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ELLSBERG REVISITED: A NEW LOOK AT
COMPARATIVE PROBABILITY

BY PETER C. FISHBURN

Bell Laboratories

Suppose you are given the opportunity of guessing whether it will snow
or not in Chicago next Christmas. If you guess correctly, you win $1,000; if
not, you win nothing. Which event, snow or no snow, would you bet on?

It is widely accepted among decision theorists that your answer reveals
which of the two events you deem more probable. Furthermore, if your choices
over a field of events obey certain postulates of coherency and consistency,
then there is a probability measure P on the field that reflects your choices:
you regard A as more probable than B if, and only if, P(A) > P(B).

Numerous experiments have shown that people often violate those postu-
lates, so they lack full descriptive validity. Moreover, because of systematic
and persistent violations of one of the postulates—an independence axiom—
the theory has been questioned on its normative adequacy as a guide to well-
reasoned judgments and choices.

The purpose of the present paper is to examine a weaker set of postulates
that avoids the independence axiom as well as the usual assumption of fully
transitive preferences. Despite this weakening, the assumptions imply that
there is a unique normalized functional .p on pairs of events that preserves
choices in the sense that A is more probable than B if, and only if, p(A, B) >
0. The functional p has several nice mathematical properties, including
“conditional additivity,” that reflect vestiges of numerical probability, and it
is related to the conventional measure P by p(A, B) = P(A) — P(B) when
the omitted independence axiom is coupled to the other postulates.

1. Introduction. The aim of this paper is to present an axiomatization of compar-
ative subjective probability that is based on comparisons between simple decisions, in the
manner of Ramsey (1931), de Finetti (1937) and Savage (1954); uses calibration by
canonical lotteries or extraneous scaling probabilities, as in Anscombe and Aumann (1963),
Pratt, Raiffa and Schlaifer (1964), and Fishburn (1967); resolves Ellsberg’s (1961) para-
doxes; employs only axioms that are defensible postulates of consistency and coherence,
but does not presume that binary comparisons are transitive or that they satisfy conven-
tional additivity (linearity, independence) axioms; accounts for the possibility that com-
parisons between events may not be separable in the events; and yields an exact numerical
representation of comparative probability that is “conditionally additive.” The axioms
might be viewed as relaxations of those used previously by Anscombe and Aumann, or
Pratt, Raiffa and Schlaifer that, because they invoke neither transitivity nor additivity,
accommodate judgmental behaviors that violate these traditional postulates, yet neverthe-
less admit a precise numerical measure that preserves the binary relation of comparative
probability. ‘

In contrast to the conventional representation

(1) A>*B e P(A) > P(B),

where >* (“ is more probable than”) is a binary relation on an algebra 27of events A, B,
--- and P is a finitely-additive probability measure on <7 the representation for the new
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axiomatization yields

(2 A>*B e p(A,B) >0,

where p is a real-valued function on &/ X < that is
monotonic: A 2 B = p(A, B) = 0,
skew-symmetric: p(A, B) = — p(B, A),
conditionally additive: AN B =0 =

3) p(A U B, C) + p(&, C) = p(A, C) + p(B, C),
and is normalized against the universal event Q and the empty event & by
p(Q, D) =1.

When C = @ in (3), p(Q, C) vanishes and p(., J) on &7 is a conventional probability
measure. :

Note also that the new representation implies p(A, C) = p(B, C) when A D BD C
since, with D = A\B,

p(4, C) = p(B, C) = p(D U B, C) — p(B, C)
=p(D, C) + p(B, C) — p(9, C) — p(B, C)
=p(DUCC)=0

by (3), skew-symmetry, and monotonicity. Other implications, including the fact that the
absolute value of p(A, B) never exceeds 1, are discussed in Fishburn (1983).

The essential difference between the new representation and (1) is the nonseparability
of A and B in (2). This reflects the position that a comparison between two events may
involve an unbreakable linkage or association between them. Or, to put it differently, the
ways one views A within the comparisons of A versus B and A versus C may be quite
different, especially if B and C are qualitatively unlike. This will be illustrated shortly.

The rest of the paper is organized as follows. The next section reviews Ellsberg’s two
main examples, observes how (1) fails there, then shows how (3) offers a plausible model
for the predominant judgments in the examples. Section 3 develops the structures used in
our theory and summarizes its axioms. Section 4 presents the main representation-
uniqueness theorem, which includes the specialized aspects of (2) and (3). The final section
shows how the representation is affected when the assumptions it avoided, namely
transitivity and linearity, are restored. For example, the addition of a simple linearity
axiom implies that p can be decomposed as

r(A, B) = P(A) — P(B),

so that (1) then follows from (2).

It should be noted that (1) and similar representations of subjective probability have
been axiomatized directly in terms of >* on o7 without recourse to the calibration device
used here. Kraft, Pratt and Seidenberg (1959) give necessary and sufficient conditions for
(1) when < is finite (see also Scott, 1964), and Suppes and Zanotti (1976) do the same
thing for arbitrary &/ under an extended structure. Other axiom systems sufficient for (1)
and close relatives are provided by Koopman (1940, 1941), Savage (1954), Villegas (1964,
1967), Luce (1967, 1968), Fishburn (1969, 1975), Fine (1971, 1973), Niiniluoto (1972),
Roberts (1973), Narens (1974) and Wakker (1981). The lottery-based theories of Pratt-
Raiffa-Schlaifer and others are reviewed within the setting of subjective expected utility
in Fishburn (1981).

Finally, since the conception of personal probability set forth by Ramsey, de Finetti,
and Savage was designed in part for a normative theory of decision making in the face of
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uncertainty, it is natural to wonder how the latter would be changed by the revisions
proposed here. I regard this as a subject for further investigation and shall defer comment.
However, recent analyses of nonlinear utility theories for risky decision making by Chew
and MacCrimmon (1979), Chew (1983), Machina (1982) and Fishburn (1982c) indicate
possible directions this work might take.

2. Ellsberg’s examples. Ellsberg’s classic paper (1961) on what can go wrong with
the conception of subjective probability set forth by Ramsey, de Finetti, and Savage used
two main examples to illustrate the difficulties. I shall present these in slightly modified
form, then show how the new conception accommodates their supposedly contradictory
judgments. I shall not try to summarize Ellsberg’s own analysis of the matter since it is
far-ranging and deserves to be read in the original, as does Raiffa’s comment (1961).

EXAMPLE 1. An urn contains 100 balls: 25 are marked R1, 25 are marked B1, and the
other 50 are marked R2 and B2 in an unknown proportion. An individual is to compare
options concerning the identity of a ball to be chosen at random. We suppose that he has
no reason to believe that the R2/B2 proportion is more in favor of one designation than
the other. Four options that correspond directly to the four designations are

ri: win $1000 if chosen ball is R1, nothing otherwise;
b,: win $1000 if chosen ball is B1, nothing otherwise;
re: win $1000 if chosen ball is R2, nothing otherwise;
by: win $1000 if chosen ball is B2, nothing otherwise.

Following the usual decision-oriented conception of subjective probability, we assume that
a definite preference for one option over another means that the individual regards the
event of the first that returns $1000 as more probable than the event of the second that
returns $1000. Similarly, if he is indifferent between two options, he regards their paying
events as equally probable. .

As before, >* indicates “is more probable than,” and we shall let —~* denote “is equally
probable as.” It is not unusual for a person to be indifferent between r; and b,, and between
r; and b, and also to prefer r, to r; and b, to b,. Suppose this is true of our individual, so
that

R1 -* B1, R2 -* B2, R1>* R2, Bl >* B2.

The qualitative differences suggested earlier arise here from the specificity of R1 and Bl
(25 balls each) versus the ambiguity of R2 and B2 (50 balls total, in unknown proportion),
as noted by Ellsberg (1961) and Sherman (1974), among others. The comparison of R1
and B1 involves two quite specific events, whereas the comparison of R1 and R2 pits a
specific against an ambiguous event.

Since the preceding list of «* and >* statements is consistent with (1), consider a

further comparison between.

1: win $1000 if chosen ball is R1 or B1, nothing otherwise;
2: win $1000 if chosen ball is R2 or B2, nothing otherwise.

Since these involve the same number of balls, we presume they are indifferent, so that
R1 U B1 -* R2 U B2,

Although there is no inherent contradiction when this is added to the preceding list, the
final three statements violate (1), which would require P(R1) > P(R2), P(B1) > P(B2)
and P(R2) + P(B2) = P(R1) + P(B1). Addition and cancellations leave 0 > 0. Conse-
quently, if P exists at all, it cannot be additive.
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EXAMPLE 2. In this example the urn contains 90 balls: 30 are red; the other 60 are
black and yellow in unknown proportion. The relevant options are

r: win $1000 if Red is chosen, nothing otherwise;

b: win $1000 if Black is chosen, nothing otherwise;

ry: win $1000 if Red or Yellow is chosen, nothing otherwise;
by: win $1000 if Black or Yellow is chosen, nothing otherwise.

Many individuals prefer r to b and by to ry, both of which suggest a preference for greater
specificity. These give R >* Band BU Y >* R U Y, which are inconsistent with (1) since
it would require P(R) > P(B) and P(B) + P(Y) > P(R) + P(Y). Ellsberg notes that
this example provides a direct violation of Savage’s independence axiom or so-called sure-
thing principle.

Other examples of a related nature have been discussed by Allais (1953), MacCrimmon
(1968), and Slovic and Tversky (1974), among others. Collectively, they demonstrate
persistent and systematic violations of the type of independence and linearity axioms
needed for (1) and related expressions in expected utility theory. It is also possible to
construct situations in which transitivity is often violated, as shown by Tversky (1969).

To show how the representation of (2) and (3) provides a resolution of Ellsberg’s
examples, we note the following corollary of that representation: If A,, - - -, A, are pairwise
disjoint events, and similarly for By, -- -, B, then

p(Ui A, UL B)) :
=Yk X p(4;, B)) — (m — 1) T p(Ai, @) + (n — 1) X1 p(B;, D).

This will be proved during the proof of Theorem 1 in Section 4. Because of (4), we need
only specify p for the most elementary pairs of events at issue.

Possible specifications for Examples 1 and 2 are shown in Table 1. The entry in the
row labeled A and the column labeled B is p(A, B). By prior specification, the matrices
are skew-symmetric (we omit the last row, for &), and the entries in the & column are
nonnegative and sum to unity.

According to (2) and (4), the matrix for Example 1 gives R1 -* B1, R2 -~* B2, R1 >*
R2, R1>* B2, B1 >* R2, B1 >* B2, R1 U B1 -* R2U B2, R1 U B2 -* B1 U R2 and R1
U R2 —«* B1 U B2. These include the given statements listed earlier in the example. The
computations involving (4) are

o(R1 U B1, R2 U B2) = p(R1, R2) + p(R1, B2) + p(B1, R2) + p(B1, B2)
— p(R1, @) — p(B1, @) + p(R2, @) + p(B2, D)
= 4(0.03) — 2(0.28) + 2(0.22) = 0,
p(R1 U B2, B1 U R2) = p(R1, B1) + p(R1, R2) + p(B2, B1) + p(B2, R2)
‘ — o(R1, @) — p(B2, @) + p(BL, @) + p(R2, @)
=0+ 0.03 — 003 +0— 028 — 022 + 0.28 + 0.22 = 0,

and similarly for p(R1 U R2, B1 U B2).
The p matrix for Example 2 gives R>*B,R>*Y,B-* Y, RUB-*RUY,BUY
>* RU Y, and BU Y >* R U B, which are consistent with the judgments in the example.
We conclude this section with a further remark on Example 2 that is suggested by
Raiffa’s analysis (1961). Suppose that, instead of the simple options of the example,
namely r, b, ry and by, we consider a comparison between the following even-chance
gambles on pairs of options:

I. r with probability ¥ or by with probability Yz;
II. b with probability /2 or ry with probability Ye.

4)
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TABLE 1
Values of p(A, B).
R1 B1 R2 B2 (%}
EXAMPLE 1 R1 0 0 .03 .03 .28
B1 0 0 .03 .03 .28
R2 -.03 —-.03 0 0 22
B2 -.03 -.03 0 0 .22
1.00
R B Y (7]
EXAMPLE 2 R 0 .02 .02 .38
B -.02 0 0 31
-.02 0 0 31
. 1.00

Since r is preferred to b, and by is preferred to ry, a conventional dominance axiom says
that gamble I ought to be preferred to gamble II. However, the gambles are equivalent in
the sense that, regardless of which ball might be drawn, each has probability % of yielding
the $1000 prize. Therefore, another axiom, for equivalence, suggests that the only sensible
thing is indifference between gambles I and II.

Consequently, so long as we stick with the initial preference of r over b and by over ry,
either the conventional dominance axiom or the equivalence-indifference axiom must be
avoided. In fact, the axioms proposed in the next section include equivalence-indifference
but not conventional dominance—which is closely related to typical linearity axioms—
and thus our theory will require indifference between gambles I and II in the preceding
illustration.

3. Axioms. Let Q be a nonempty set, o/ a Boolean algebra of subsets of ?, and G
the set of gambles on o

G={f: /[0, 11:f(A)
> 0 for no more than a finite number of A € o7 2., f(A) = 1}.

We interpret states w € Q and events A € o7 in the sense of Sa&rage (1954). We inter-
pret gamble f € G as an option that yields a prize or valued object V with probability
Z{f(A) :w € o/} when state w obtains (is the true state) and yields nothing with
complementary probability 1 — Z{f(A) :w € A} when w obtains, for each w € Q.
Alternatively, f can be viewed as follows: first, an A € o/ is “chosen” according to the
probabilities f (A); given the chosen A, f yields V if the true state is in A and yields nothing
otherwise. Readers who are disturbed by the implied use of numerical probability so
directly when our objective is to axiomatize a version of subjective probability, might wish
to view the numerical values as areas of the unit square—as in the canonical lotteries of
Pratt, Raiffa and Schlaifer (1964), or as probabilities for events associated with a random
mechanism (roulette wheel) about which there would be no disagreement.

The set of gambles is convex since A\f + (1 — A\)g €E Gwhen f, g € Gand X € [0, 1]. The
degenerate gamble that assigns probability 1 to A € o7 will be denoted f4. According to
previous discussion, we shall interpret A as subjectively more probable than B when f, is
preferred to fz. The following convex combinations of degenerate gambles have the
indicated interpretations according to the preceding paragraph:

Yo fa + Y fq: if A obtains, get V with_ pr. 1,
if A does not obtain, get V with pr. Yz
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Aa + (1 — X\)fg: if A\B obtains, get V with pr. A,
if B\A obtains, get V with pr. 1 — A,
if A N B obtains, get V with pr. 1,
if Q\(A U B) obtains, get V with pr. 0.

Our axioms concern the behavior of a binary relation > (“is preferred to”) and its
induced relations - (“is indifferent to”) and = (“is preferred or indifferent to”) on G,

where

f-g ifnot (f>g) andnot (g>f)
fzg if f>g or f-g.

There are six axioms. The first three, which are the same as the basic axioms for nonlinear
measurable utility in Fishburn (1982a), take no special regard of o as a set of events.
The next two axioms, which are universally adopted in the events context, lead to the
subjective probability interpretation. The final axiom is the equivalence-indifference
axiom. For convenience, we omit the universal quantifiers, noting here that the axioms
apply to all £, g, h € G, all A strictly between 0 and 1, and all A, B € &/

AxXioM 1. Iff>gandg> htheng - af + (1 — a)h for at least one « € (0, 1).

AXiIoM 2. Iff>gandfZ h,then f>Xg+ (1 — Nh; ifg > fand h = f, then \g +
A=MNh>f,iff-gandf-h,thenf- g+ (1 — \)h.

AXIOM 3. Iff>g,g>h,f>handg—-Y2f+ % h,then \f+ (1 —Nh-Y2f+ % gif
andonly if \h+ (1= N)f-Yeh+ Y2 g.

AXIOM 4. fo> fo.

AxioM 5. IfA D Bthenfa = fp.

AxioM 6. If Z{f(C) :w € C} =2{g(C) :w EC} forallw € Q, thenf - g.

Axioms 4 (nontriviality) and 5 (monotonicity) require no comment. Axiom 6 asserts
that if f and g have the same probability of yielding prize V in every possible state, then f
and g will be indifferent. It is not quite transparent since equivalent f and g could look
different on the surface, but it is a compelling consistency principle.

The first three axioms are, respectively, conditions of continuity, dominance, and
symmetry. Axiom 1, familiar from expected utility, says that some nontrivial convex
combination of f and h will be indifferent to any third gamble that lies between them by
>. Axiom 2 retains some of the flavor of the conventional dominance axiom mentioned at
the end of the preceding section, but it is limited by having one gamble, f, on the same
side of the relational statements. For example, if you prefer f to both g and h, you will
prefer f to any convex combination of g and h.

Axiom 3 is a special case of the following symmetry principle. Suppose > is transitive
on {f, g, h} with f > g > h, and that g is midway in preference between f and h, so that g
— Y2 f + Y2 h. Then an indifference between any two convex combinations of f, g and h
will remain an indifference when f and h are interchanged throughout. When we make
this interchange in A\f+ (1 = AN)h - Yo f+ Yo g, weget \h+ (1 —A) f-Yeh+ Y2 g as in
the statement of the axiom. In geometric language, one can visualize f and h as “equally
distant” from but on opposite sides of g: the interchange of f and h in a “balance equation”
for - preserves the balance of —.
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Potential axioms not included among our six fall into two sets according to whether
they are implied by the six. The following are implied by Axioms 1 through 6:

asymmetry: if f > g then not (g > f);

monotonicity: if f>gand1=a>8=0,thenaf+ (1 —a)g>0f+ (1 —8)g;
unique continuity: if f > g > h then g - af + (1 — a)h for exactly one a € (0, 1);
statewise dominance: if Z{f(A) :w € A} = Z{g(A) :w € A} forall w € Q, then f = g.

The first three are implied by Axioms 1 and 2; the fourth is a special case of Savage’s
sure-thing principle (1954, pages 21-22).
The following are not implied by Axioms 1 through 6:

transitive indifference: if f -~ g and g - h, then f < h;

transitive preference: if f > g and g > h, then f > h;

linearity: if f - gthen Vo f+ V2 h - Y2 g + Y2 h;

linearity: if f>gand 0 <A< 1,then \f+ (1 = AN)h>Xg+ (1 = N)h;
additivity: if f4 > fg and C N (A U B) = & then fauc > fauc.

We shall return to these in Section 5.

Of our six basic axioms, the one most vulnerable to criticism seems to be Axiom 2. Its
problems are not unlike the difficulties in Ellsberg’s examples caused by specificity versus
ambiguity. For a simple illustration, suppose an urn contains 100 Black and Red balls in
unknown proportion. Let f = V2 fo + Y2 fq, so f yields prize V with probability 2 regardless
of which ball is drawn. Also let fz(fz) yield V if the drawn ball is Black (Red), and nothing
otherwise. The preceding section suggests that some people will have f > fp and f > fz.
These require f > VY fg + V2 fr by Axiom 2. But, since Y2 fg + /2 fg yields V with probability
1/, regardless of which ball is drawn, Axiom 6 requires f — Y2 fg + Y2 fr. Consequently, if
both Axioms 2 and 6 are to hold, the only sensible comparisons for f versus fg and fz are
f - fs and f - fz. But we might wish to admit the triple {f > fs, f > fz, f = V2 fa + V2 fz} as
a reasonable set of judgments and retain Axiom 6 while dropping Axiom 2.

The main casualty of the new representation caused by omission of Axiom 2 would be
conditional additivity (3), which can be viewed as a first-order generalization of regular
additivity. I presently regard the problem of how best to proceed in the absence of Axiom
2 as an interesting open problem.

4. Main theorem. Our main representation theorem involves a functional p on G X
G. By definition, p is skew-symmetric if p(f, g) = —p(g, f) for all f, g € G, and bilinear if it
is linear separately in each argument:

p(Mf + (1 = N)g, h) = Mo(f, h) + (1 = N)p(g, h)
p(h, Mf + (1 = A)g) = Mo(h, f) + (1 = Mo(h, ).

Ifpis skew-syrhmetric and linear in its first argument, then it is obviously linear in its
second argument. Because of our interest in comparative probability, we extend p to
of X o/ by the definition :

p(A, B) = p(fa, f5).
In addition, we define >* on < by
A>*B e fo>fa.
THEOREM 1. Axioms 1 through 6 hold if, and only if, there is a unique skew-symmetric
bilinear functional p on G X G such that, for allf, g € G, -
®) f>ge o(f,8) >0,
and such that p on &7 X o/ is monotonic, conditionally additive as in (3), has p(Q, D) =1,
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and for all A, B, € < satisfies
(2) A>*Be p(A, B) > 0.

PrOOF. By Theorem 1 in Fishburn (1982a), Axioms 1, 2 and 3 hold if and only if
there is a skew-symmetric bilinear functional p on G X G that satisfies (5) for all f, g € G,
and such a p is unique up to a similarity transformation p — ap (a« > 0). By Axiom 4,
0(Q, @) = p(fa, fo) > 0. We fix the scale unit of p by setting p(Q, &) = 1, so that p is
uniquely determined by this normalization. Axiom 5 implies that p is monotonic on &7 X
o and (2) is immediate from (5). Axioms 4 and 5 are clearly necessary for the represen-

tation of the theorem.
Suppose Axiom 6 holds, A, B,CE€ o/ and A N B=. Let

f =13 fAug +Ysfot+sfe, g=1s fA + Y3 fB + 4 fe.

Then f and g satisfy the hypothesis of Axiom 6, so that f < g. Therefore o(f, g) = 0 by (5)
and the definition of —. Bilinearity applied to p(f, g) gives

© p(AUB, A) + p(AUB,B) + p(AU B, C) + p(D, A) + p(D, B) + p(2, C)
+ o(C, A) + p(C, B) + p(C, C) =0,
with p(C, C) = 0 by skew-symmetry. In addition, when
f'="fas+2fe, 8 =Y2fa+ Y2 fs,
Axiom 6 implies f' - g’,s0 p(f’, g’) = 0 and
p(AUB, A) + p(AU B, B) + p(9, A) + p(3, B) = 0.

When applied to (6), this leaves (3) in view of skew-symmetry. Thus p on &/ X o7 is
conditionally additive, and the sufficiency proof is complete.

Assume henceforth that the representation of Theorem 1 holds. We prove (4) before
verifying Axiom 6. Let {A,, ---, A,} and {B,, .-, B,} be nonempty sets of pairwise
disjoint events in </ Then repeated applications of (3) and skew-symmetry give (4) as
follows:

p(U A;, U Bj) = p(A;, U B;) + p(Ui=2 A, U Bj) + p(U B;, D)

= Y p(A;, U Bj) + (n — 1)p(U B;, @)
=3 [Xin(Ai, Bj)) — (m — 1)p(A;, D)] + (n — 1) ¥; p(B;, D).

To verify Axiom 6, assume that f and g satisfy its hypotheses. If either f or g is fz, then
so is the other, and the conclusion of Axiom 6 holds since p(fz, fz) = 0. Assume henceforth
that neither f nor g is fz. Let Ay = By = &, let A/’s be the nonempty events where f(A;) >
0,fori=1, .--, n, and let B/’s be the nonempty events where g(B;) >0, forj=1, ---, m.
Also let

ai=f(Ai)y i=091""9n7 SO Ziai=ly
Bi=g(Bj)7 ]=07 ]-7""m9 Y Ziﬁj=l'

All o; and B; are positive, except perhaps «, and f,.
Since the A; and B; need not be pairwise disjoint, we shall let {C;, --., Cn} be the
smallest family of nonempty and pairwise disjoint subsets of Q in 27 such that each A; for
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i = 1 and each B; for j = 1 is the union of one or more Cy. Let
a = |{k:C. C A}, i=21,
b= {k:C S Bj}|, j =1,
and, by the hypotheses of Axiom 6, for each C; and w € C, let
me = 2{f(A) 1w € Ai} = Tiapce, i = 218(B)) w € B;} = Y520, B;.

By prior interpretation, =, is the probability of winning prize V if either f or g is used,
when the true state is in C;. Using bilinearity, skew-symmetry, and (4), we get

o(f, 8) = Xio Lt aiBip(Ai, B))
= Bo Xim1 aip(Ai, @) — a0 X1 Bip(Bj, D) + Tz Ljz1 i
* [Zewca Zewes, p(Cr, C) — (b — 1) Teyea, p(Cr, D) + (i — 1) Teyes, p(Cr, D)]
= B0 Zhs 7u0(Ca, D) — a0 Zho 700 (Ch, D) '
— Yj=1 Bilbj — 1) Xiz1 Ycuca; @ip(Cr, D)
+ Y21 ai(@; — 1) ¥jz1 Xeues, Bin(Cr, D)
+ Yisk<n=n P(Cr, Cu)[Ticyca; @i Tjcyes; B — Tic,ca; i Ljc,cs; B
= S #(Co, DBoms = ctomi = Timn Byl = Vi + Tims s — D]
+ Yie<n p(Cry Cp)lmemn — whms]
= Lk mp(Ch, D) Ljzo Bj = Zizo & + Tz iti — L= Bibj]
= Tk mp(Ch, D0 + Thor 7 — Ty mal
=0,
and therefore f — g by (5). This verifies Axiom 6, and the proof is complete. [
The preceding proof reveals that Axiom 5, the monotonicity axiom, plays no role in
Theorem 1 except to ensure that p on 2/ X o/ is monotonic. The theorem remains valid

if Axiom 5 and monotonicity for p on 27 X 2/ are simultaneously deleted.
Suppose Q@ = {w;, - -+, w,} and 27 is the set of all subsets of Q. Let

pi=p(wi$®)$ i=1,"'7n
and
Pij = p(wi, wj)$ i, ] € {1’ R} n}7

with p; = 0 and Y p; = 1 by normalization. Then, given Theorem 1, p on 2/ X 2/ can be
computed from (4):

p(A, B) = Yiea Yjes pij — (| B|=1) Tiea pi + (|1A] = 1) Yjen pjs
and p on G X G can be computed from p on o/ X </ with the use of bilinearity:
(3 aifan T Bife) = Ti Ti aibolAi, By).

This yields a “valid” representation so long as monotonicity holds [A 2 B = p(A, B) = 0]
since conditional additivity is implied by (4). To prove the latter claim, recall that
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conditional additivity (3) requires
p(AU B, C) + p(3, C) = p(A, C) + p(B, ()
when A N B = @. By the preceding form of (4), and A N B = &,
p(AU B, C) + p(, C)
= Yieaus Lrec pik — (1C| — 1) Tieavs pi + (|A U B| — 1) Trec ok — Zkec pr
= Yiea Lrec pir + Tjer Lrec pjk — (IC] = 1) Tiea pi = (1C| — 1) Tjen p;
+ Zrec pe(|A] =1+ |B| = 1)
= p(4, C) + p(B, C).

Consequently, any p; that are nonnegative and sum to 1, along with any p;; that are skew-
symmetric, are suitable for the representation if they do not violate monotonicity.

Determination of the p; and p;; for the finite-states case can be made with appropriate
indifference comparisons. In the simple two-state situation, Q = {w;, w,}, if w; >* w, then,
when « and 8 satisfy

afu, + (1 — a)fo = fu,
and
B + (1 = Bfo = Yo fuy + Yo fo, (B =< a)

we have apis = (1 — a)ps and Bpi12 + Bp1 = (1 — B)p2. These two equations and p; + p =1
yield

__a-—8 _ af _ _(Q-a)p
P a—B+ap T a-B+ap T a—B+ap

If w; —=* w, then p;, = 0 and, with 3 as specified above,
p=1-8andp, = 8.

Determination of the p; and p;; for larger states cases follows a similar procedure.

5. Transitivity and linearity. The theory sketched in the preceding sections has
both descriptive and normative relevance. Its main descriptive weakness is surely the
implication of precise measurement since real judgments are often vague or imprecise in
ways not captured by the axioms. But the axioms seem likely to hold to a fair approxi-
mation in many situations. If systematic violations can be demonstrated, as with inde-
pendence or linearity in the examples of Ellsberg and others, the most likely form they
will take is'probably the form illustrated at the end of Section 3.

The normative sense of the axioms should be clear from previous comments here and
from discussions by Ramsey, Savage, and others. Each axiom has a defensible claim as a
guide for well-reasoned judgment or choice. The theory’s main normative weakness for
some will be that it does not go far enough, especially since it embraces neither transitivity
nor additivity as a normative principle. Of the two, I regard additivity or linearity as less
suited for normative status than transitivity, even though I no longer understand why
transitivity deserves the place often accorded to it as an unassailable rule for rationality.

In any event, I shall conclude with two theorems that show what happens when
transitivity and then linearity are coupled to Axioms 1 through 6.

THEOREM 2. Suppose the representation of Theorem 1 holds and - on G is transitive.
Then > on G is transitive and, for all A, B € </,

(7 p(A, B) = p(A, D)p(Q, B) — p(B, D)p(Q, A)
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and
(A, D) > o(B, @)
p(A, @) + p(Q, A) ~ p(B, D) + p(Q, B)’

(8) A>*Be

PROOF. Transitivity of > follows from transitivity of -, and Axioms 1 and 2, as in
the proof of Proposition 1 in Fishburn (1982a). The rest of the proof follows the approach
of the proofs of Lemma 3 and Theorem 3 in Fishburn (1982b) for “closed” >. When a, b,
r, ¢ and x in those proofs are respectively set at 1, 1, Q, @ and &, and w and u are defined
on G by

w(f) = olfe, f) + o(f, fo), u(f) = p(f, fo),
both w and u are linear and o(f, g) decomposes as
o(f, &) = u(flw(g) — u(@w(f)
= po(f, fo)lo(fa, 8) + p(&; fo)] = p(8, follelfa, ) + o(f, fo)]
= o(f, fo)o(fa, 8) — p(&, fo)o(fa, f)-
When f = f4 and g = f5, this and (2) give (7) and (8). 0
Although o(f, g) is not displayed in Theorem 2, bilinearity and (7), or the preceding
equality in the proof, give
p(T aifas T Bifg) = [T aip(Ai, DT Bin(2, B)] — [ Bin(B;j, DT aip(2, Ai)].

Moreover, the ratios in (8) are the \’s in indifference statements such as f4 — Ao +
(1 — N)fz since this is tantamount to Ap(2, A) = (1 — A)p(4, D), or to A =
o(A, D)/ [p(A, D) + p(Q, A)].

The linearity condition of Herstein and Milnor (1953) will be used in our final theorem:

9) Vg heEG: iff~gthenef+Yoh ~Yoeg+ Y2 h.
THEOREM 3. Suppose the representation of Theorem 1 holds along with (9). Then —
and > on G are transitive and, for all A, B € <,
p(4, B) = p(A, @) — p(B, 9),
and (1) holds with P(A) = p(A, D).

ProoF. The proof of Proposition 1 in Fishburn (1982a) shows that full transitivity is
implied by (9) and Axioms 1 and 2. Since Q@ >* @ and Q Z* A =* O, there is a unique \

for A € o/ such that
, fa = Mo+ (1 = Nfe.
Then, by two applications of (9),
Yo fa+ Yo fo = Yo IMa + (1 = Nfol + 2 fo,
Vofa+ e fa e M+ (1= Nfol + % fo

The representation of Theorem 1 yields the following from the three preceding indifference
statements:

Ao(Q, A) + (1 — N)p(D, A) =0
Ao(Q, A) + (2 = N)p(D, A) + A =0
1+ Np(Q, A) + (1 = Mp(D, A) — (1 —)) =0.
The first two of these imply that p(A, &) = A, and the first and third imply that
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p(Q, A) =1 — \. Therefore
p(A, D)+ p(Q,A)=1 forall A€ o/
The use of this in (7) and (8) completes the proof of Theorem 3.0
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