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ON THE CONSISTENCY OF CROSS-VALIDATION IN KERNEL
NONPARAMETRIC REGRESSION!

By WiNG HUNG WONG
University of Chicago

For the nonparametric regression model Y(¢;) = 6(¢;) + ¢(t;) wheze 6 is a
smooth function to be estimated, ¢’s are nonrandom, ¢(t;)’s are i.i.d. errors,
this paper studies the behavior of the kernel regression estimate

d(t) = [zf.l K(E’—;—‘> m,.>] / [zf.l K(t"; t)]

when ) is chosen by cross-validation on the average squared error. Strong
consistency in terms of the average squared error is established for uniform
spacing, compact kernel and finite fourth error moment.

1. Introduction. Cross-validation as a method for choosing between estimators or
predictors was formally formulated in the articles of Stone (1974) and Geisser (1975).
Wahba and Wold (1975) independently proposed cross-validation for choosing the degree
of smoothing in spline nonparametric regression. Craven and Wahba (1979), Speckman
(1982) discuss consistency of the cross-validated smoothing spline, and Chow, Geman and
Wu (1982) establish consistency of kernel density estimator with cross-validation on the
likelihood. The present paper investigates consistency of cross-validation for the kernel
regression method of Nadaraya (1964) and Watson (1964). Under some regularity condi-
tions, it is proved that the method is consistent in the sense of average square error. There
is an extensive literature on the asymptotic properties of kernel regression estimators with
deterministic sequence of “bandwidth”; see Stone (1979), Devroye and Wagner (1980),
Mack and Silverman (1982).

Let observations on the “unknown regression function” 4(-) be denoted by

(1) Y(&:) = 0(t:) + (%)

where &(t;) are iid. with E(s) = 0 and Var(e;) = o2 With no model for 6(-), the
nonparametric kernel estimate is defined by

2) 0(t) = Gt)™ iy K[(t; — t)/N]Y(1),

where K(-) is a symmetric unimodal function, and G(¢t) = Y }-1 K[(¢;, — t)/A]. This
estimator was proposed independently by Nadaraya (1964) and Watson (1964). The
function K is the kernel function, the parameter X is the “bandwidth” which controls the
degree of averaging. Freedman (1981) has emphasized the distinction between the regres-
sion model (specified in (1)) and the correlation model under which {(Y;, ¢;),i=1, - - -, n}
is regarded as a random sample from a bivariate distribution. For the correlation model,
Efron (1982) gives an excellent discussion of the structure of the prediction problem,
cross-validatory assessment, as well as novel improvements upon the cross-validation.

The cross-validatory choice of A, based on the average squared prediction error, is that
value A\¥ which minimizes

3) CV(\) = n7t T2y [6_i(t:) — Y(&)P
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where 0_;(t) is the estimate of 8(¢;) computed from the data omitting Y(¢), i.e.
(4) 0_i(t) = Gi(t)™ i KI(t; — )/NIY(), Gi(t) = T, K[(t; — t)/A].

The cross-validation function CV()) measures the average ability of 6_; (&) to predict the
“new” observation Y(¢;). Note that forcing § to do well with respect to prediction error is
equivalent to forcing it to estimate 6 well.

2, Statement of results. The consistency of the cross-validated kernel estimator
with respect to the average squared error loss n™! Y7, [6(t:) — 6(t;)]? will be established
under the following conditions: (Al): t; =i/n,i=1, - - -, n; (A2): K is positive, symmetric,
with maximum at 0, and is Lipschitz continuous on its support in [—1, 1]; (A3): E(e(t;)*)
< o; (A4): 0 is Holder continuous, with exponent in [0, 1]. The main ideas in the proof
can be outlined as follows. If \* is the CV choice of A, and if ERR(\) = n™! ¥, [6(t:;, N)
— 0(t)]?, then we shall prove ERR(AY¥) — 0. Define ERﬁ()\) =nt ¥, [0-i(t:, N) —
0(t;)]?, which is related to the cross-validation function (3) by

(5) CV(y) = Eﬁ-f{()\) + 07t DR () — 207t Ty [0k, N) — 0(8:)]e(t).
By the definition of A\*, for any deterministic sequence A,
(6) CV(A¥) = CV(AL).

Now suppose,
LEMMA 1. There exists a deterministic sequence \, such that E’)ﬁﬁ()\n) — 0 a.s.

LEMMA 2. Let g(n, ) = n™* 27, [0-:(t:, \) — 6(t:))e(t;), then supreq,« | &(n, \)| — 0
a.s.

LEMMA 3. nA\}— xas.

The proofs of these lemmas will be given later. By (5), (6) and Lemmas 1 and 2, it
follows that
) ERR(\;) — 0 as.

The next idea is that ﬁﬁ{ approximates ERR, so that (7) leads to the following
consistency result.

THEOREM. ERR(\}) =n~! 3%, [0(t;, A¥) — 0(t)]> > 0 as.

PrROOF. From (2), (4), 6_i(t:) — 6(t:) = K(0O)G(t:)™ [6-i(t:) — Y(t)]. Now G(t:) =
3 i—i1=mK[(t = t:)/N] = To<a=mK[a/(nA)]. Since the last term is of order n\}, Lemma 3
implies that G(t;) — o uniformly in i. Hence

nIZ[-i(t, N¥F) — 6(t;, V)P < [min;<ieaG ()2 K (0))CV(AE) = 0 as.

This implies that ERR()\}) is indeed well approximated by I;]‘R-IJ{()\,’Z‘ ), which together with
(7) yields the desired result.
It remains to prove the lemmas.

3. Proof of the lemmas.

PROOF OF LEMMA 1. Write ﬁﬁf{()\n) as
ERR(\,) = n7' 32 {0_i(ts \a) — [G(8:)/Gi(t)18(8; Ns)
+ [G(£:) /G0t Na) — 0(:)] + 0()[G(t:)/Gi(t;) — 11},
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then

ERR(\,) < 4n™ Sty [K(0) Y(£:)/Gi(t)P
® + 4sup.G*(8)/GH(:)In™" Te[6(t; ) — 8(8)P
+ 4[sup:(t)In! T: [G(t:)/Gi(t:) — 1%
To treat the first series on the right, note that
lim sup,_.n! Y%, Y?() < o a.s. under (A3), while
sup;[1/Gi(t:)] = 1/inf; 3oy K[(J = i)/nAa] — 0
if A, = 0 and n\, — . To handle the last term on the right in (8), observe that
n™' 3 [G(t:) — Gi(t:)F/G(t:) = K*(0)supi[1/GE(t:)] — 0.
To prove that the middle term on the right of (8) converges to zero, observe that
6(t; \a) = 0(t:) = Ai + B;
with
Ai =Gt Z; K((G — 6)/N)0(8) — 6(8:)
B = G(t)™ K ((t; — t)/\)e(t;).

By continuity of 6(.), A; — 0 uniformly in i, thus it suffices to show that n~!S =
n!'YiB}—0a.s.

Write
S =233 e(t:)e(tj)a; + Xi e*(t:)as, where

i<j

= Yk K[(tx — t)/N1K[(te — )/Xa]/GP ().
Then E(S — ES)* = 4 33, E[£*(t:)¢*(t;)]af; + X: E[e(t;)” — o°)%a% < const. }; ¥ ;af;.
Now, 0 < a; = K*0) El:CJx““’(tk), whence
n2Y; ¥, a; < const. [3, G7%(t,)]* < const. [n(nA,)"%]* = const. n™2\;"
Therefore if A, = n™ where o < Y4 then
P(n7'|S — ES| > ¢) < const. e72n72*

whence n:_LS — ES| — 0 ass., and so n7'S — 0 a.s. Combining the estimates above we
see that ERR(\,) — 0, provided A, = n™ with a < V4.

PrOOF OF LEMMA 2. The proof of Lemma 2 follows from the next two lemmas which
involve the following six conditions:

CoNDITION (i). Let ¥;= (n — 1) ¥,.: Y, &(n, ©) = n™* 3; [Y: = 6(t:)]e(t:), then
g(n, \) = g(n, ) uniformly in n, as A — o,

CONDITION (ii). g(n, ©) > 0asn— .

CONDITION (iii). Let Gy = Yo<)j 1<K (j/nN), 0-i(t;, \) = Gi* 3. K[(t — t:) /A1 Y(¢)),
and §(n, \) = n™* T; [0-i(&; \) — 0(2:)]e(t:), then

[&(n, A\) — g(n, \)| — 0 uniformly in n, as A — 0.
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CONDITION (iv). g(n, A\) = O uniformly in A < 1, as n — o,
CONDITION (v). g(n, \) — 0 as n — o, for any rational A > 0.

CONDITION (vi). For any given v, >v,>0, {g(n,\),n=1,2, - . -} is an equicontinuous
family of functions of A € [v,, v1].

LEMMA 2A. For any realization w, conditions (i) to (vi) imply that supie(o.« | g(n, N) |
— 0.

PROOF. Let ¢ > 0 be arbitrary. By (i) and (ii), there exist n,, v, such that n > n,, A >

T1=>18(n, M) | e
By (iii) and (iv), there exist ny, v such that n > ny,, A < vo=> |g(n, \)| <e.
By (v) and (vi), there exists ng such that n > n; = SUD)e[vo v | 8(1 A) | S e

LEMMA 2B. With probability 1, conditions (i) to (vi) hold simultaneously.

PROOF. First of all, it is easily verified that n™'2 | Y;|, n™'Ze(t;)? etc. converges a.s.
For (i) it is enough to check that limsup n7'2 | Y;| < 00 => | 6_,(¢;, \) — ¥;| = 0 uniformly
in n and i as A — . For (ii), g(n, ®) = n7'Y; [(n — 1) T,.: (0(8)) — 0(¢)]e(t:) +
nt Z; [(n — 1) 3. e(tj)])e(t:), and both terms can be shown to converge to zero by
calculating moments and agplying Chebyshev’s inequality, as done in the proof of Lemma
1. For (iii), note that §_; = 0_; if nA\ <i < n — n), so that

|§(n, )\) - g(n’ )\)I = [n_l zisn)\,orian—nx (é—i - é—i)zll/zln_l Zisnx,orizn—n)\ C(ti)zll/z'

With probability 1, the first factor is uniformly (in n) bounded, and the second factor is
uniformly (in n) convergent to zero as A — 0, since n™'Z¢(¢;)? — o2 a.s.

For (iv),
&(n, N) = n7'Z, [GY* X, K((j — i)/nN)6(t;) — 6(t)]e(t:)
+ 07 X [GYY Bo<ij-ii=mK((J = 1)/nN)e(t;)]le(t:).
Under the assumed continuity of 6, the first term clearly — 0 a.s. With
Zy = n7" Ticiivasn e(tiva)e(ty),

the second term in the above expression for g(n, A\) can be rewritten as G;'
Yo<ia)<nr K(a/n\)Z,, which can again be shown to converge to zero by calculating
moments and using Chebyshev’s inequality.

For (v), that this holds a.s. is trivial to verify.

For (vi), write

|6_ti, A1) — 6-i(ti, \o)| < Zjui | Y;|B; where
B = | G:(M)TK[(t — t:)/M] — Gi(AN)TK[(t; — t:)/A]|
= [GNMGN)]T i | KI(8 — )/ MK[(6 = )/
— K[(t; — t)/NK[( — t:)/N]|
= 2[GAM)Gi(N)] ™ (n = DI K|l cLip(K) | ATh — A3Y|

with || K| c and Lip(K) the sup-norm and the Lipschitz constant of K respectively. Hence,
for A1, A2 = v,, there is a constant C > 0 such that | B;;| < (C/ny¥)| A1 — 2|, V i, j. Hence

|é—i(ti, \) — é—l(ti, M) | = Cva?| M — M| (712 Y)]) - 0
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uniformly for n, i and A; = v, as X\, — A, (provided limsup n™'2 | Y;| < oo, which is true
a.s.). Finally,

lg(n, A1) — g(n, Ao)| = n™* 2 | 6-i(ti, A1) — 6-i(ti, Ao)| & — O

uniformly for A, = +,, as A\ — \;. This completes the proof.

ProoF oF LEMMA 3. We will show that, with probability 1, the supposition that
n\; — M < » for any subsequences 7 will contradict the definition of \*; so suppose
ﬁ)\z — M. Now 0_,-(t,-, )\Z) - Y(t,') = A,' + B,' with

A = G(t) [T - K — 6)/AD0(E)] — 0(t),
B = Gi(t:)7'[X - K((t; — t:)/N5)e(t;)] — e(t:).

It is clear that A; — 0 uniformly in i as n — «. By the same argument as in the proof of
condition (iii) of Lemma 2, we can replace G; by G,; hence for n =i and A = A},

n'Y,B2=n"1Tie(t)? — 207t T (8GR T —ii=nn i K((G — 1)/nN\)e(t;)]
+ 07 3 [Ziicismngei Dij-itsangoei GUK((j = ©)/n))
K((j" = 0)/nNe(t;)e(t;)]
=n"" Vi e(t:)® = 2 To<iai=m G K(a/nN)[n7" Ticivajizn e(tiva)e(t:)]
+ Yo<iai=mr GR2KXa/nA)[n7! Tisivaizn &(tiva)’]
+ Zo<tezm Do<iotsm G’K(a/nN)K(a’/n))

. [n_l 2 1sit+as=n,l<i+a’s=n e(ti+a’ )s(ti+a)]-

It is clear that 17! Yicitasnisita'sn €(tiva)e(tiva’) — 0 uniformly for a, o’ such that
—“M+1]sa+# o <[M+1].
But for 7i large enough AN} < [M + 1], so that along the subsequence 7,

nt 2,‘ B,2 — a2+ ¢? 205|a|sM Kz(a/M)[ZMIszM I{(‘]/M)]_2 > g2

Hence lim inf CV(A*) = lim inf n™! ¥; B? > ¢ But this contradicts the definition of \*,
since by Lemma 1 one can choose a deterministic sequence A, such that CV()\,) — o2 a.s.
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