones, which are nuisance param-
eters. In block designs, treatment effects are the parameters of interest and block
effects are the nuisance parameters; in factorial designs we may only be interested
in the main effects and treat the higher order interactions as nuisance parameters.
If two linear experiments involve a common subset of parameters of interest,
their comparison should be made in terms of the performance of the BLUE for
this subset of parameters. Formally, let d; = L(Xi8 + Z,v, Vi) and d, =
L(X,8 + Z56, V,), where v and 6 may be different sets of parameters. (For
example, for comparison of two block designs with different numbers of blocks,
the two vectors of block effects are different.) We say that d; is at least as good
as d, for estimating (3, denotqd d, =d, w.r.t. 8, iff for any ¢’B estimable in d; it
is estimable in d, and Var(c’8,) < Var(c’g,) for all such ¢, where §; is the BLUE
of 8 under d; (Kiefer, 1959).

THEOREM 5. For two linear experiments d, = L(X.18 + Z,v, V1) and d; =
L(XQ,B + Z25, V2) d1 = d2 w.r.t. ,3 iff

(11) Ci(k) = Ca(k)
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for any k> 0, where
Ci(k) =XI{Ti Xi — XITy Z(Z!T: Z) 2! T: X
and

T, =Vi+ kXXl +Z2Z]), i=1,2.

PRrROOF. Ifc’B is estimable in d;, there exists a vector a s.t. ¢ = X/a and 0 =
Z!a,ie., c € #(X!Z}) where Z} is any matrix of maximum rank s.t. Z/Z; =
0. Define Y; = [X;: Z;]. Then Var(c’B;) = (¢’, 0)[(Y!T7 Y:)~— kI1(§) = ¢’Ci(k) ¢
— ke’c by the formula for a g-inverse of a partitioned matrix (Pringle and Rayner,
1971, page 46). From the definition, d; = d, w.r.t. 8 iff #/(X3Z3) C MX{ZT)
and ¢’, C1(k) "¢ < ¢’Cy(k) ¢ for any ¢ € #(X}Z7). In view of Lemma 2, to show
that these two conditions are equivalent to (11), it remains to show #(X!Z}) =
MC;(R)), i =1, 2. For the remaining proof, we drop the subscript i. Since the
choice of g-inverse T is irrelevant, we choose a symmetric nonsingular 7~ and
decompose T~ = B’B with B nonsingular. Writing F = BX and G = BZ, we have
C(k) =F'F - F'G(G’'G)"G’F = F’P 4 F, where P 4 is the projection matrix
onto the orthogonal complement of .#(G). Therefore .#(C(k)) = M(F'P nc+) =
{c:c=F'a,G’'a =0 for some a} = {c: ¢ = X’8,Z’6 = 0 for some 6 = B'a} =
MX’'Z"Y), thus completing the proof. O

As in Corollary 1, we can have k = 0 in C;(k) in special cases.

COROLLARY 2. For d, and ds in Theorem 5,

(a) if MX::Z) C MV),i=1,2, d =d;wrt. g iff C;(0) = C5(0), where
CO)=X!ViXi— X! ViZ(Z!ViZ)ZIViXi,i=1,2

(b) if Vy and V, are nonsingular, d, = d, iff C, = C,, where C; = X! Vi'X; —
X! VZ(Z!VZ)~Z!VitX;,i=1, 2.

Definitions of d; > dy w.rt. 8 and d; = d, w.r.t. 8 are obvious. Their
characterizations can be readily obtained from Theorems 2 and 3 by replacing
M;(k) by C;(k). The “if” part of Corollary 2(b) was noted in Kiefer (1959).

4. Examples.

A. Experiment with an additional constraint on parameters. Let experiment
d, = L(X,8, V,) and experiment d, = d, together with an additional constraint
h’B =b, X, is an n X p matrix. We can rewrite d, as L(X,0, V) with

X, = (f}) and V, = <(‘)/,1 8)

where O is the n X 1 vector of zeros, and h is a p X 1 vector. Using formula (3.6.8)
of Rao and Mitra (1971) for a g-inverse of a partitioned matrix, we can show that
M,=M,+ (I —-M)hh'I-M,)/(h"h — h’M,h) if M\h # h, and M, = M, if
M, h = h, where M;is M;(k) with k=1 in Theorem 2. As applications of Theorems
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1 to 3, we conclude:
(i) dy = d,,
(ii) dy > d, iff M h # h,
(iii) do = d, iff M1h = h.
Extension of the previous results to several parameter constraints is straight-
forward.
We now give a statistical interpretation of result (iii). Let the rank of V; be
t = n and let P be the n X (n — t) matrix with its column vectors as the
eigenvectors of V) with zero eigenvalues. Let y be a realization of d,, i.e. y = X,
+ e with E(e) = 0 and Var(e) = V;. Since P’¢ has mean 0 and variance-covariance
0, P’e = 0 with probability one, which implies that P’ X, 3 is estimated unbiasedly
by P’y with zero variance. We want to show that, when M;h = h, h’3 can be
estimated unbiasedly with zero variance and hence the constraint h’3 = b is
redundant. This explains why d, is equivalent to d,. Let a’ = (0’, h’), V, = BB’
and A = (B:X;). Then M;h=himpliesa’A’(AA’)"Aa=a’a. Since A’(AA’) A
is a projection matrix, a € # (A’), i.e., there exists a vector « s.t. B’a = 0 and
X{a=h,or Via =0and X{«a = h, which implies h € .# (X{ P), thus completing
the proof.

B. Augmentation of an experiment with an additional run. Let experiment
d: = L(X.8, V1) be defined as in A and d, = d; together with the (n + 1)th run
YVpe1= Xps10 + €n41, Where x,.1is a p X 1 vector, E ¢,.1 = 0, Var(e,+1) = 62> 0,
and y,.:is independent of the other y’s. We can rewrite d, as L(X,8, V,) with

X _[Vi 0
X2 - <xrlz+1> ’ V2 - (0/ 0'2> .

In computing M, (same as M, (k) with & = 1 in Theorem 2), we need to compute
a g-inverse of

Xn1X1 Xra1%n+1 b’A’” b’b

where A = (B, 0, X;), b’ = (0, o, x}+1), V; = BB’. Again, using (3.6.8) of Rao
and Mitra (1971) and after some simplifications, we have M, = M, +
(I — My)x,1%541(I — My)/d, where d = ¢® + x}41%n41 — X)+1 M Xp41 is always
positive. As applications of Theorems 1 to 3, we conclude:
(i) d2 = d,,

(ll) d2 > d1 lff Mlx,,ﬂ # Xn+1,
(lll) d2 = d] iff Mlxn+1 = Xn+1-.

We should point out that the previous results can be readily extended to
simultaneous addition of several runs.

Ve + X, X5 = (V1 + Xi X1 Xixpa ) — <AA Ab) ,

C. Comparison of block designs for estimating treatment contrasts. A block
design consists of b blocks each of size k with v treatments assigned to the bk
plots. The usual additivity model specifies that the expectation of an observation
on treatment i in block j equals constant + ith treatment effect + jth block effect,
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and that the bk observations are uncorrelated with common variance ¢2. The C-
matrix in Corollary 2(b) (with V = ¢2[) is

(12) o ?[diag(ry, ---, r,) — RTINN'],

where r; = number of replications of treatment i, N = [n;;],xs is the incidence
matrix with n;; = number of appearances of treatment i in block j. The C-matrix
(12) is called the “reduced information matrix for estimating treatment con-
trasts”. According to Corollary 2(b), block design d; (with common variance %)
is at least as good as block design d, (with common variance ¢3) for estimating
treatment contrasts iff ¢72[C-matrix of d;] = ¢3%[C-matrix of ds].
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