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LOCATION ESTIMATORS AND SPREAD

By CHRIS A. J. KLAASSEN
University of Leiden'

In the location estimation problem, translation equivariant estimators
are considered. It is shown that under a mild regularity condition the distri-
bution of such estimators is more spread out than a particular distribution
which is defined in terms of the sample size and the density of the i.i.d.
observations. Some consequences of this so-called spread-inequality are dis-
cussed, namely the Cramér-Rao inequality, an asymptotic minimax inequality
and the efficiency of the maximum likelihood estimator in some nonregular
cases.

1. Introduction and main result. We shall consider one of the classical
problems in statistical inference, to wit the estimation of a location parameter.
Let X, - - -, X, be independent and identically distributed random variables with
common density f(- — ), § € R, with respect to Lebesgue measure on (R, 4 ).
The location parameter 6 is estimated by an estimator T, which is a measurable
function t,: R® — R of the random variables X, ---, X,, i.e. T, = t.(Xy, ---
X,). We are interested in the distribution of T, under f(- — 6).

Our estimation problem is invariant under translation. Hence it is natural to
estimate the parameter 6 with a translation equivariant estimator whenever we
want to be impartial with respect to the possible values which the parameter can
adopt. Therefore, we assume that T, is translation equivariant, i.e. for all real a
and Lebesgue almost all x4, - - -, x,

I

(1.1) tixi+a, -, x,+a) =ty(xy, -+, x,) + @
Because of the translation equivariance of T, we have
(1.2) Pi-op(T,=x)=P(T,=x—10), xER, ER,

and we see that it suffices to study the distribution of T, under f, i.e. with § = 0
Let a, be positive. We denote the distribution function of a,T, under f by G,,

(1.3) G.(x) = Pi(a, T, <x), xER.

Furthermore, we assume that the density f is absolutely continuous with an
integrable Radon-Nikodym derivative f’ and we define the distribution function
K, for some w € (0, 1) by

“ 1
-1 = —
(1.4) K (u) J; TTH@) dt ds, O0<u<l,
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where H}' is the inverse distribution function H;'(t) = inf{x | H,(x) = t} of H,
defined by

(1.5) H,(x) = Pr(az' I5 [—(f /) X)) = x), xER.

Note that the distribution function of the score function of K, equals H,,.

The distribution functions G, and K, are related by the fact that any two
quantiles of G, are further apart than the corresponding quantiles of K,; more
precisely

THEOREM 1.1. If the density f is absolutely continuous with respect to Lebesgue
measure with Radon-Nikodym derivative f’ satisfying

(1.6) f|f’|<oo

and if T, is translation equivariant (cf. (1.1)), then G, and K, are differentiable
with derivatives g, respectively k, satisfying (cf. (1.3), (1.4) and (1.5))

(1.7 &(G7(s)) = ku(K3'(s)) = f H;'(t)dt, 0<s<1.

This implies
(1.8) Gl(v) — GiY(w) = K;'(v) — K;M(uw), 0<u=<v=<l1.

We say that G, is more spread out than K,,. This concept of spread has been
introduced by Bickel ar.d Lehmann (1979). Note that the inequalities (1.7) and
(1.8) are insensitive to translations and that hence the choice of w € (0, 1) is
immaterial. The important point in the spread-inequality (1.8) is that K, is
defined in terms of the sample size n and the density f of the observations. Hence
K, does not depend on T, and consequently Theorem 1.1 gives a uniform upper
bound to the accuracy of translation equivariant estimators 7T,,. Well-known
upper bounds to the accuracy of estimators are provided by the Cramér-Rao
inequality and by the asymptotic minimax theory of Hajek and Le Cam (see
Hajek, 1972 and Le Cam, 1979). Restricted to the location estimation problem
we are considering, the Cramér-Rao inequality and the asymptotic inequality of
Hajek (1972) are implied by Theorem 1.1. Our spread-inequality also implies that
the maximum likelihood estimator is asymptotically efficient in the nonregular
location estimation problem of Woodreofe (1972), which has been shown in
Weiss and Wolfowitz (1973) for a somewhat different efficiency concept, and
that its rate of convergence to its limit distribution is of the right order in the
nonregular location estimation problem of Woodroofe (1974), which is suggested
by the results of Polfeldt (1970).

These consequences of Theorem 1.1 will be discussed in the next section.
Section 3 consists of the proofs.

2. Some consequences of the spread-inequality. From the spread-in-
equality (1.8), nontrivial lower bounds may be obtained for the risk of trans-
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lation equivariant location estimators, both for finite sample sizes and asymptot-
ically. Such bounds are presented in the following theorem.

THEOREM 2.1. Let /: R — R be a measurable function, which is nonincreasing
on (—x, 0] and nondecreasing on [0, ©). Under the conditions of Theorem 1.1 we
have

1
(2.1) inf,epEfZ(a, T, — a) = infepn f (K (u) — a) du.
0

Furtherrﬁore, if for some distribution function K the sequence {K,} converges
weakly to K as n tends to infinity and if at least one of the following conditions
holds:

(2.2) Z is lower semicontinuous,

(2.3) f dK = 0 for each countable set A C R,
A

then

1
(2.4) lim inf, .infenErAa,T, — a) = inf,ep f A K HYu) — a) du.
0

Finally, if G, —, G and K,, —, K as n — « for some distribution functions G and
K, then
(2.5) G'w)-Gw=K\Ww)-K%u), 0Osu=<sv=<l.

For quadratic loss functions, inequality (2.1) of Theorem 2.1 implies an
extension of the Cramér-Rao inequality.

COROLLARY 2.1. (Cramér-Rao inequality). Under the conditions of Theorem
1.1.

(2.6) varsa,T, = var, X.
If f has finite Fisher information I(f) = [ (f'/f)*, this implies
2.7 var, T, = (nlI(f))™"

In the remainder of this section we will discuss three special cases of inequal-
ities (2.4) and (2.5) of Theorem 2.1. The first one is closely related to the result
of Hajek (1972) and arises if f has finite Fisher information.

COROLLARY 2.2. If f has finite Fisher information I(f) then for a, =
(nI(f))'? the sequence {K,} with w = Y converges weakly to the standard normal
distribution function ® as n tends to infinity and hence (2.4) and (2.5) hold for T,
translation equivariant, a, = (nI(f))"? and K = &.

Furthermore, we’ll consider densities f of the following very special type. Let



314 CHRIS KLAASSEN

¢ € (0, ). If f satisfies (1.6), f vanishes on (—oo, 0], lim,;of’(x) = ¢ and if
J& (f"(0)/f(x))*f(x) dx < o for all £ > 0, then f will be said to belong to the class
D(c). The gamma and Weibull distributions with shape parameter 2 are of this
type. We note that I(f) = o for all f € D(c). Nevertheless the following analogue
of Corollary 2.2 holds.

COROLLARY 2.3. If f € D(c), then for a, = (Ycn log n)"/2 the sequence {K,}
with w = Y% converges weakly to ® as n tends to infinity and hence, if T, is
translation equivariant, we have (2.4) and (2.5) with a, = (Yacn log n)V? and K =
P,

Woodroofe (1972) has shown, under some regularity conditions, that the
asymptotic distribution of the maximum likelihood estimator for this case is
standard normal if it is normed by (Y%cn log n)2 Consequently Corollary 2.3
implies that both the maximum likelihood estimator and the spread-inequality
(2.5) are asymptotically efficient in this nonregular case (cf. Weiss and Wolfowitz,
1973).

Finally, we’ll consider densities f which behave like x* 1 1< a <2 near the
origin.

COROLLARY 2.4. Let a € (1, 2), f vanish on (-, 0], f satisfy (1.6) and let
f'(x) ~ ala — 1)x*2L(x) as x 1 0, where L(x) varies slowly as x | 0. Furthermore
let [7 (f"(x)/f(x))*f(x) dx < o for all ¢ > 0. If {a,} is such that

(2.8) lim, .na,*L(a;') = 1,

then H, —, H as n — », where H is a stable distribution function with exponent
a and cumulant generating function

(2.9) Yn(t) = —d | ¢t|*(1 + i sgn t(tan Year))

with
(2.10) d=(a—1)*"T(2 — a)[— cos % ar].
Furthermore, K,, —, K as n — o, where K is defined by
“ 1
_1 — -
(2.11) K (u) J; TTHQ) ds, 0<u=li,

and hence, if T, is translation equivariant, (2.4) and (2.5) hold with a, and K as
in (2.8) respectively (2.11).

In Woodroofe (1974) the asymptotic distribution G of the maximum likelihood
estimator for this case has been derived under some regularity conditions. This
has been done with the norming constants a, as in (2.8). We infer that the rates
of convergence of both the maximum likelihood estimator and the spread lower
bound K, are of the right order, i.e. that the a, defined by (2.8) are suitable
norming constants for the maximum likelihood estimator to attain a limit
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distribution without mass at infinity and for K, to have a nondegenerate limit
distribution. However, G and K are different as can be seen by studying their
tails. This is not surprising since in the limit experiment for the situation of
Corollary 2.4 the optimal estimators for different loss functions need not be the
same (see Theorem VI.6.2 of Ibragimov and Has’'minskii (1981) and note that
t, may be chosen translation equivariant there). Consequently no estimator
sequence can be asymptotically optimal for all loss functions simultaneously or
can attain equality in (2.5).
As a curiosity we mention the following immediate consequence of (1.7)

. 1 1
(2.12) gn(x) < 2 f |HZY(¢t) | dt, x € R.
0
With n =1, a, = 1 and T, = X; this reduces to the simple inequality

(2.13) el [1r1, sem,

which can easily be proved directly.

In the above we have discussed some consequences of the spread-inequality
(1.8). Other consequences of it can be found in Klaassen (1981), which restricts
attention to the case of symmetric densities with finite Fisher information. Finite
sample results on the tail behavior of the distributions of location estimators
have been obtained by Jureckova (1981a, 1981b).

3. Proofs.

ProOF OoF THEOREM 1.1. By classical analysis (see the proof of Lemma 3.1
in Klaassen, 1979) we obtain

i [ [
"

(3.1)

0_1(H?=1 flx; + 0) — [T f(x))

- (Z?— fl (x) ) =1 f(x)

By the translation equivariance of T,
071 (Ga(y +0) — Gu())

dx; --- dx, = 0.

(3.2)
= f f A b | }t(xi + a;'0) — [T%: f(x)} dxy - - dx,

a’ltn(xlr . ‘1xn)>y

holds and it follows from (3.1) that G, is differentiable with derivative g, given
by

(33) gy = f f z,l[— f(x,] By fx) du oo dx,

Aptp(xy,- x>y
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With
(3.4) Sn = az! Tja [— f7, (Xj)]

and y = G,,'(s), formula (3.3) may be rewritten as (cf. (1.5))

1
(3.5) 8.(G7Y(s)) = J; H (O Ef(16;10,(anTn) | Sn = HZ'(2)) dt.

Furthermore it is easy to verify that

1
(3.6) 1—-s5= J; E/(16;10,0(anTn) | S, = HZ\(t)) dt.

Since the integrand in (3.6) takes on values in [0, 1] and since H},' is nondecreas-
ing the Neyman-Pearson lemma (cf. Theorem 5(ii) with m = 1 of Chapter 3 of
Lehmann, 1959) applied to (3.5) and (3.6) yields

1
3.7 .G (s)) < f H;'(t)dt, 0<s<1.
Because H, is nondegenerate with mean 0, we have for all s € (0, 1)
! 1 [t 1
0<f H;'(¢) dtséf | H;'(t) | dtsia;‘nf [ f/| < co.
s 0

Furthermore, [; H,'(¢) dt is concave and hence,

1 l 1 1 l
inf,<.<, f H;\(t) dt = minlf H;\(t) dt, f H;\(t) dt] , O<u=sv<l

Consequently K;' is well defined by (1.4) and is differentiable with a positive
and finite derivative on (0, 1). Hence K, is differentiable with a positive and
finite derivative k, on (K;'(0+), K,'(1)) and K, satisfies

K, (x)
— " 1 -1 -1
(3.8) x = J; TTHZ0) dt ds, x € (K;'(0+), K:'(1)).

Differentiating (3.8) and combining the result with (3.7), we see that (1.7) holds.
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Combining (1.4) and (1.7) we obtain

o

Gr'(v) — Gi'(v) = J: Ligzw,ostwn(x) dx

z 1
> 1i6-1w 62w —— dG,
J:w (61,67 w)(%) ) (%)

1
1
= -1 -1 -1 —_—
(3.9 , J; Licztw st (G (s)) 2.G-5) ds

[ f v
_fu gn(G(s)) ds = w [y HZ'(t) dt ds

=K;'(v) - K;'(w), 0<u=v=1l

Hereby (1.8) and the theorem have been proved. O

PROOF OF THEOREM 2.1. If G;'(0+) > — and a < G;'(0+) hold, we have
G:l(v) — a = K;'(v) — K7'(0+) + G;*(0+) — a, v € (0, 1), in view of (1.8). If
G;}(1) < » and G;'(1) < a hold, we have G:l(v) — a = K;'(v) — K;'(1) +
G:(1) — a, v € (0, 1). For every a € [G;'(0+), G;'(1)] there exist «, u € [0, 1]
such that G:'(v) — a = a[G7(v) — Gr(W)] + (1 — a)[GR'(v) — G} (u+)], which
implies G;'(v) — a < K;'(v) — Kz'(u), v € (0, u), and G;'(v) — a = K;'(v) —
K (u), v € (u, 1). Using these inequalities for G;'(v) — a and the properties of 4
we obtain (2.1).

Let b,,n=1,2, - - -, be such that

1
infen [ /(KN u) — a) du
Jo
(3.10) 1
= f (KN (u) — by) du — %L, n=12,---.
0

Now we obtain from (2.1)
1
(3.11) lim inf, inf,epEf#(a.T, — a) = lim infy f /(KR (u) — b,) du.
0
Let {n;} be a sequence of positive integers and let b, be in [—®, ] such that

1 1
(3.12) lim inf, .. f (KN (w) — b,) du = lim_o f /(K u) — by) du
0 0

and
(313) limi_,mbn, = b().
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From Satz 2.11 of Witting and Nolle (1970) it follows that
(3.14) lim; . K, (w) = K (w)

for Lebesgue almost all u € (0, 1). Under either of the conditions (2.2) and (2.3)
we arrive by (3.13) and (3.14) at

1
lim; e f /(KR (u) — by,) du
0

1 1
3.15) = f lim inf,_./(K;'(u) — b,,) du = f (K™Y u) — by) du
0 0
1
= infoep f (K™Y (u) — a) du.
0

Combining (3.11), (3.12) and (3.15), we obtain (2.4). Since (3.14) holds also for
G,' and K3, the left continuity of G~ and K™ yields (2.5).0

PROOF OF COROLLARY 2.1. With #(x) = x?, inequality (2.6) is a special case

of (2.1). Let u, € (0, 1) be such that H;! is nonpositive on (0, uy) and nonnegative
on (ug, 1). By Fubini’s theorem we have

1
J; K;Y (w)H; (u) du

_ Hi'(w)
(3.16) f f RO R

_ | =fo Ha'w) du ‘RHMWdu
"fo THA0 @ ST THA 0 BT

Consequently, if I(f) < o, the Cauchy-Schwarz inequality yields
var, X = < 01 [H7 (w)]? du)—1 = a2(nl(f))!
and hence (2.7).0
For the proofs of Corollaries 2.2 through 2.4, the following lemma is useful.

LEMMA 3.1. Let H be a nondegenerate distribution function such that
H,—,Hasn— x If

1
(3.17) lim, E|S,| = f | H (w) | du
0

then
(3.18) K,—,K as n-—om,
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where the absolutely continuous distribution function K is defined by (cf. (1.4))

“ 1
~1(,,) = - -
(3.19) K (u) J; TTHQ) dt ds, 0<u=<l.

Furthermore, if H is stable with exponent a € (1, 2], then (3.17) and consequently
(3.18) hold.

ProOF. Since H;'(t) — H™!(t) for Lebesgue almost all ¢t € (0, 1), we obtain
from (3.17) and Vitali’s theorem

1 1
(3.20) lim, e f H,Yt) dt = f H™Y(t) dt

and hence by dominated convergence (3.18).

Using Theorem 4.1 and Remark 4.1 of Kruglov (1979) with ¢(x) = 1 + | x|
and F = H stable with exponent « € (1, 2], we see that in order to prove (3.17)
it suffices to show

(3.21) limg_.sup,na;'E{| Yi| Lg«(a'| Yi|)} =0,

where Y; has the same distribution as —f’(X;)/f(X;) under f. Denoting
E{Y31,,(| Y1|)} by u(y) we obtain from formulas (5.16), (5.17) and (5.24) of
Chapter XVII of Feller (1971)

(3.22) y*P(|Y1|>y)/u(y) =1 for y large,
(3.23) u(y) isregularly varying with exponent 2 —a as y-— o,
(3.24) nu(a,R)a;? — CR*™“ as n — o,

Applying these results and Karamata’s theorem (cf. Theorem VIIL.9.1 of Feller,
1971) we arrive at

limp_olim sup,—wnay 'E{| Yi| L,z (] Y1)}

'n

= limg_,lim supn_mnagl*{f P(|Y,|>y) dy + a,RP(| Y,| > anR)}
apR
(3.25)

n

< limg_lim supnﬁwna,zl{ f yu(y) dy + (anR)'lu(anR)}
a,R/
= limp_ —— CR*™ = 0,
a—1
which, in view of the monotonicity in R of the expectation in the left hand side

of (3.21), implies (3.21).0

PRrROOF OF COROLLARY 2.2. Let a, = (nI(f))"% By the central limit theorem
H, —, ® and hence Lemma 3.1 with « = 2 and w = % yields K, —, ®.0
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PRrROOF OF COROLLARY 2.3. Let a, = (Y2cn log n)V2 From Lemma 3.2 of
Woodroofe (1972) it follows that H,, — , ® and hence Lemma 3.1 with « = 2 and
w = Y yields K, —, ®.0

PRrROOF OF COROLLARY 2.4. We define

, 2
(3.26) u(x) = f (— (y)) f(y) dy, x>0.
1rofnisz \ f
Let ¢ € (0, 1). There exists a 6 > 0 such that (cf. Lemma 4.1 of Woodroofe, 1974)
(3.27) flp=0=t|clezbe oy
f y y

In view of the properties of f and Karamata’s theorem, this yields for x — o

© /., 2
u(x) = f (f7 (y)>f(y) dy

5
(3.28) + f ala — 1)*(1 + &)’y °L(y) dy
(a—1)(1—¢)x7!

~ala — 1D*2 — o)1 + %(1 — &) 2 L(x™")

and
5
ulx) = f ala — 1)*(1 — &)’y °L(y) dy

(3.29) (a—1)(1+e)x~t

~ala — D2 — &)1 — &)1 + &)* 22 =L(x™").
Consequently u(x) is regularly varying with exponent 2 — « and
(3.30) lim,_.na;2u(a,) = ale — 1)%(2 — a)™%.

Since for ¢ and 6 as above and x —

(3.31) Pf<_f7 (X1) > x> = xﬂEf‘{("}; (Xl)) 1<a,oo)(X1)} = 0(x™)

and

P,(— r (X)) < —x) = P(0<'X; <56 (a— 1)1 —¢) >xXp)
(3.32) f

we also have

= (@ — 1)1 — e)"x“L(x™),
(3.33) limx_mP,<— f7 (X,) > x)[P,( f7 X)) | > x)]_ =0.

From (3.30), (3.33), the regular variation of x and [ f’ = 0 we obtain the weak
convergence of H, to H by Theorem XVII.5.3 of Feller (1971).
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Here we note that the + and — sign in (3.18) of section XVII.4 of Feller (1971)
should be interchanged. In view of this misprint the + sign in formula (2.4) of
Woodroofe (1974) should be replaced by a — sign and consequently the remark
at the beginning of Section 3 of Woodroofe (1974) should be (in our notation):
G(0) =1 — &%, which for « | 1 tends to 0.

Again the proof is completed by Lemma 3.1.0
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