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THE INFLUENCE FUNCTION IN THE ERRORS
IN VARIABLES PROBLEM'

By GABRIELLE KELLY?

Stanford University

This paper focuses on two aspects of the errors in variables problem—
variance estimation of the classical estimators of slope and intercept, and the
detection of influential observations. The behaviour of the jackknife, boot-
strap, normal theory and influence function estimators of variability is ex-
amined under a number of sampling situations by Monte Carlo methods. In
the multivariate case, perturbation analysis is used to calculate the influence
function of the estimator of Gleser (1981). The connection to estimation in
linear regression models is discussed. The role of the influence function in
the detection of influential observations is considered and an illustration is
given by a numerical example.

1. Introduction. In the univariate structural equations model n random

vectors z; = (x;, y;) T are observed. It is assumed that for eachi=1, ---, n,
(11) z; = L = Ui + € =u + e,
Yi Ug; €9;
where
(1.2) Uy = a + 6u1i

and the u; are independently and identically distributed (i.i.d.) with mean vector
u and covariance matrix =y given by

2 2
(1.3) p=")and zy = ("”1 Bov, ).
Mo B oy,
The e; are i.i.d. with mean vector O and covariance matrix given by
2
(1.4) S = ("1 °2>.
g2

It is also assumed that for each i,
(1.5) u; and e; are independent.

Let F denote the common distribution function of the z;,. By (1.1)-(1.5) the
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mean vector ur and covariance matrix Zr are given by

_ (ex(F)) _ 1
(L6) wF) = (mm) - (a + ﬁm)’
and
_ (%) oxy(F)\ _ (o}, + o} Bob,
(1.7) Z(F) = < X (,’QYY(F)) = < T g4 a%)'

Expressions (1.1)-(1.5) represent the model.

When all parameters and all distributions in the model are specified, it is
called a structure. A structure generates one and only one distribution F(z) of
the observed variables. On the other hand, several structures may generate the
same distribution F(z). A parameter is identifiable if it can be uniquely deter-
mined from a knowledge of the joint probability distribution of the observed
variables. Equivalently, a parameter is identifiable if it has a consistent estimator.
For a succinct discussion of identifiability in structural equation models see
Riersgl (1950).

It is usually assumed that U and E are normally distributed. In order to make
the vector of unknown parameters 6 = («, 8)7 identifiable in this case, it is
necessary to make an additional assumption. The classical assumption is that
the ratio

(1.8) ob/at =\

is known. Then, the usual estimator of 8 is the normal theory maximum likelihood
estimator (m.l.e.).

In Section 2 of this paper the usual maximum likelihood estimator is viewed
as a method of moments estimator. It is seen to be consistent in cases where U
and E are not normally distributed. The influence function is calculated and
used to derive the asymptotic covariance matrix of the estimator. No assumptions
on the distribution function F other than the existence of fourth moments are
made. The special case where F is a bivariate normal is outlined.

In Section 3 the influence function is used to estimate the asymptotic covari-
ance matrix. This estimator is related to the jackknife. It is seen to be “robust”
against departures from assumption (1.4). The connection with estimation in the
linear regression model is also considered.

In Section 4, Cook’s (1977) measure of influential cases in linear regression is
expressed in terms of the influence function. Thus, it has a natural analogue in
the errors in variables model and an alternative form is also presented.

Section 5 looks at the multivariate structural equations model. The influence
function of the estimator of Gleser (1981) is calculated and used to derive an
explicit expression for the asymptotic covariance matrix of the estimators.

In Section 6, the influence function, jackknife, normal theory and bootstrap
estimators of the covariance matrix of the m.l.e in the univariate model are
investigated by Monte Carlo methods. It is seen that the bootstrap performs well
in a variety of sampling situations while the influence function estimator can be
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considerably biased downward. A brief illustration of the use of the influence
function in detecting influential observations is given by a numerical example.

The structural equations model is also referred to as the “errors in variables”
problem or the “total least squares” problem. For a review, the reader is referred
to Kendall and Stuart (1961, pages 377-382) and Madansky (1959).

2. 2.1 The method of moments estimator. 'Throughout this section we assume
that (1.1)-(1.7) and (1.8) hold. The parameter vector § = («, 8)7 can be written
as a functional of the unknown distribution function F by letting

(2.1) ' a=a(F) = p,(F) — B(F)u.(F),

B=B(F)
(2.2)

1
= [62(F) — X\ 62(F) + {(a2(F) — X ¢%2(F))% + 4\ o%,(F)}'].
20, (F)
Let F, denote the sample distribution function corresponding to F. Denote
the sample mean and covariance matrix respectively by

_ 2
(2.3) u(F,,)=<;> and 2(F,,)=<SX Sgg:)

Under assumption (1.8) the method of moments estimator of 6(F) is 0(F,) =
(a(Fn)’ ﬁ(Fn))TWhere

(2.4) a(F,) =y — B(F)%,
(2.5) B(F,) = [S% — AS% + {(S% — AS%)? + 4AS%v}Y*/2Sxy-

By the law of large numbers this estimator is consistent for all distribution
functions F with finite second moments.

The role of A will not be discussed in this paper. Note, however, that a wrong
choice of \ will result in 8(F,) being inconsistent.

Throughout the remainder of this paper 8(F,) = («(F,), B(F,))T will also be
denoted by 6 = (&, §)7.

When F is the bivariate normal, 8(F,) is also the m.l.e.; see Kendall and Stuart
(1961, page 381).

Using the definition of influence function, the influence function of 8(F'), IC(6,
F; ) =[IC(e, F; ), IC(B, F; -)]T can be calculated directly. We have

g OB = ﬁm By — uy(F)? = Ax — ux(F)?]

— (87 = N(x — ux(F)(y — ur(F))}
and
(2.7) IC(e, F;2) = (y — o — Bx) — ux(F)IC(B, F; z),

where z = (x, y)7. It is easy to check that
(2.8) Ef[IC, F;z)] =0
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as required by the definition of the influence function. The sample influence
function is obtained by substituting F, for F i.e. sample moments for population
moments, in expressions (2.6) and (2.7).

2.2 Calculation of the asymptotic covariance matrix. By the results of Huber
(1977, pages 20-22),
(2.9) Vn(@(F,) — 8(F)) * Nz(0, EF[IC(9, F; 2)IC(8, F; 2)]),

provided the elements of Er[IC (8, F; z)IC"(8, F; z)] are finite and F is sufficiently
smooth. Note that “a” denotes “is asymptotically distributed as” when n — .
Squaring and taking the expectation of (2.6) and (2.7) respectively, gives

Er[IC*(, F; z)]
62

(2.10) = BTN {B%[vos + N%vg] + (B* — 4NB2 + A2)vy,
— 28(8% = Mlvis — Mva}
and
@11 Ep[IC(a, F; 2)] = {voz + B°v20 — 2Bvn + piEF[IC*(B, F; 2))

— 2ux(F)Er[(y — a — Bx)IC(B, F; 2)]}.
For the last term in (2.11)
Er[(y — a — Bx)IC(B, F; 2)]
= Er{[(y — uy(F)) — B(x — ux(FN)UC(B, F; 2)},
(2.12) J¢]
~ oxv(B2+ \)
- {Buos — MBv21 — (8% — Nviz + NB%vs0 — BPv12 + B(B® — Mvarf,

where v, = Erf(x — p)"(y — uy)°}.
Also,

21 EF[IC(a, F; 2)IC(B, F; 2)]
' = Er[(y — a — Bx)IC(B, F; 2)] — uxEr[ICX8, F; z)].

Expressions (2.10)-(2.13) determine the entries of Ex[IC(8, F; z)ICT(6, F; z)],
the asymptotic covariance matrix of NG o(F,).

Note that by (2.10)-(2.13) the condition for asymptotic normality (2.9) is
equivalent to F having finite fourth moments.

By further algebraic manipulation expressions (2.10) and (2.11) can be written
as

Er[IC*(B, F; z)]
(2.14) = (8% + Nai/ol, + Noi/at,)%(B* — AN + ND)/(B? + N)?
+ (B/(B* + N))*[(Eres + N2Erel)/(a?,)?),



INFLUENCE FUNCTION 91

and
Ep[IC*(a(F), 2)]
(2.15) = 6}(8% + N\) — 2u1(BEred + A3°Ere})/[at; (B* + N)]
+ WiEr[IC*(B, F; 2)]

respectively. Thus, we see the asymptotic variability of 8(F,) is an increasing
function of ¢%/¢%, and (Ere$ + N\2Ere1)/(c1,)*. This makes sense intuitively. As
the error variances increase the asymptotic variability of 3(F,) increases. Because
B(F,) estimates the slope in the linear relationship U, = a + 8U,, as the variance
of U, gets large the asymptotic variance of 3(F,) decreases. Moreover, for fixed
o1, o¥,, (2.14) implies that the asymptotic variance of 8 (F,) is minimized when
both error distributions have kurtosis equal to zero. This is true when the errors
are normally distributed.

For the special case of the bivariate normal, its moment identities can be used
to write expressions (2.14) and (2.15) as

(2.16) Er[IC*(8, F; 2)] = 03(8% + N\)/ot, + A(oi/ol,)?
and
(2.17) Ep[IC¥a, F; 2)] = 63(8% + \) + uiEf[IC*(B, F; z)]

respectively. Here we see the asymptotic variance of 8(F,) depends only on the
second moments of the underlying distribution function F and is an increasing
function of ¢i/0¥,

3. Estimation of the asymptotic covariance matrix. We consider three
nonparametric estimators of the covariance matrix of vn 8(F,): the jackknife,
the bootstrap and the influence function method. The latter is identical to the
infinitesimal jackknife and to the delta method (Efron, 1981). The influence
function estimator 2; of the asymptotic covariance matrix Ez[IC(8, F; z)IC”(8,
F; z)] is defined by

$, = Ex,[IC(0, Fy; 2)ICT6, F,, 2)]

(3.1) )
= ; =1 [Ic(o’ Fn; zi)ICT(oa Fn; zi)]'

The jackknife estimator 2, is
(3.2) Zr=(n—1) 3k [0-(Fa) = 0, (F)I0-i(F,) — 00,)(Fn)],

where 0_;(F,) is 0(F,_;) with the ith observation omitted and 6.,(F,) =

", 0_i(F,)/n. The bootstrap estimator 35 must be calculated by a computer
algorithm as described in Efron (1981). In the same paper Efron shows how the
three methods—jackknife, influence function and bootstrap—derive from the
same basic idea and that they are asymptotically equivalent. Thus is suffices to
examine the asymptotic properties of any one of them. The asymptotic validity
of the bootstrap estimator of standard deviation, for example, is verified in Efron
(1979, Section 8, remark G).
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Another consistent estimator 2, of the asymptotic covariance can be gotten
when F is the bivariate normal, by plugging in the estimates S%, S%, Sxy, 5 etc.,
(1 e., replace F by F,) in expressions (2.16) and (2.17). Two estimators N and
Ez arise in the normal case because here one can estimate Er(y — uy)* consist-
ently by either X7y (y; — ¥)*/n or 3[Z& (y; — ¥)*/n]>

The three estimators 2,, £, and 25 are distribution-free not requiring a normal
error distribution for their approximate validity, while 2, is not. They also have
the following advantage over 2. Suppose foreachi=1, ---,n

(3.3) Var(ey;) = G%i, Var(ey) = U%i, G%i/ﬂ%i = A,

i.e., the error variances are nonhomogeneous. Conditions (1.1)-(1.3) and (1.5) are
retained as before. Then using Taylor series expansions the following lemmas
are easily derived, the details of which are omitted here.

LEMMA 1. 6(F,) is consistent under assumption (3.3).

LEMMA 2. 2, %, approximate the true covariance of Vn 6(F,) asymptotically,
under assumption (3.3), while =, does not.

For A = 0, A = 4+ the model (1.1)-(1.5) reduces to the regression model of X
on Y, Y on X respectively. Taking the case A = + and using (2.6), (2.7), (3.1)
and (3.2), expressions for the regression influence functlon IC(, F()\ = +»); z)
and the estimators of the regression covariance matrix El()\ +00), 220\ +00)
are easily derived. These are given in Hinkley (1977). Noting that {n/(n — 2) }Ez()\
= +o) is the usual regression covariance matrix estimator, Lemma 2 coincides
with the results of Hinkley (1977) in the regression case.

4. Detection of influential observations. A general definition of influ-
ence is given in Cook and Weisberg (1982, Chapter 3). Here we confine our study
to the effect on conclusions when the data is modified by deletion of cases. Cook
(1977) Cook and Weisberg (1982) and Atkinson (1982) have discussed the use
of & — 8_; in exhibiting points with a large influence on estimated regression
parameters. They all give vérsions of the statistic D, of Cook (1977),

(4.1) Di=(6—0.)7(Z,/n)7"(0 — 6_)/p

where p is the dimensiAon of 8. Cook noted that a (1 — «) 100% confidence
ellipsoid for 6 based on 8 is given by the set of all * such that

(4.2) 6* — 07(Z2/n) N 0* — )/p < F(p,n—p; 1 — a)

where F(p, n — p; 1 — a) is the (1 — «) probability point of the central F
distribution with p and n — p degrees of freedom. Thus values of D; can be
compared to the F(p, n — p) distribution. For example if D; equals the .50 value
of the corresponding F distribution, then deletion of the ith case would move the
estimate of # to the edge of a 50% confidence ellipsoid relative to 6. An analogy
to this can be made in the errors in variables problem. We note that 6 is the
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m.l.e. in the normal case and so asymptotic confidence ellipsoids are given by
(4.3) {0%: (6* — 0)T(Zo/n) M O* — ) < X2}

where x2 is the chi-squared distribution with p degrees of freedom. Thus, if we
here define D, by

(4.4) Di=(—0-)7(Z,/n)""(6 — 0-)

it can be compared to the x3 distribution. Since (n — 1)(9 — (?L,») is the jackknife
estimate of the influence function (Efron, 1981), an equivalent measure to D, is
V., where

(4.5) V; = IC(8, F,; 2.)"(2,/n) ' IC(8, F,; z:)/n>

This is given in Cook and Weisberg (Chapter 3, equation 3.5.25) for the regression
case. Of course 2, could also be used instead of 2 in the formula for D;. We
denote the corresponding measure by ;. The performance of J; and V; is examined
in the numerical example of Section 5.

Note that the influence function given by (2.6) and (2.7) is unbounded in x
and in y respectively. Robust estimation could be used to provide estimators with
bounded influence. Robust regression estimators have natural extensions here
and will be considered in a later paper.

5. 5.1 Multivariate structural equations model. The model given by (1.1)-
(1.5) has an extension to the multivariate case and the multivariate analogues of
the expressions of Sections 2-4 can be derived.

Let n random vectors X; = (Xy;, X2;)” be observed, where xy;is p X 1 and x;is

rx1,i=1,2,...,n.Itis assumed foreachi=1,2, --. , n
(5.1) X; = (:;Z) = (3;) + (g;) =u + e
where
(5.2) uy; = a + Buy;
and the u; are i.i.d. with mean vector u and covariance matrix 2y given by
(5.3) w= (Z;) and 3y = <EU‘ B];)illjiT>
The e; are i.i.d. with mean vector and covariance matrix given by
(5.4) 0 and Zg = ¢%,4,.
We assume that the
(5.5) u; are independent of the e;.
Let F be the distribution function of x;, 7 =1, --- , n with mean vector ux(F)

and covariance matrix =(F). Let d; > --- > d, > dpy1 > --- > d,4, be the



94 GABRIELLE KELLY

eigenvalues of Z(F'), and define

(5.6) D(F) = diagonal (d, ---, dp+r).

Let
Gll G12

(5.7) G(F) = :(p+r)X(p+r), GupXp
G21 G22

satisfy

(58)  G'(F)G(F) = Ly, = G(F)G'(F), Z(F) = G(F)D(F)G"(F).

Condition (5.6) ensures the decomposition (5.8) is unique.
The parameter § = (a, B)” can be written as a functional of the unknown
distribution function F,

(5.9) 0(F) = ((=B(F), I)u(F), G (F)Gii(F))7,

assuming that G1i(F) exists.

Assuming the common distribution of the e; to be multivariate normal, Gleser
(1981) obtained the m.l.e. of # in the functional equations model (i.e., where the
u; are fixed not random). This is given by

A (E! _ a(Fn) _ _ (_B(Fn)a Ir)“(Fn)
(5.10) b= (B) = (B(F,,)) = 0(F.) = ( Gox (F.)Gi2 (F,) )

assuming that Gii (F,,) exists. Gleser also discusses the uniqueness properties of

this estimator and examines its relation to ordinary and generalized least squares
estimators using orthogonally invariant norms. It is easily seen that one obtains
the same m.l.e. in the structural equations model, with the extra assumption that
the common distribution of the wu; is multivariate normal.

Note that 0(F,) can be regarded as the method of moments estimator for all
distribution functions F with finite high order moments.

5.2 Calculation of the influence function. The methods of perturbation analy-
sis are used to derive the influence function.

As in Section 1, let W = (1 — ¢)F + &5,. Define D(W), G(W), =Z(W) as in
equations (5.6)-(5.8) and 6(W) = (a(W), B(W))T by (5.9). Then, assuming
existence of G (W) for ¢ small,

IC(B, F, 2) = 4 B(W)
de

- ‘g (G (W)GiE (W)]
&

e=0 e=0

(5.11)

_ (i G (W) )G;f (F).

de

To evaluate (d/de)Go1 (W) |.=0, expand Z(W), G(W) and D(W) as functions of ¢
and use the identities (5.8) and

(5.12) Z(W) =1 = e)2(F) + ¢(1 — &)(z — px(F))(z — px(F))7,

_B(F) di Gr (W)
0 &

=0

o=
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to obtain the following formula for the (i, j)th element of G’ = dG(W)/de at
e=0.

(5.13) (GY); = Siwi([GT(F)(z — ux(F)IG"(F)(z — px(F)]"(G)w)/(dx — di).

Then IC(B, F; 2) is given by (5.11) and (5.13).
For the intercept we have

(5.14)  IC(a(F), z) = (-B(F), L)(z — px(F)) — px,(F)IC(B(F), z).

It is not difficult to check that the influence function is translation and scale
invariant. Further computational details may be found in Kelly (1981, pages
49-54).

The asymptotic covariance matrix Z(6(F,)), as in Section 1, is

Z(0(F,)) = Er{IC(6(F,), )ICT(8(F.), 2)},

(5.15) ~ <E(a(Fn)) 2(lF,), B(F,.))>
- 2(B(F,)) )

For F the multivariate normal the elements of (5.15) can be simplified to
(5.16) Z(a(F,)) = o1 + ul[e® Z¢' @, + B'B)7'Z¢" + Z¢'|m (I, + B'B).

The elements of Z(a(F,), B(F,)): r(p + 1) X r(p + 1) giving the asymptotic
covariance between the (i, j)th elements of Vn(B(F,) — B) and the /th element
of «/ﬁ(a(Fn) — a) are equal to

(5.17) oI, + B™B)i/{[o* Z¢'(I, + B"B) ™" Z¢' + Z¢'lm ;.

The elements of Z(B(F,)): rp X rp giving the asymptotic covariance between the
(i, j)th and (i’, j’)th elements of Vn(B(F,) — B) are

(5.18) o*[e® 231, + BTB)'Z¢' + 23] (I, + BB
As in Section 2, nonparametric estimators of =(6(F,)) are il, 3, where

IC(8(F,), z)IC"(O(F.), 2:)
n

(5.19) =3
and 2, is given by (3.2).
6. Numerical results.

6.1 Example. Miller (1980, pages 127-142) presented simultaneous pairs of
measurements of serum kanamycin levels in blood samples drawn from twenty
babies. One of the measurements was obtained by a heelstick method (X), the
other using an umbilical catheter (Y). The question was whether the catheter
value systematically differed from the heelstick value and so could it be substi-
tuted for it after correction for bias. Since there was measurement error in both
methods, an errors in variables rather than regression analysis was used. It was
reasoned that A = 1 was correct.
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The twenty pairs of heelstick and catheter values are presented in Table 1.
The estimates from the analysis were

(6.1) a=-116, =107, ¢=¢6}=460, 6y =214, 62, =245
1 2

Estimates of the standard error (s.e.) of & and § discussed in Section 2 are
presented in Table 2. The bootstrap values were calculated using the following
algorithm (cf., Efron, 1981, page 591).

1. Fit the sample distribution function Fy, mass 1/20 at

(6~2) z, = (xu yi)Ty l = ly M) 20'
2. Draw a “bootstrap sample” from Fy, z}, - - -, 2§, i.i.d. Fy and calculate
(6.3) 0 =b(zt, -, zh) = (@* A"

3. Independently repeat step 2, B(B = 200 or 500) times obtaining “bootstrap

TABLE 1
Serum kanamycin levels in blood samples
drawn simultaneously from an umbilical
catheter and a heel venapuncture
in twenty babies

Baby Heelstick Catheter

1 23.0 25.2
2 33.2 26.0
3 16.6 16.3
4 26.3 27.2
5 20.0 23.2
6 20.0 18.1
7 20.6 22.2
8 18.9 17.2
9 17.8 18.8
10 20.0 16.4
11 26.4 24.8
12 21.8 26.8
13 14.9 15.4
14 17.4 14.9
15 20.0 18.1
16 13.2 16.3
17 28.4 31.3
18 25.9 31.2
19 18.9 18.0
20 13:8 15.6
TABLE 2

Standard errors of the estimators &, .

Influence Jackknife: Normal Bootstrap Bootstrap

Estimator function: 2, 3, Theory: 3, B =200 B =500

@ 4.06 4.97 3.39 4.58 4.33
B 21 .26 .16 .23 .22
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replications” 8*!, ... , 6*2, and calculate
(6.3) S.E.(8) = [Z81 (8* — B*)*/(B — ]2

where 8* = Y£.,(6*)/100. The quantity S.E. (a) is computed similarly. The
95% normal confidence interval for 3(F') using 2, is (.76, 1.38). Another method
for constructing a 100(1 — «)% confidence interval for 3(F) based on normal
theory assumptions is outlined in Kendall and Stuart (1961, pages 388-390). The
interval is the transform of

tan"(8/¥\) € tan" (B(F,)/\)
(6.5)

_ (S%S% — Skv) "
= -1 a2
+ 5 sin {2tn—2|i(n — 2)(S% — AS%)2% + 4A\S%y f

where t5/% is the 1 — («/2) percentile point of the t-distribution with (n — 2)
degrees of freedom. In this example (6.5) yields the interval (.76, 1.52). All the
95% normal confidence intervals using the estimates of s.e. of Table 2 support
the hypothesis « = 0.0, 8 = 1.0, i.e., the two different methods of measurement
are equivalent. We see that the normal theory and influence function estimates
of s.e. are the smallest. In the Monte Carlo experiment of the next section this
also occurs.

Detection of influential observations. Table 3 presents the jackknife and
sample influence functions of the slope and intercept, at each data point. We see
the estimates are very similar. The values of the normalized influence function,
Ji;and V; are also tabled. Babies 2 and 16 have the largest values of the influence
function and have a negative influence on the slope estimate. When omitted
from the analysis the estimate of slope is increased. Removal of Baby 2 moves
the estimate of 6 to approximately the edge of a 60% confidence region around
9, since 1.536 = x%(.4). Removal of Baby 16 moves the estimate of 0 to the edge
of a 40% confidence region around 6.

Monte Carlo estimators of the estimators of standard deviation of « and g. To
further illustrate the procedures for estimating the standard deviation (s.d.) of
& and 3 presented in Section 2, Monte Carlo studies similar to Efron (1981) were
carried out. Each study comprised 200 trials of (x;, y;) where x; = uy; + e;; and y;
=a+ Bu;+ ey, i=1, ..., 20. Tables 4-6 show summary statistics over the 200
trials. .

The last line of each table gives the “true” standard deviation of & and 3. This
was in fact estimated using the sample standard deviation from a separate Monte
Carlo experiment of 2,000 trials, in each situation.

In Table 4 the asymptotic variances given by expressions (2.11) and (2.12) are
valid (since the underlying distribution has finite fourth moments) and are
calculated. For example, line 3 of Table 4 shows that the normal theory estimates
for the 200 trials averaged .0614, with sample standard deviation .0014, and
coefficient of variation .1863 = .0614/.0014. The value o (&) is .6625. The root
mean squared error, from .0625, was vm.s.e. = .0115. For each table, the bootstrap
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TABLE 3
Estimates of the influence function for each data point

Intercept Slope J; V;

Baby IC)(a, Fy;2,) IC(a, Foyz) IC;(B, Fy; 2:) IC(ﬁ, F,; z;) Normalised Normalized
Jackknife Sample Jackknife Sample Jackknife Sample

Influence Influence Influence  Influence Influence Influence
1 -3.73 —3.68 0.26 .26 .032 .024
2 77.9 61.66 —4.27 -3.36 1.336 1.536
3 -1.73 —1.64 0.07 .06 .004 .002
4 -1.15 -1.06 0.07 .08 .004 .0
5 1.08 1.07 0.09 .09 122 .102
6 -6.35 —6.34 0.20 .20 .106 .092
7 7 17 0.03 .03 .028 .024
8 —7.45 -17.35 0.27 .26 .098 .082
9 3.43 3.36 -0.12 -0.12 .020 .020
10 -14.71 —-14.71 0.52 0.52 .396 .350
11 8.53 8.02 —-0.53 -0.49 .052 .050
12 —10.75 -10.85 0.74 0.74 222 .176
13 4.61 4.21 -0.19 -0.17 .018 .018
14 —15.54 —14.93 0.62 0.59 .016 234
15 —6.35 —6.34 0.20 0.20 .106 .092
16 26.85 23.83 -1.11 -0.98 534 .580
17 -19.38 —-16.20 1.05 0.88 .090 .090
18 —-33.12 —-30.47 1.85 1.68 .248 .290
19 -3.80 -3.75 0.13 0.13 .028 .026
20 16.15 14.40 —-0.67 -0.59 .198 .206
TABLE 4.
| a m A |
Method AVE SD CV <Vm.s.e. AVE SD CV  <Vms.e.
Influence Function .062 .013 21 .013 .063 .022 .35 .022
Jackknife .068 .015 .22 .016 .076* .030 .39 .032
Normal Theory .061 .011 .19 .012 .067 .020 .30 .020
Bootstrap, B = 200 .065 015 .23 .016 .074* .026 .35 .028
Bootstrap, B = 500 .065 .013 21 .014 .074* .025 .34 .027
Asymptotic Value .063 .064
True Value .063 .065

standard deviations in each trial were calculated according to the algorithm given
by (6.2)-(6.4). ’

Tables 4 through 6 are a comparison of methods of assigning standard errors
to & and 6 Each table consists of 200 trials of x; = u;; + e;;and y; = « + Buy +
—ey,i=1,.-.,20 with « = 0.0 and 8 = .5.

In Table 4: e;; ~ .25N(0, 1), es; ~ .256N(0, 1), uy;~ N(0, 1).

In Table 5: e;; ~ .25N(0, 1), es; ~ .25N(0, 1), uy; ~ Cauchy(0, 1).

In Table 6: e;; ~ .25(exp(1) — 1.0), es; ~ .25(exp(1) — 1.0), u7; Cauchy(0, 1).

In Tables 4 through 6 large biases are indicated by asterisks: *Relative bias >
0.10, **Relative bias = 0.20, ***Relative bias = 0.40.
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TABLE 5
| @ 1T B ]
Method AVE SD CV <vVms.e. AVE SD CV  Vms.e.
Influence Function .062 011 .18 011 .008*** .009 1.11 011
Jackknife .066 013 .19 .013 .016 014 .88 .014
Normal Theory .061 012 .19 012 .010** .009 .85 .010
Bootstrap, B = 200 .065 012 .19 012 017 010 .58 011
Bootstrap, B = 500 .065 012 .19 012 017 .010 .58 011
True Value .063 014
TABLE 6
| @ 1 p |
Method AVE SD CV ms.e. AVE SD Ccv m.s.e.
Influence Function .060 016 .25 .017 007*** .008 1.04 .011
Jackknife .065 017 .26 017 016 .013 .82 013
Normal Theory .061 .024 .39 .025 .010** .009 84 010
Bootstrap, B = 200 .062 017 27 017 017* .010 .61 .010
Bootstrap, B = 500 .063 017 .26 017 017* .010 .59 .010
True Value .066 015

The obvious conclusion to be drawn from these tables is that the influence
function estimate of the standard error is consistently biased downward. Efron
(1981) found a similar result in the case of estimation of the variability of a
correlation coefficient. In Table 5 it underestimates the s.e. (3) by a factor of
two almost and the bias there constitutes 70% of the vm.s.e. Since the influence
function estimate uses sample moments to estimate population moments, bias is
to be expected in many sampling situations. The fact that this bias is always
downward remains unexplained.

The normal theory estimate performed well in the normal situation but
otherwise was biased downward.

The bootstrap performed better than the jackknife in terms of vm.s.e. How-
ever, both were biased upward, the relative bias for the bootstrap in Table 5
being greater than 20%. Examination of some of the “bootstrap replications” of
(5.4) revealed that extreme values of these replications occurred. These led to a
large value for the average of the bootstrap standard deviations. This leads to
the question raised by Efron (1981) as to the purpose of estimating a standard
error. If the distribution of 3 is not symmetric the standard error is not a good
summary measure and it is appropriate to capture any asymmetry in presenting
confidence intervals. The best way to construct a confidence interval remains an
open problem.

Table 4 and similar studies revealed that the asymptotic standard errors of 8
were always less than the “true” values. Perhaps taking higher order terms in
the asymptotic calculations might give considerably better approximations. How-
ever, this does not explain the bias downward of the influence function estimator.

In summary, it seems that the influence function estimator, i.e., the delta
method, should be avoided. The jackknife estimator is conservative in that it
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overestimates the s.e. on the average but it has a large standard deviation. The
bootstrap does better than the jackknife in terms of vm.s.e. but it can also give
biased results.
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