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NONPARAMETRIC INFERENCE FOR A CLASS OF SEMI-
MARKOV PROCESSES WITH CENSORED OBSERVATIONS'

By JOSEPH G. VOELKEL AND JOHN CROWLEY

University of Wisconsin-Madison and Fred Hutchinson Cancer
Research Center, Seattle

A class of semi-Markov models, those which have proportional hazards
and which are forward-going (if state j can be reached from i, then i cannot be
reached from j), are shown to fit into the multiplicative intensity model of
-counting processes after suitable random time changes. Standard large-sample
results for counting processes following this multiplicative model can therefore
be used to make inferences on the above class of semi-Markov models, including
the case where observations may be censored. Large-sample results for a four-
state model used in clinical trials are presented.

1. Introduction. Counting process techniques (Aalen, 1975, 1978) are val-
uable tools in the nonparametric analysis of right-censored data. The large-
sample theory for the Kaplan-Meier estimator and its associated hazard estimator
(Breslow and Crowley, 1974), for the logrank test (Mantel, 1966), and for a
censored-data generalization of the Wilcoxon test (Gehan, 1965) were all derived
without counting process techniques. Nevertheless, such techniques provide an
elegant and unifying approach for, and lead to a deeper understanding of, such
results.

In addition, these techniques have also been used recently in their own right
to analyze censored data. These include a modification of the Kolmogorov-
Smirnov test (1980), and the introduction of a family of two-sample tests (1979)
by Fleming, et al.; Aalen’s (1980) development of a regression model that
complements the proportional-hazard model proposed by Cox (1972); and Aalen
and Johansen’s (1978) study of the (nonhomogeneous) finite-state Markov model.
For an excellent review of counting process techniques, see Andersen, Borgan,
Gill, and Keiding (1982).

All the above uses of counting-process theory rely on the multiplicative-
intensity model for making inferences: roughly speaking, if N(-) is a counting
process with intensity L(-), the multiplicative-intensity model is said to hold if
L(-)=Y(-)a(-), where Y(-) is a stochastic process and a(-) is a hazard function
for which inferences are sought. For example, in the one-sample case N(t) is the
number of events up to time ¢, Y(¢t) is the number at risk at ¢, and a(t) is the
hazard associated with the distribution in question. In the Markov model men-
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tioned above, N = N;; counts the i — j (state i to state j) transitions, Y = Y;
counts the number in state i, and a = g;; is the i — j transition intensity.

The semi-Markov model does not readily fit into the multiplicative-intensity
framework, precisely because of its renewal nature. In order to circumvent this,
we first establish some notation and preliminary results in Section 2. In Section
3 we define the class of semi-Markov models considered here: the class consists
of finite-state semi-Markov models that (a) are extended to have (possibly
stochastic) proportional hazards and (b) are restricted to be forward-going, in
the sense that if state j can be reached from state i, then state i cannot be reached
from state j. In Section 4 we introduce random time changes and show how these
can be used to transform our original counting processes to fit into the multipli-
cative-intensity model. Finally, in Section 5 we consider a four-state semi-Markov
model that has proven useful in certain clinical trials. This model, whose Markov
analog was studied by Temkin (1978), assumes that from an initial state either
a progression state or a response state may be entered, and from the response
state a relapse state may be entered (see Figure 1). Using this model, we establish
the large-sample properties for an estimator of a useful measure of a treatment’s
efficacy, the probability-of-being-in-response function. All proofs are relegated
to the appendix.

Aalen (1975) presented an example of a simple semi-Markov model. Although
his example contains some minor errors—his L, process is in fact not a counting
process—the idea of random time changes is inherent in his paper. Our paper
formalizes this idea, extends it to a larger class of models, and uses an example
to show how asymptotic theory may be employed in this larger class. Nonpara-
metric inference for semi-Markov models has been studied in a more general
setting by Gill (1980). This generality is achieved primarily by relying on
relatively sophisticated machinery and fairly technical assumptions. In contrast,
our more restrictive class of processes relies on less machinery for its develop-
ment. It also allows us to use martingale ‘theory directly, which results in milder
conditions and a simpler proof of convergence

2. Notation and preliminary results. We first introduce some notation
and results for general multivariate counting processes and then estabhsh the
framework for the semi-Markov model.

Let (?, Z P) be a complete probability space and let { %]} for t € [0, 1] be a
history, i.e., an increasing, right-continuous family of sub-sigma-fields of % =
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Z,. All the processes below are defined on this space and have either real-valued
or vector-valued outcomes. To this end, let D[0, 1] and C[0, 1] be defined in the
usual way (see Billingsley, 1968, for example), and let S[0, 1] be the left-handed
partner of D[O0, 1]; i.e., S[0, 1] is the set of real-valued functions on [0, 1] that
are left-continuous and have right-hand limits. A stochastic process X(-) with
outcomes in one of these spaces is said to be a random element of that space,
and, if X(t) is F-measurable for each t in [0, 1], it is said to be adapted (to
{Z.}). Finally, let # be Lebesgue measure on [0, 1].

The following definition and theorems may be found in Aalen (1975, 1978);
see Brémaud and Jacod (1977) for a more comprehensive treatment.

DEFINITION 1. A stochastic process N = (N;, Na, - - -, N,) is a multivariate
counting process if

I) The sample paths of each N, are right-continuous step functions with a
finite number of jumps, each positive and of size 1, and N;(0) = 0.
II) Two component processes, N; and Nj;, i # j, cannot jump at the same
time.
III) N is adapted to {&}.

Let S, < S, < --- be the jump times of =;N,—note that the S, are stopping
times—and let V,, = i if N; jumps at S,,. In the sequel it will always hold that
E(N;(-)) < o for each i (this assumption can be dropped if recourse is made
to local martingales, but this is not necessary in our applications), and that
P(Spms1— Sn =t, Vpr1=1| Zs,,) is absolutely continuous in ¢ for all m, and has
derivatives in S[0, 1]. Under these conditions, one can prove the following
theorem.

THEOREM 1. There exists a unique (up to equivalence) nonnegative adapted
process L = (Ly, Ly, - -, L,) such that each L; is a random element of S[0, 1] and
Mi(t) = Ni(t) — [ L; d7 are square-integrable martingales. In addition, M; and
M; for i # j are orthogonal (i.e., their product is a martingale) and M 2(t) —
[6 L;dZ are martingales.

The process L, called the intensity process of N with respect to {#}, can be
viewed as a vector of conditional hazard functions, since one can show that L;(t*)
=lim,oh 'P(N;(t + h) — Ni(t) = 1| &), whenever L; is bounded by an integrable
random variable.

Frequently, L; can be written in the form L;(t) = a;(t)Y;(t), all i, where each
Y; is an adapted random element of S[0, 1] (and is often, from a statistician’s
point of view, observable), while the a/s, deterministic functions of S[0, 1]
(usually unknown to the statistician), are underlying hazard functions associated
with the counting processes. When L has such a form, the multiplicative intensity
model is said to hold. As we shall see below, such a model allows us to make
inferences about A;(t) = [§ a; d/ and related functions.

We examine certain integrals below, and to ensure that they are all well-
defined we will assume in the sequel that positive Y;(t) values are bounded away
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from 0, for all i and ¢. Note that when Y, has the interpretation of “number at
risk” this assumption is automatically satisfied. Define K;(t) = I{Y;(t) > 0},
where I is the standard indicator function.

THEOREM 2. Define N, L, and M as in Theorem 1 and assume that the
multiplicative intensity model holds with L; = a;Y; for all i. Let H;, all i, be adapted
random elements of S[0, 1] that satisfy sup, | H;(¢)K;(¢)(Y;(t))!| <d a.s. for some
finite d. Then

B.(t) — B} (t) = J: K:H;Y;' dN; — J: oK H; d/ = J: K.H:Y;' dM;
are orthogonal square-integrable martingales, and
(Bi(t) — B (t)* - f CGHKYT d/
are martingales.

The conditions place on the H; allow the stochastic integrals [6 K:H; dM; to
be interpreted as Lebesgue-Stieltjes integrals (Doléans-Dadé and Meyer, 1970).

An example of the multiplicative-intensity model. Let Uy, Us, -- -, U, be non-
negative i.i.d. random variables on (2, %, P) and have survival function F, where
F(t) > 0 for t = 1 and the hazard function a(t) = —(dF(t)/d/ )F (t) ! exists and
is in S[0, 1]. Let N} (¢t) = I{U; < t} and Y}(t) = I{U,; = t} be adapted. It is easy
to show that each N} is a counting process and that each L} = aY?* satisfies the
conditions of Theorem 1; hence, L}(t) is the intensity process of N*(¢) with
respect to { #}. This choice of L¥ is intuitively appealing: if U, is the death time
of the ith patient in a clinical trial, the above says that the individual is subjected
to the hazard a(t) of dying until death itself occurs, at which point the hazard
ceases. To include a simple form of censoring in the above scheme (a more
general formulation is possible), let (C = C,, - - -, C,) be F-measurable random
variables such that C is independent of Uy, - - -, U,. The C; are to be considered
latent censoring times: to this end, define the censoring processes oJ; by J;(t) =
I{C; = t}, and also define the censored counting processes corresponding to the
above, N,(t) = [6J;dN¥. Since M} (t) = N¥(t) — [6 L¥ d/ are orthogonal square-
integrable martingales with respect to { %}, so are M;(t) = [6d; dM¥ = Ni(t) —
JoJ:L¥ d7, by Theorem 2; i.e., N; has intensity L; = J;L¥*. Note that in this setup
C is #)-measurable, and this can be interpreted to mean that the latent censoring
times are known at time zero. Usually this is not reasonable; however, if we let

% = O'(N(S)a Y?(S)Ji(s)) § = ta I = 17 e 7p)’

then N;(t) has intensity L;(t) with respect to {4}, since Theorem 1 holds using
{4} by the Innovation Theorem (Aalen, 1978). This is the history one would
want to use because it is the observable one. This argument is merely a precise
way of saying that the martingale property, and hence inferences on the q;(t),
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are not affected by whether or not we know the latent censoring times at time
zero.

If we let N = 3;N;, )_:= 2. Y*J,, and E = 3;L;, then, since a sum of martingales
is again a martingale, N has intensity L = aY. By Theorem 2,

A(t)—A+(t)=fO YUY > 0} dN—J; I{Y > Olads

is a martingale, so a reasonable estimator of A (t) = [§ ad/is A (t). (This estimator
has been suggested on intuitive grounds by Nelson, 1969.) In the case where the
latent censoring variables C; are i.i.d. with survival function ¥ it follows that
EA@®) = A@t) - f6 a(s)(1 — F(s)G(s))? ds. That the expected value of the
estimator converges to A (t) at this exponential rate (when G(t) > 0) was pointed
out by Aalen (1976) in the context of no censoring.

3. A class of semi-Markov models. We restrict the class of semi-Markov
models that we will examine in three ways. First, we assume that the number of
states in the model is finite. Second, we assume that the underlying distributions
of the model are absolutely continuous, with left-continuous hazard functions.
This allows us to view the model purely in terms of these hazard functions a;;: if
T and T’ are the (first, say) entry and exit times for state i in the customary
semi-Markov process, V is the next state visited, and { ¥} is the history of the
process, then, in obvious notation,

1
ay(t) = limyo 7 PE<T' = T<t+h V=j|{T' = T>t}, %).

Third, we assume that if state j can be reached from state i, then state { cannot
be reached from state j. (This assumption, apparently needed for the martingale
theory to function properly, was also made by Aalen (1975) in his attempt to
model a specific semi-Markov process.) We use this assumption to simplify
notation by numbering the states in the model such that an i — j transition is
possible only if i <j. We also generalize the model, in the customary proportional-
hazards manner: in a sense to be made more precise below, the i — j hazard for
a particular observation in state i at time t is a;;(¢t — T;)Z;(t), where T is the time
state i was entered and Z; is a stochastic process.

To put the above ideas on a more concrete footing, we now develop notation
for the kth of n observations.

Define the following:

N?Y: A counting process which counts the actual number (i.e., in the presence of
censoring) of transitions from state i to state j. We assume that the histories
generated by observations, denoted by {%,.:t € [0, 1]}, are independent so, e.g.,
information on one observation cannot be used to censor another observation.
We show below that this restriction is needed to preserve the martingale property
in the randomly changed time.

T: The time at which state i is entered. This is a stopping time with respect to
{ Z}: for each 1.
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T%: The time at which state i is left, also a stopping time for each i.

LYy: The intensity process of NJ;. Assume the LJ, have the form L. (t) =
a;j(t — Ty)Y%(t), where a;;(t) is the underlying hazard function of the i — j
transition (and hence is in S[0, 1]), and Y% (t) = I;(t) X% (t) is defined via

I The indicator function for state i, defined so that its sample paths are in
S[0, 1]. Note that I is adapted.

XY%: Some non-negative process such that I, X} is adapted and is a random
element of S[0, 1]. In the simplest case, the one-sample semi-Markov model
without censoring, X%(¢t) = 1 for all i, k& and t. More generally, it can be
constructed to include a censoring scheme (as in Section 5) and it also can attach
weights to the observations’ hazard functions as done in the Cox model. (See
Andersen and Gill, 1982, for an elaboration of the counting process approach to
the Cox model.) Note that X% may also be a function of transition times up to
Ty, e.g., X% = e #*_ (The corresponding I, X, is adapted.)

Smie: The time of the mth transition. This is also a stopping time for each m. If
the mth transition has not been reached by time 1, set S,,,=1*.

Var: The mth state visited, where Vi is the initial state. Note that if J/(¢) were
to be defined as the state the observation is in at time ¢, then J is an adapted
random element of D[0, 1] and V,, = J(S,); hence (Neveu, 1965), V., is
Fis..-measurable. Also note that V,, = i if and only if S, = T, and that,
because of the convention used in numbering the states, V,,, increases in m.

Note that L}, is in fact an intensity process, since it is adapted and has sample
paths in S[0, 1].

Now consider the state space in Figure 1 and assume in the one-sample setting
that three observations make 1 — 2 transitions at times .2, .3, and .6. At time .7,
if no other entries and no exits from the state have occurred, then the intensity
of a 2 — 4 transition is as4(.5) + az4(.4) + a24(.1) (as opposed to the corresponding
Markov intensity of 3as(.7)). Clearly, the multiplicative-intensity model does
not hold here.

A natural approach to putting the above into the multiplicative-intensity
framework would be to gather all the observations that enter state 2, keep them
there without risk until a suitable starting time to align their hazard functions
with each other, and then expose them to the appropriate hazards. (It is here
that our third restriction is required: if an observation could enter state 2 more
than once, the two hazards could not be aligned.) This can be done quite easily
heuristically, but we prefer to examine these so-called random time changes in a
more rigorous manner. This rigor enables us to preserve the martingale structure,
which we use to find the joint asymptotic distribution of certain estimators. One
can also use this structure to examine extensions of the semi-Markov model, for
example by letting hazards for a particular state depend on the past in certain
ways.

The case in which i.i.d. observations, possibly right-censored, follow a semi-
Markov process was examined by Lagakos, Sommer and Zelen (1978). They
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wrote down a likelihood for the observations and proceeded to maximize it in the
sense of Kaplan and Meier (1958). Then, formally assuming that transitions
occur only at a finite number of times, they indicated the asymptotic mean and
covariance structure of certain estimators. Qur results put this earlier work into
a more general and rigorous framework.

4. The random time change and the transformed counting proc-
esses. Define the random time change function ¥, (t) by

(31) \Ilk(t) =t- Smk + mG - 17 te [Smk7 Sm+1,k)-

Thus, for a fixed outcome w, ¥ (w, -): [0, 1] — [0, m’], where m’ is the number
of states in the model; in addition, note that ¥;(Sm:) = Ve — 1. Also define
Vi (u) = inf{t: W, (t) = u}. This is almost a bona fide inverse, since V' ¥,(t) =
t, and ¥, ¥ (1) = u, with equality if and only if the right-hand derivative of
V5 1(u) is 1. It also follows from the definition of ¥;! that

3.2) Vil(u) < tiff Wi(t) = u,
and that
0, u € [0, Vor — 1]
Vilw) =3 u+ Sk — Vi +1, Uu€ (Vo — 1, Vo = 1 + Sp1r — Sl
St 1,k U € (Vi1 + Stk — Smty Vi1 — 1],
(3.3) 0, u € [0, Vop —1]
=qu+Tp—i+1, ueE(—1,i— 1+ T4 — Tyl
s u€ (i—1+Th — Ta,il

The relationship (3.2) implies
{‘I’El(u) = t} = Um {t - Smk + mG - 1 = u} n {Sm+1,k > t} N {Smk = t}’
=UUlSme =t —u+i—1N{Vu =1 N{Sns1r >t} N {Sp < t}.

Now S, is a stopping time for each m, and V. is Zs,,-measurable, so ¥, (u)
is a stopping time for each u. Also, using (3.2) again, ¥,(t) is Z.-measurable,
and it is also a random element of D [0, 1] because of its sample-path properties.

Before proceeding further we give a simple example. Using the state space in
Figure 1, assume for a particular outcome that 1 — 2 and 2 — 4 transitions
occurred at times .1 and .5, respectively. Then the transition number index m
assumes the values 0, 1, and 2, the respective values of S, are 0(T.), .1(T%),
and .5(T), and the respective values of V,, are 1, 2, and 4. The corresponding
values of ¥, and V' are graphed in Figure 2.

We now apply the random time change to the counting processes and then
derive the corresponding intensity processes. These new intensity processes are
in the form of a multiplicative-intensity model and also conform to one’s
intuition.
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Define M (t) = N¥x(t) — [6 LY dz, all (i, j); these are square-integrable
orthogonal martingales with respect to { % };.

THEOREM 3. Foru € [0, m’],
M (u) = MYy(¥i' (w), dall @, J),
are square-integrable orthogonal martingales with respect to { #,}., where 5%, =
gkw;l(u). AlSO,
M¥(u) = Nfr(u) — f akYh ds
‘ 0
where .
N?}k(u) = I{u => l - 1 + T{k - le}I{Ngk(l) = 1},
at(s) =aj(s— (i —1)),
and
ﬁg(S) = X?k(S + Tik - (l - 1))]{1— 1<s= 1—1+ T{k - Tik}o
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In particular, N}, is a counting process with intensity process L}, = a} Y with
respect to { %, :u € [0, m’]}.

We now introduce a bit more notation, most of which we use repeatedly in the
sequel. Let N, (¢t) = Z,N}.(t + ¢ — 1), the number of i — j transitions whose
transition times from i to j (i.e., amount of time spent in : before going to j) is
less than or equal to t—here we begin to let “t” represent time other than real
time. Also, let Y,(t) = Z:Y%(t + i — 1). In the one-sample case with right-
censoring, this is the number of observations at risk in state i just before time ¢,
where the time is “local” to state i. Finally, define L, = q,Y,, M} =
My, FF = Vi T, and M, (t) = Mt +i— 1) = Ny(¢t) — [§ L, d7. (To fix
ideas, we continue the example where 1 — 2 transitions were made at .2, .3, and
.6, and suppose the corresponding 2 — 4 transitions were made at .9, .8, and 1.0.
Then the amounts of time spent in state 2 are .7, .5, and .4, so Ny4(.3) = 0, N4 (.6)
= 2, Y2(3) = 3, YQ(G) = 1, L24(3) = (124(.3)Y2(.3), and L24(6) = (124(6)Y2(6))
The M} are square-integrable orthogonal martingales with respect to {FF};
however, we have abused notation in defining the M,,, for there may well be no
history with respect to which these are orthogonal square-integrable martingales.
Nevertheless, for the large-sample theory of the next section, we may endow the
M,;’s with this property: from a mathematical point of view, this is equivalent to
proving the results for the M} processes and then employing shift operators
(Billingsley, 1968, Section 17); from a notational point of view the M, processes
are the natural ones to use because they are easily interpretable. Without loss of
generality, we assume these processes are defined on [0, 1], rather than on
[0, m’].

To indicate that the independence of the observations’ histories is an impor-
tant assumption, suppose otherwise. Specifically, for the state space in Figure 1,
let us follow two observations for ¢ € [0, 1] and assume that if one reaches state
4 while the other is in state 1 then the latter observation is censored. For the
sample paths given in Figure 3, the history of the two processes in the randomly
changed time .6 cannot contain the information that the first will make a 2 — 4
transition, for this would be “seeing the future”. On the other hand, the history
must contain information on the second observation up to time .6, but the
information N;5,(.6) = 0 and L, (.6) = 0 (in obvious notation) implies that
observation 1 will make a 2 — 4 transition. Our modeling of these processes does
allow us to let the observations’ histories affect each other in the transformed
time without losing the martingale structure of the M}’s, but from a practical
point of view this would be absurd.

Forcing the semi-Markov processes into the multiplicative-intensity model
allows us to apply the corresponding asymptotic theory (e.g. Aalen and Johansen,
1978) after suitable modifications. The most substantial change we make to
such asymptotic theory arises because our integrals may be of the form
[6 H"(t, s) dM"(s) where {M"} is a sequence of martingales correspoding to
counting processes and {H"} is a sequence of random functions. The usual
asymptotic theory assumes H"(t, s) = H"(s) is #-adapted, while in our situation
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it is not. Incidentally, it is this same reason that has precluded us from deriving
small-sample properties of the estimator we present in the next section.

5. The PBRF and its large-sample properties. A reasonable model in
cancer clinical trials assumes that each patient may either remain in an initial
state, or progress, or respond and then possible relapse—see Figure 1. Temkin
(1978) realized the use of such a model. She first pointed out that when two
treatments are compared, the two most commonly used measures of a treatment’s
efficacy, probability of responding and time to progression or relapse, may yield
contradictory information. A more cohesive measure of a treatment’s ability, she
argued, is the probability-of-being-in-response function (PBRF), viewed as a
function of time. Assuming a Markov model, she developed an estimator of the
PBRF in the presence of right-censored data and estimated its large-sample
variance in the manner of Lagakos, Sommer and Zelen (1978), by formally
assuming only a finite number of transition times. At the same time, Aalen and
Johansen (1978) developed both small- and large-sample theory for the finite-
state Markov model in a more rigorous framework; in particular, this theory can
be applied to Temkin’s estimator. ,

In this section, we present an estimator of the PBRF in the semi-Markov one-
sample setting with censored data and derive its large-sample distributional
properties. The semi-Markov PBRF at time ¢t is

R(t) = fo Fi(s)a2(s)Fs(t — s) ds,

where F;, in non-standard notation, is the survival function corresponding to
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state i. Note that this equals its Markov counterpart,

L F1 (8)012(8)(F2(t)/F2(s)) dS,

whenever a,4(t) is a constant function. (The case in which all the hazard functions
are constants, the homogeneous Markov case, was investigated by Begg and
Larson, 1982). . A ) . ) A

Now define F, = exp(—A;; — Ai3) and F, = epr(—A24), where A;;(t) =
f6 K;Y; dNj;, and K;(t) = I{Y;(¢t) > 0}. (We use the F/s for the large-sample
derivations because they exhibit the correct large-sample properties in more
general settings than the one on which we concentrate here; however, in the
actual one-sample setting, it may be more reasonable to use the corresponding
Kaplan-Meier (1958) estimators. Such an interchange has no effect on the large-
sample results.) Also define our estimator of R (t),

R(t) = f Fi(s7)Fy(t — s)K1(s)(Y1(s)) ™" dNys(s).

Note that although all these estimators are functions of n, the number of
observations, we leave this relation implicit for readability.

THEOREM 4. Let 0 <c¢ < 1 and assume for t € [0, c]
I) Y:(t)/n =pi(t) + 0,(1) for i = 1, 2, where the p; are deterministic functions
bounded away from 0.
II) nK;(t)Y71(t) is uniformly integrable in (n, t, i).
D) n'2[§(1 — Ky)a; d2 = 0,(1) for all (i, j).
Then n3(R — R) —4 Z on [0, c], where

Z(t) = J(: 812(t, ) dWi, — J; [J(: F1F2;t(112 d/]hm(s) dW24(S)

— J; |;[ F1F2;t(112 d/](hl2(s) dWis(s) + his(s) dW13(S)),

with Fo.(s) defined as Fs(t — s). Further, the W;; are independent Wiener
processes, and

gi2(t, 8) = Fi(s)F2(t = s)(anx(s)/p1 ()"
hia(s) = (a12(s)/pa(s))*?
his(s) = (ars(s)/p1(s))
hoa(s) = (a2a(s)/p2(s)) ">

Note that we restrict our attention to [0, c¢]. In our setup we only observe 2 —
4 transitions in real time [0, 1], so Y,(1) = 0 a.e. [P], for each n, assuming that
each observation is in the initial state at time zero. Thus we must choose ¢ < 1
so that assumption I of the theorem can hold.
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COROLLARY 1. If the conditions of Theorem 4 hold, then for 0 < u <t <,
Cov(Z(u), Z(t)) is

J; FiFyFyu(aiz/p1) d2

—J; FI(S)F2;t(s)I:f F\Fyua: d/](alz(s)/[)l(s)) ds

- J; Fi(s)F5u(s) |;[ FiFsa:, d/](alz(s)/Pl(S)) ds

+ J; |:J; F\F5.a:5 d/:":J; F\F,,a, d/](024(s)/p2(s)) ds
+ f |:f F1F2;z(112 d/]l:f F\Fo,a d/] X <_¢112_(S). + (113_(8)) ds.
o : pis) " pils)

If in addition n’K;(t)Y;2(t) is uniformly integrable in (n, t, i), then an estimate
of Cov(Z(u), Z(t)) that is consistent uniformly in t is given by replacing F,(s) in
the above by Fy(s™), Fy.(s) by Fo(t — 5), a;;dZ by K;Y;:' dN;, and p; by Yi/n.

Note that these five integrals may be rewritten as three integrals, each of
which would involve only one of the a;j/p;, thus separating the covariance into
components reflecting the variability in the estimation of the 1 — 2,1 — 3, and
2 — 4 hazards.

As Temkin points out, the area under the curve R in [0, t], [6 R d/, is the
average time spent in response in this interval. A slight generalization of this
leads to

COROLLARY 2. Let w: [0, 1] — R be bounded and measurable. Under the
conditions of Theorem 4, n'”? [§ (R — R) w dZ —4 Z:(t) as a process in t, where
the Gaussian process Z, is Z,(t) = [§ Zw d/. The covariance of Z,(u) and Z,(v),
for0=su=<v=cg,is

fo [J; (Fi(s) — Fa(t — s) — I(s, t, t)w(t) dt)

X [f (Fi(s) — Fo(t — s) — I(s, t, t))w(t) dt](am(S)/pl(S)) ds

+ J; [f 10, t—s,t) dt][f 10, ¢t —s,t) dt](a24(s)/p2(s)) ds
+w£ [f I(s, t, t)][f I(s, t, t) dt](a13(s)/p1(s)) ds,

where I(x,y, z) = [} F1Fs,a12 dZ.
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A suitable estimate of the above covariance can be determined along the lines
of Corollary 1.

A graph of t — [§ R d provides another way to examine the relative efficacies
of therapies; however, for large ¢t the graph may be misleading, for the same
reason that the expected value of a random variable may be a poor measure of
center for its corresponding distribution.

Under what situations will the conditions of Corollary 1 hold, so that we can
set confidence intervals on R(t), perform two-sample tests, etc.? We restrict
ourselves to the one-sample random censorship model; then whether the above
conditions are met simply depends on the type of censoring in effect.

COROLLARY 3. If, using the notation of Section 3, X%(t) = I{C, = t}, where
the censoring random variables {C.} are i.i.d., are greater than 1 with positive
probability, and are independent of the underlying transition times, then the
conditions of Corollary 1 are satisfied whenever a;5(s) > 0 on a subinterval A of [0,
1—clwith/(A)>0.

Comparison of the estimators of the PBRF based on Markov and semi-Markov
assumptions have been made under a homogeneous Markov model (Voelkel,
1980). These results will be summarized in a future report.

APPENDIX

Proor oF THEOREM 3. That the M}, have the stated martingale properties
follows from Doob (1953). To write M}, in terms of N}, a¥, and Y%, we first
write

MY (u) = MY(Yrt(u))

vyl
= N% (Vi (u)) — J; a;j(s — Ty)Y%(s) ds

V5 (w)
= N3 (¥r' (u)) _f«» a;j(¥i'(s) — Ti)

Y
X Y (¥r'(s)) d¥y'(s).

Since ¥;' has absolutely continuous sample paths, then ¥;!’ exists a.e.() for
all samples paths. In fact, let us mean by ¥;!’ the left-hand derivative of ¥j!.
This has sample paths in S[0, m’], so we transform the integral above to get

M(u) = Nj(¥i' (u) — J(: [ai; (Wi (s) — Tir) Yi(W5V () W5 (s)] ds.

Note that the integrand is 0 for all values between u and ¥, ¥;!(u), so the upper
limit of integration is correct even though u and ¥, ¥;*(u) may differ.

Define N}.(u) = N{x(¥%'(u)). Since NY;, has at most one jump, which can
only occur at T}, and since the smallest u for which ¥;'(u) = Thisu=i—1+
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T,’k - Tik, then
Niaw)=Hu=i—-1+ T} Ty I{NJe (1) = 1}.

Let Yi(s) = Y%(¥i'(s))¥5:'(s). Now Y%(¥3;'(s)) is non-zero only when
Vi 1(s) € (Ti, ,k], or when s is an element of

(G—1,i—1+Th—Ta)UG—1+Th— Tu,il=0—-1,1i]

Also ¥;'(s) =1lifandonlyifs€U; (i —1,i — 1 + T} — Ty], where we interpret
(—-1,i—1+ T4 — Ty) as (i — 1, i — Ty] if state i is entered but no i — j
transition occurs, and as the null set if state i is never entered. Thus, Y}(s) is
non-zero only when s € (i — 1, i — 1 + T/ — Ti] and on this interval equals
XSQ(S + Tik_ l + ].)

We now simplify a;;(¥5(s) — T\x), first noting that the term need be examined
only for s such that Y3(s) is non-zero. For such values of s, those in (i — 1,i— 1
+ T} — Ty, we have

a;(¥r'(s) — Tu) = aij(s + Ty — i + 1 — Ty) = a;(s — (i — 1)).

With this in mind, we define af(s) = a;j(s — i + 1).
That the N}, are counting processes with intensities L is immediate. 0

PROOF OF THEOREM 4. For real numbers and random variables, define o, O,
0,, and O, in the usual way; for functions and stochastic processes define them
to hold uniformly in ¢. To avoid writing dummy arguments in the integrals that
follow, let f..(s) = f(t — s) and f-(s) = f(s™) for suitable functions or stochastic
processes f. Define

t t
Ry(t) = J; Pl—F2;tK1 Yi' dNis, ﬁlZ(t) = A FFy, K, Y1 dNy,
¢ ¢
R+(t) = f Fl——F2;tK1alZ daz, R2+(t) = f Pl—F2;tK1a12 ds
o o

t
-1"2(t) = L F1F2~,zK1a12 ds

and view B — R as a sum of five terms: R — R* — R, + R$; R. — R}; R* —
R%; Rf — Ri; and R, — R. The first and last of these terms are o,(n~"/?) under
reasonable conditions. '

LEMMA 1. Assume that for t € [0, c], where c <1,
I) E[K;(t)Y;(t)"Y]1 + E[1 — K(t)] = 0(1) for each (i, t).
II) Yi(t)/n = py(t) + 0,(1) for each t, and p, is bounded away from 0.
III) nK,(t)Y.(t)"!is uniformly integrable in (n, t).
IV) n'2 f§(1 — Ki)a12dZ = 0,(1).
Then R — R* — R, + R} and R}, — R are both 0,(n""?).
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PROOF. At t, nV2(R — R* — R, + R$) is [5 (Fo — Fo)n2F_K, YT! dM,,
which equals [§ (A;) dB, say. But the submartingale inequality (Doob, 1953, page
317) and (I) ensure that A,(s) converges to 0 uniformly in s and ¢; in addition,
the conditions imply that B(s) converges weakly to a Gaussian process (Aalen
and Johansen, 1978). By the continuous mapping theorem, [$ (4;) dB converges
weakly to a zero mean and variance process, and is therefore 0,(1).

The second assertion clearly holds. O

What remains is to find the joint asymptotic distribution of n'/?(R. — R$, R*
—R3, Ri — RY;). Note that R, (t) — R (t) = [5 F,_F,,K, Y7' dM,., the integrand
of R*(t) — R3 (t) contains the term Fy,(s) — Fa(s) = exp(— Aa(t — 5)) — exp(—
Az (t — s)), and the integrand of R3 (t) — R1,(t) contains the term F._(s) — F,(s)
= exp(— A2(s7) — Ay3(s7)) — exp(— Ajz(s) — Aj3(s)). This suggests examining
the weak convergence of

t t t t
(A-l) Zn(t) = (J{: G12 dM12, j; H12 dM12, J; H13 dMla, J{: H,, dM24>,

where the G and H’s are certain stochastic processes (depending on n, of course),
and then, by applying the delta method and making some linear transformations,
arriving at the weak-convergence result we seek.

First we state the following lemmas, the first of which is proven in Chung
(1968, page 90), and the second of which is a Fubini theorem for stochastic
integrals (proof omitted).

LEMMA 2. Let X, be a sequence of uniformly integrable random variables
which converges in probability to a constant d. Then E[X,] =d + o(1).

LEMMA 3. For each t € [0, 1], let h(-, -, t): [0, 1]> — (—, ) be square
integrable with respect to Lebesgue measure on [0, 1]2. If W is a Wiener process on
[0, 1], then

f f h(u, s, t) dW(u) ds = f f h(u, s, t) ds dW(u).
0 0 0 0

The processes we associate with (A.1) are
Gia(t, s) = n"2F,(s—)Fy(t — $)Ki(s)Y1'(s),
Hy, = n'2K, Y7, His = nY2K,Y7!, and H,, = n'?K, Y;'.
Then Z, = n" R, — R}, A, — Ah, Ay — Al, Ay — A3), where Af(t) =
[6 Kia;;dZ.

In what follows, let p;(t) and p,(t) be two functions that are bounded away
from 0 on [0, ¢], where ¢ < 1.

LEMMA 4. Assume that for t € [0, c]
L Yi(t)/n=pi(t) + 0,(1) fori=1, 2.
II. nK;(¢)Y:(t) 'is uniformly integrable in (n, ¢, i).
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Then on [0, c]

t t t t
Zn(t) —d <£ g12(t7 ) dW12, L h12 dWl?, L h13 dWl37 L h'24 dW24>9

as a process in t, where the W;;, g2, hi2, hi3 and hyy are defined in Theorem 4.

PROOF. The result would be an application of Aalen and Johansen’s (1978)
Theorem 4.1 except that G.(t, s) is a function of ¢ as well as s and that two of
the integrals in Z, are taken with respect to the same martingale. To circumvent
these problems, consider instead the weak convergence of Z)(t) = (ft H(a,
u, b, v, s) dMy2(s), [6 Hiz dMis, [6 Hox dMyy), where H(a, u, b, v, s) =
Yal{s = w;}Gia(wi, s) + XYbjI{s < v;}Hy2(s), the a; and b; are arbitrary real
numbers, the u; and v; are in [0, 1], and the sums are finite. Then the conditions
of Aalen and Johansen’s theorem are satisfied for Z), and, as a sequence of
processes,

u, At
Z,(t) —q <Zai J; &2(ui, +) dWpo

UJ/\[ t t
+ Yb j; his dWis, J; his dWis J; hay dW24>-

By the Cramér-Wold argument, the finite-dimensional distributions of Z, con-
verge weakly to the finite-dimensional distributions asserted by the theorem. But
Z, is also tight. Its last three coordinates clearly are because, by the above, they
converge weakly to (fhis dWis, [hi3 dWis, [hoy dWyy). Now let Gia(s) = Gia(t,
$)/F2.(s), Mis(t) = [6 Giz dMy2. By the change of variables formula, the first
coordinate is F2(0)M12(t) — Fo(t)M12(0) — [ M1z dF,,. The conditions above
insure that M{, converges weakly, so the continuous mapping theorem implies
that the first coordinate also converges weakly, and is hence tight. 0

LEMMA 5. If the conditions of Lemma 4 hold and if n'”? [§ (1 — K;)a;; d/ =
0,(1) for each (i, j), then, as processes in t € [0, c],

n'A(Ry(t) — R (8), Fi(t) — Fi(t), F5(t) — F(t))

¢ ) ¢
—4 < J(: gu2(t, ) dWyo, — Fi(t) J; (h12 dWig + hys dWis),

t
- Fz(t) J; h24 dW24).

PrROOF. The condition added in this corollary insures that we may replace
At in Z, by A;;. Two applications of the delta method yield the desired result
after the second and third processes of Z,, have been summed. 0
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LEMMA 6. If the conditions of Lemma 5 hold, then
n'2(Ry(t) — R$(t), R*(t) — RI(t), R (t) — R%(t))

—>d (J; &12(t, -) dWyo, — »[: Fi(s)Fy(t — S)I:J; haq dW24:|

t
X ayz(s) ds, — f Fi(s)X(s)S2(t — s)aiz(s) dS>
0
as processes in t, where X(s) = [§ hio dWis + [§ his dWi3.

Proor. The conclusion follows by noting that the K; terms become 1 in the
limit, by summing the second and third processes of Z,, by applying the delta
method several times, (eg, Ass — Ay to Fy — F}), by noting that Fl_ =F; + 0,(1),
and by employing some continuous maps (eg, F» — F, to Rf — R%). 0

The main assertion of Theorem 4 now follows: the sum of the three terms of
Lemma 6 is, by Lemma 1, asymptotically equivalent to n'/?(R — R), noting that
(I) of Lemma 1 is implied by (I) and (II) of this theorem via Lemma 2. That the
order of integration may be reversed follows from Lemma 3.0

PrOOF OF COROLLARY 1. The first part of the corollary follows directly from
Theorem 4, so we only need to show the convergence of estimated terms to their
counterparts in Corollary 1. By using the submartingale inequality and Lemma
2 of the Appendix, conditions (I) and (II) insure that estimates of the terms in
the brackets converge uniformly to the correct terms. It thus suffices to show
that sup,| [§ K;Y:*ndN;;— [§ (a;/p;) d7 | = 0,(1). This difference can be written
as

" t
f K,’ Y,'_Zn dM,'j + f (Kz Yi_ln - pi_l)aij as.
0 0

By Theorem 2, the variance of the first term is less than [} E[K;Y;*n%a; d/.
By using (I) and (II) with Lemma 2 and then applying the Dominated Conver-
gence Theorem, this bound on the variance converges to 0, so the first term is
0,(1) uniformly in t. That the second term is also o0,(1) uniformly in ¢ follows
from (I), (I), and Lemma 2. 0

PrOOF OF COROLLARY 3. It sufficies to show that (I) of Theorem 4 and the
added condition of Corollary 1 are satisfied, since these imply (II) and (III) of
Theorem 4. Let G be the survival function associated with each C,. Then the
distribution of Y;(t) is binomial with parameters n and F, (¢t)G(t), so Y,(¢t)/n =
Fi(t)G(t) + 0,(1) and, by assumption, F;(t)G(t) is bounded away from 0 for 0 <
t < 1; thus, p,(¢) is identified. The distribution of Y(t) is also binomial, with
parameters n and [~ Fi(s)a:2(s)Fz(t)G(t + s) ds. By the condition made on a3,
this integral is bounded away from 0 for all ¢ in [0, c], so Y2(t)/n = p,(t) + 0p(1).
Thus (I) of Theorem 4 is satisfied.
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Now let the family of random variables {X,(¢)}, t €[0,c],n =1, 2, --- have
distributions X, (t) ~ Binomial (n, p(t)) where inf,cjoqp(t) = po > 0. To prove
the added condition of Corollary 1 holds, it is enough to show that E[n*I{X,(t)
> 0} X;3(t)] is bounded uniformly in (n, t) (eg, Neveu, 1965, page 54). That this
expected value is indeed uniformly bounded follows by an extension of an idea,
used by Aalen (1976), which shows that a uniform bound is p5® + 115p5*. O
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