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GENERALIZED L-, M-, AND R-STATISTICS?

BY ROBERT J. SERFLING

The Johns Hopkins University

A class of statistics generalizing U-statistics and L-statistics, and con-
taining other varieties of statistic as well, such as trimmed U-statistics, is
studied. Using the differentiable statistical function approach, differential
approximations are obtained and the influence curves of these generalized L-
statistics are derived. These results are employed to establish asymptotic
normality for such statistics. Parallel generalizations of M- and R-statistics

- are noted. Strong convergence, Berry-Esséen rates, and computational aspects
are discussed.

1. Introduction. We consider a new class of statistics, which usefully
generalizes the classes of U-statistics and L-statistics and contains other varieties
of statistic as well. Let X;, --., X, be independent random variables having
common probability distribution F. (More generally, the X/’s could be random
elements of an arbitrary space.) Let a “kernel” h(x, - - -, x,) be given, and denote
by

(L.1) Woi << W,

N ()
the ordered values of h(X;, ---, X; ) taken over the n,y=n(n—1) -.- (n—m
+ 1) m-tuples (iy, ---, i,) of distinct elements from {1, ---, n}. Consider the
statistics given by
(1'2) Z:;(T) cn,iWn,iy

where c,;, 1 < i < n(m), are arbitrary constants. The form (1.2) is quite general.
It includs the U-statistic corresponding to the kernel h, which is given by (1.2)
with ¢,; = 1/n(m), all i. And it includes the class of L-statistics (linear functions
of order statistics), given by (1.2) for the particular kernel h(x) = x. Moreover, it
includes statistics such as

(1.3) median {A(X; + X)), i # j},

which is a standard version of the well-known Hodges-Lehmann location esti-
mator, but which is neither a U-statistic nor an L-statistic. Thus, for example,
the sample mean, the sample median (a particular L-statistic), the sample
variance (a particular U-statistic), the Hodges-Lehmann location estimator, and
the 5% trimmed mean (an L-statistic)—a group of statistics which traditionally
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GENERALIZED L-, M- AND R-STATISTICS 77

have been viewed and analyzed as quite different types—may in fact be viewed
from a single standpoint. In this way the form (1.2) provides a unifying concept
relative to various familiar statistics. But (1.2) also embraces important new
varieties of statistic. For example, “trimmed U-statistics” and “Winsorized U-
statistics” fall in this class. In particular, a “trimmed variance” is defined by
trimming the U-statistic corresponding to the kernel h(x;, x,) = Y2(x; — x5)% This
provides a competitor to a somewhat similar nonparametric dispersion measure
of Bickel and Lehmann (1976). Their measure is a trimmed variance which is
simpler in form than a trimmed U-statistic but which is constructed assuming
that the population median is known and incorporating its value into the measure.
Likewise, one may consider trimmed versions of the pth power measures (of
spread) introduced by Bickel and Lehmann (1979). Finally we note an important
generalization of (1.3), namely the form

(1.4) median {m X, + --- + X )},

defined for a sample X;, - - -, X,, and a fixed choice of m (a comparative study of
the cases m = 2, 3, 4, 5 is in progress). Thus (1.2) represents a timely and effective
generalization.

Computationally, statistics requiring ordering such as the sample median and
the Hodges-Lehmann have been deemed less satisfactory than statistics com-
puted by averaging (such as the sample mean, the U-statistics) or by solving
equations (e.g., M-estimates). It has appeared, and been asserted, that computa-
tion of the sample median required O(n log n) operations and that computation
of the Hodges-Lehmann required O(n?) operations. However, with the advent of
computer science and the development of ingenious algorithms for machine
computation, this misunderstanding has been corrected. Indeed, the sample
median requires only O(n) operations (see Blum et al., 1973, and Floyd and
Rivest, 1975) and the Hodges-Lehmann only O(n log n) operations (see Shamos,
1976). Therefore, statistics of form (1.2) are not necessarily more formidable for
machine computation than simpler types of statistic.

Despite the complexity and generality of the form (1.2), the usual asymptotic
normality and convergence properties hold and can be expressed in explicit form.
It turns out that for theoretical study of the class (1.2), it is appropriate to view
the class as a generalization of L-statistics—hence the terminology “generalized
L-statistics.” This will become evident from the developments of Sections 2 and
3, where statistics of the form (1.2) will be represented as “statistical functions”
in the spirit of von Mises (1947), corresponding differential approximations will
be derived, leading also to the influence.curves of Hampel (1974), and results on
asymptotic normality will be obtained. By analogy with the development of
Section 2, whereby “generalized L-statistics” are formulated as statistical func-
tions, one can formulate generalized M-statistics and R-statistics. These and
other complements are discussed in Section 4.

An interesting feature of the treatment of generalized L-, M- and R-statistics
is that the role played by the usual sample distribution function in the treatment
of simple L-, M- and R-statistics is given over to a more complicated type of
empirical distribution function, one having the structure of a general U-statistic.
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Accordingly, interesting generalizations of the well-developed theory of the usual
empirical process become needed as a fundamental tool.

2. Generalized L-statistics: formulation, differential approxima-
tions, and influence curves. The representation of a statistic as a functional,
evaluated at a sample distribution function which estimates the underlying actual
distribution function, helps to identify what parameter the statistic in question
is actually estimating. It also sets the stage for application of differentiation
methodology and influence curve analysis. Let us examine generalized L-statistics
relative to these aims. We proceed by analogy with the treatment of simple L-
statistics.

As before, we consider a sample X;, ..., X, of independent observations
having distribution F. Denote by F, the usual sample distribution function,

F.(x) = (1/n) 34 I(Xi < x), —o < x < oo,

where I(A) = 1 or 0 according as the event A holds or not. The class of (simple)
L-statistics may be represented in the form

(2.1) Yy eniFR(i/n),

of which a suitably wide subclass can be represented as T(F,) for a functional
T(-) of the form

(2.2) T(F) = f F7(O)J(t) dt + Zi-1 ¢ F ' (p).
0

Such a functional weights the quantiles F7'(t), 0 < t < 1, of F according to a
specified function J(-) for smooth weighting and/or specified weights a,, - - -, aq
for discrete weighting. A particular L-functional is thus determined by specifying
J(-),d, p1, ---, pa and ai, ---, az. The corresponding L-statistic is then simply
T(F,). Note that T(F,) may be written in the form

i/n .
(2.3) T(F,) = ¥ [J: J(¢) dt]FT(i) + X1 o F N (py),

i—1)/n
which exhibits the statistic explicitly as a linear function of the order statistics
F;'(i/n),1<i<n.
We now designate an analogous subclass of the statistics of form (1.2). For a

given kernel h(x,, ---, x,), let H, denote the empirical distribution function of
the evaluations h(X;, ---, X, ), i.e.,

1 .
Hn(y) =n_21[h(ti "'7Xi,,.)$y]7 —oo<y<oo,
(m)

where the sum is taken over the n(, m-tuples (i;, - -, i,,) of distinct elements
from {1, - . -, n}. The statistics of form (1.2) may be represented in the form

Y cn i Hi' (8/nim),
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and, by analogy with (2.1) and (2.3), a wide and useful subclass of (1.2) is thus
given in terms of the functional (2.2), by

i/ (m) .
(2.4) T(H,) = ¥ [ f J(t) dt]H Z‘(—l—) + Yo g HZ (py).
(i=1)/n(y) (m)
The parameter estimated by this “generalized L-statistic” (GL-statistic) is given
by T(Hpr), where Hp is the distribution function estimated by H,, i.e.,

HF(y) = PF{h(le Tty Xm) = y}’ -0 <y <o,

the distribution function of the random variable h(X;, - - -, X,.).

This functional approach allows the estimation error T(H,) — T(Hp) to be
approximated by a differential quantity, which in practice can be obtained as a
certain Gateaux differential. As in Serfling (1980), Chapter 6, let us in general
define the kth order Gateaux differential of a functional T at a distribution F in
the direction of a distribution G to be

(2.5) diT(F; G — F) = (d"/dN')T(F + NG — F)) | -0+,

provided that the given right-hand derivative exists. For the simple L-functional
T(-) given by (2.2), we have the first-order Gateaux differential

d\T(F; G- F) = —f [G(y) — F(y)]J(F(y)) dy
(2.6) -
p; — GF(py)
fF Y p))
assuming that F has a positive density f in neighborhoods of p,, ---, ps (see
Huber, 1977, or Serfling, 1980, for details). Accordingly, the estimation error
T(H,) — T(Hr) of a GL-statistic becomes approximated by

+ 3 g

d,\T(Hp; H, — Hy) = —f [H.(y) — He(y)]J(Hp(y)) dy
(2.7) -
p; — H.(HF'(p))
he(HF'(p)

where h; denotes the density of Hr, assumed to exist and be positive at p,, -,
Pa-

A basic difference between the treatment of simple and generalized L-statistics,
even though the same functional T'(-) is involved in both cases, is that the
quantity in (2.7) is a U-statistic in the more general case, but simply an average
of IID’s in the simple case. This stems from the fact that H,, which assumes in
the general treatment the role played by F, in the simple case, is a U-statistic.
That is, for each fixed y, H,(y) is the U-statistic corresponding to the kernel
ITh(x1, - - -, x») < y]. Consequently, d,T(Hr:H, — Hr) is seen to be the U-statistic

+ Yk q
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corresponding to the kernel

Axy, -o ey ) = —f {I[h(x1, -+, xm) < y] = Hp(y)}J(Hr(y)) dy
(2.8) -
—I[h(xy, - -+, 2m) < HF'(p)]
he(H7'(p)))

The formulas (2.7) and (2.8) will be relevant in treating the convergence theory
of T(H,) in Section 3.

Also, formula (2.8) may be interpreted as an analogue of the usual influence
curve. In the special case of a simple L-statistic, the “influence curve” associated
with the statistic T(H,) = T(F,) is obtained by putting G = 6, (the distribution
placing mass 1 at x) in the formula (2.6), which then yields the function A(x)
given by (2.8) with h(x) = x. In this case A(X;) represents the approximate
“influence” of the observation X; on the estimation error when T'(F) is estimated
by T(F,). (This interpretation, due to Hampel (1968), has become a standard
concept in robustness considerations; see also Hampel, 1974, Huber, 1977.)
Proceeding now to the generalized L-statistic, we see that A(X;, ---, X, ) may
be 1nterpreted as the approximate influence of the combination of observatlons
Xi,, - -+, X;, on the estimation error when T(Hp) is estimated by T(H,,).

When the parameter of interest is represented by T(Hj), for some functional
T evaluated at a distribution Hy related to the distribution F of the observations,
it is natural to use the estimator T(H,) based on an estimator H, of Hr. As we
have seen, however, the fact that H, is in general a U-statistic introduces
complications not present in the case of simple L-statistics, T(F,). Therefore, it
is of some interest to view the parameter T(Hy) as also, equivalently, the
evaluation of some functional 7' at the basic distribution F. That is, T(-) is
defined by

(2.9) T(F) = T(Hp).

+ 21—1 1

From this standpoint, a natural estimator is 7(F, ), or equivalently T(H r,), where
by definition

HFn(y) = f fI[h(xly Tty xm) = y] an(xl) e an(xm)
(2.10)

1
= = Sher e e (X, -0, X)) < 5)

Note that H.(y) and Hy(y) are somewhat different, although closely related,
estimators. Thus T(H,) and T(F,) = T(HF,) are two somewhat different esti-
mators of the single parameter expressed in two ways by (2.9). Although H F, is
less straightforward than H, for estimation of Hy, the estimator T(H, r) = T(F,)
lends itself more straightforwardly to a standard influence curve analysis. There-
fore, we derive the Gateaux derivative of the functional 7' as follows.
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First, consider the special case of the functional
To(F) = HF(p),

where 0 < p < 1, and assume that Hy has a density hr in the neighborhood of
H7'(p), with hz(Hz*(p)) > 0. By standard methods, we obtain

diTo(F; G~ F)
@1y o= - [ Ih, -, %) < HF'(p)] [I75" dF(x) dGlxn)
he(HF'(p)) '

In particular, putting G = 6, (the d~istribution placing mass 1 at x), we obtain the
influence curve of the functional T},

IC(x; To, F)

(2.12) _ = [RGB, %) < HF'(0)] 1175 dF(x)
he(HF'(p)) ‘

Let us now consider the more general functional T given by (2.9), i.e.,

(2.13) T(F) = f HF (8)J(t) dt + Y41 a;HF' (p)).
0

It follows in straightforward fashion, from the results for To(-), that
d\T(F; G- F)

=-m Lo {f fI[h(xl, ceey Xm) < y] [T dF(x) dG(xn) — Hp(y)}

(2.14)
- J(Hp(y)) dy
d pj - J‘ cc ,[ I[h(xh ) xm) = HPI(PJ)] I]:i—l1 dF(xx) dG(xm)
tm e he(H7 (p,)) :
Accordingly, the influence curve of the functional T(.) in (2.13) is
IC(x; T, F)
=-m J:m {f fl[h(xl, ooy Xmo1, X) < y) [127 dF(x) — HF(y)}
(2.15)
- J(Hp(y)) dy
g Pi—Jf oo JIhGa, <oy Xma, %) < HEY(p)] TI2" dF(p)
tm g he(H7(p) '
Since T'(F,) = T(F) is approximately (under appropriate conditions)
(2.16) d\T(F; F, — F) = (1/n) 3%, IC(X;; T, F),

the IC represents the approximate “influence” of the observation X; on the
estimation error, when T(F') is estimated by T'(F},).
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3. Asymptotic normality qf GL-statistics. Under appropriate condi-
tions the GL-statistics T(H,)and T'(F,) are asymptotically normal in distribution:

(3.1) n'*[T(H,) — T(Hr)] —a N(0, o*(T, Hy)),
and

(3.2) nT(F,) — T(F)] =4 N, o*(T, F)),
where ¢%(T, Hy) = ¢*(T, F) = o is given by

(3.3) o = Var{IC(X; T, F)}.

(Here T(-), T(-) and IC(-) are as defined in (2.2), (2.9) and (2.15), respectively.)
The asymptotic normality of T(H,) is established by making rigorous the ap-
proximation of T(H,) — T(Hr) by d\T(Hr:H, — Hp) as given in (2.7), in which
case (3.1) follows immediately from U-statistic theory (e.g., Serfling (1980),
Chapter 5) and the asymptotic variance o*(T, Hy) is given by m?Var{A,(X)},
where A;(x) = E{A(x, X1, - -+, Xn-1)} and A(x,, - - -, x,,) is the function in (2.8).
However, it is readily seen that mA.(x) = IC(x; T, F), so that (3.3) is valid.
Likewise, the asymptotic normality of T(F,) is established by approximating
T(F,) — T(F) by d,T(F; F, — F) and utilizing (2.16), in which case (3.2) follows
directly from classical central limit theory and the appropriate asymptotic
variance is given immediately by (3.3). Specifically, these assertions are formal-
ized in the following results (we shall deal explicitly only with T(H,) and discuss
T(F,) in Remark 3.2(ii) at the end of this section).

THEOREM 3.1. Let Hr have positive derivatives at its p;-quantiles, 1 < j < m.
Let J(t) vanish for t outside [a, 8], where 0 < o < 8 < 1, and suppose that on
[, B] J is bounded and continuous a.e. Lebesgue and a.e. Hz'. Assume that 0 <
oX(T, Hp) < . Then (3.1) holds.

The foregoing result applies to examples such as trimmed and Winsorized U-
statistics. The following result applies to untrimmed J/ functions.

THEOREM 3.2. Let Hrsatisfy [ [Hr(y)(1 — Hp(y))]"? dy <  and have positive
derivatives at its pi-quantiles, 1 < j < m. Let J be continuous on [0, 1]. Assume
that 0 < o*(T, Hy) < . Then (3.1) holds.

To prove these results, the functional T(HF) is treated in two parts, T(Hr)
T\(Hrp) + To(Hp), where Ti(Hr) = [5 J()HF'(t) dt and To(Hr)
Y9, a;H7*(p;). We follow in part the treatment of simple L-functionals i
Serfling (1980), Section 8.2.4. Define A;, = Ty(H,) — T:(Hr) — d,\T:(Hp; H,
Hpy). Then

=

(3.4) Ay, = — J: ) Wh, 1. (¥)[Hn(y) — Hp(y)] dy,
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where we define
K(Gi(y)) — K(Gy(y))

We,6,(y) = G =Gl J(Go(y)), Gi(y) # Ga(y),
=0, Gi(y) = Ga(y),
and K(u) = [§ J(t) dt. From (3.4) we obtain two inequalities,
(3.5) | A1 | = | Whnells, - | Ho — Hrllw,
and
(3.6) | A1n] = | Whpplle - | Ho — Hrllzy,

where || gll» = sup, | g(x) | and | g, = [ | g(x) | dx. We seek to establish
(3.7) VAL, —, 0
by analyzing the factors on the right-hand sides of (3.5) and (3.6).
LEMMA 3.1. Let J be as in Theorem 3.1. Then
limyg,—gy1.—0 | We,6, 2, = 0.

LEMMA 3.2. Let J be as in Theorem 3.2. Then

limyg,-G,1.—0 | We,6, Ilo = 0.

83

(These are given as Lemmas 8.2.4A and 8.2.4E, respectively in Serfling, 1980.)

LEMMA 3.3. If Hr is continuous, then
| H, — Hr |l = Oy(n™"?).

PRrROOF. Silverman (1976) establishes that the empirical stochastic process

of a U-statistic array (indeed, of a more general type of array),

n’[H(HF'(t)) —t], 0st=<1,

converges weakly in the Skorohod topology to an a.s. continuous Gaussian
process, say W*. By continuity of the mapping | - || with respect to the Skorohod

topology, it follows that n'/2 || H, — Hr |« —4 | W* | = and hence that n'/* || H, —

Hy "oo = p(1)~ 0

LEMMA 3.4. Let Hy satisfy [ [Hr(1 — Hp)]"/? < . Let J be as in Theorem 3.2.

Then
E{|H, — Hrl 1} = o(n™2).

PrOOF. Adapting the proof of Lemma 8.2.4D of Serfling (1980), write
Hn(y) - HF(y) = n(_rrll) 2 ny(xil’ ] Xi,,,)»
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with #,(-) = I[h(-) = y] = Hp(y). Then

E{l|H, — Hpll1,} = f Eflnem Z n(Xiy, -+, Xi,) |} dy.

Now, by a result on U-statistics (Hoeffding, 1948; Serfling, 1980, page 183), and
using Jensen’s inequality, we have

E{ I n(_nll) z ny(Xip ) Xim) l } = [(m/n)Enz'(le Tty Xm)]l/Q’
Thus

E{||H, — Hr| L} = m'*n™"? f [Hr(1 — Hp))V% O

REMARK 3.1. In the proofs of Theorems 3.1 and 3.2, we will require (3.7).
Note that this follows from the conditions of Lemmas 3.1 and 3.3 together, as
well as from the conditions of Lemmas 3.2 and 3.4 together.

Now, regarding A,,, let us note that it may be written in the form

P — Hn<p,->]
hF(Epj) ’

where £, denotes Hr'(p;) and 2,,}.‘,, denotes H,'(p;). In the case of simple L-
statistics, the jth term above is recognized to be the remainder term R, in the
Bahadur representation for sample quantiles (see Bahadur, 1966, and Serfling,
1980, page 236). Bahadur (1966) showed, under second-order differentiability
conditions on F, that R, =, O(n"**(log n)**). Ghosh (1971) showed R, =
Op(n_l/ %) under only first-order differentiability conditions on F. The extension
of Ghosh’s result to the more general situation involving the terms in (3.8) is
straightforward (details omitted), and we have

(3.8) Ay, = szi=1 ajl:'gp,,n - gp, -

LEMMA 3.5. Let Hp have positive derivatives at its p;-quantiles. Then
n'2As, —, 0.
REMARKS 3.2.

(i) The proofs of Theorems 3.1 and 3.2 are now straightforward, from Remark
3.1, Lemma 3.5, and the discussion at the beginning of this section.

(ii) To treat the alternative estimator T'(F,), note that we need to deal with
Ain = TuF,) — T(F) — d\T(F; F, — F), i = 1, 2. Since Ty(F) = T«(Hr)
and T:(F,) = Ti(Hp,), we have the following analogues of (3.5) and (3.6):

(3.9) | A1n| =< | Wiy iells, - | Hr, — Hrllw

and

(3.10) | A1n| < | Wh piplle - || Hr, = Hr |l 1,.
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The proof (of analogues of Theorems 3.1 and 3.2) utilizes Lemmas 3.1, 3.2 and
3.5 without change, but requires analogues of Lemmas 3.3 and 3.4 with H,
replaced by Hr,. Evidently these entail additional conditions on the kernel h. We
shall not pursue these details here. ]

4. Complements. An M-estimate (of location) may be defined in terms of
the M-functional T'(.) defined by

(4.1) f Y(x — T(F)) dF(x) = 0,

where ¢ is a given function. (See Huber, 1977, for example.) Just as we defined
generalized L-functionals by replacing T(F') by T'(Hr) for a specified L-functional
T(.), we may define a generalized M-functional by putting Hr for F in (4.1).
Thus a generalized M-statistic is given by T'(H,). The analysis of such statistics
follows standard lines with appropriate modifications due to the structure of H,
as a U-statistic. Likewise we may define and analyze generalized R-statistics.

Recent further work on generalized L-statistics includes a Berry-Esséen Theo-
rem (Helmers, Janssen and Serfling, 1983) and extension to censored samples
(Akritas, 1982). Further work on the empirical process of U-statistic structure
includes weak convergence in metrics stronger than the Skorohod topology on
D[0, 1] (Silverman, 1983), a strong approximation (Csorgd, S., Horvath and
Serfling, 1983) and Glivenko-Cantelli theorems (Helmers, Janssen and Serfling,
1983).
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