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The theory and application of the Cox (1972) failure time regression
model has, almost without exception, assumed an exponential form for the
dependence of the hazard function on regression variables. Other regression
forms may be more natural or descriptive in some applications. For example,
a linear relative risk regression model provides a convenient framework for
studying epidemiologic risk factor interactions. This note uses the counting
process formulation of Andersen and Gill (1982) to develop asymptotic distri-
bution theory for a class of intensity function regression models in which the
usual exponential regression form is relaxed to an arbitrary non-negative twice
differentiable form. Some stability and regularity conditions, beyond those of
Andersen and Gill, are required to show the consistency of the observed
information matrix, which in general need not be positive semidefinite.

1. Introduction. In arecent paper Andersen and Gill (1982), hereafter referred to as
AG, apply some powerful results on the asymptotic behavior of stochastic integrals with
respect to martingales in order to derive sufficient conditions for the consistency and
asymptotic normality of the Cox (1972, 1975) maximum partial likelihood estimator. Their
results are general enough to allow locally bounded stochastic time-dependent covariates
and to include certain multivariate failure time problems.

In the notation of AG, (2, &, P) is a complete probability space and { %, t € [0, 1]} is
an increasing right-continuous family of sub ¢-algebras of % that includes failure time and
covariate histories to time £, and censoring histories to ¢*. The multivariate counting
process N = (Ny, ---, N,) is such that N; counts failures on the ith subject at times
t € [0, 1] at which the subject is under observation. N; is required to have totally
inaccessible jump times and N;(1) is almost surely finite. The censoring process Y =
(Yi, ---, Y,) is defined so that Y;(¢) = 1 if the ith subject is under observation at time ¢
and Y;(¢) = 0 otherwise. Most questions of interest concern the relationship between
failure rate and the histories of some “basic” covariate process. Let Z' = (Z1, ---, Z,)
denote covariate processes such that Z/(t) = {Z;1(¢), -- -, Z;p(t)} consists of data-analyst-
defined functions of the basic covariate histories or the counting process histories up to
time ¢ (or even functions of the censoring process). Of course, N, Y and Z are assumed
adapted to { £, t € [0, 1]}.

This counting process formulation permits each N; to be uniquely decomposed into the
sum of its cumulative intensity process A; and a local square integrable martingale M;, so
that

(1.1) Ni(t) = Ai(®) + Mi(2)

for all (¢, 7). The increasing process A, is, for convenience, taken to be absolutely continuous,
giving

Ai(t) = j Ai(u) du.
0
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The intensity process A = (A, - - -, A,) under some regularity (e.g., each A; bounded by an
integrable random variable, Aalen, 1978) can be written

(1.2) Ai(¢) = limglimpoh 'P[Ni(s + k) — Ni(s) = 1| %].

In fact, under usual assumptions concerning the independence of the censoring mechanism
and the independence of failure times on distinct study subjects A; will have a standard
“hazard function” interpretation.

AG model the intensity process, in the manner of Cox (1972), by setting

(1.3) Ai(t) = Yi(t)ho(t)exp{BoZ:i(t)}, i=1, .-, n.

In order that martingale convergence result apply, Y; and Z; are required to have sample
paths that are left-continuous with right-hand limits (and so to be predictable and locally
bounded). Note that Z;(¢) may involve functions of covariate measurements at time s < ¢
but not at time ¢ itself (see Self and Prentice, 1982 for an elaboration of this point and for
a presentation of possible underlying partial likelihood functions).

Under these conditions the martingale property (1.1) is shown by AG to yield general
and conceptually simple derivations of the asymptotic distribution theory for the maximum
partial likelihood estimator ,é and related random variables. The estimator B is defined as
a solution to d log L(B, 1)/48 = 0 where

(14) log L(B,t) = Yi J B’Zi(s) dN;(s) — J log[¥i-1 Yi(s)exp{B'Zi(s)}] dIV(s),
o (N

and N=N;+ :-- + N,.
In this note, corresponding asymptotic distribution theory is developed for a more
general class of intensity function regression models given by

(1.5) A(®) = Yi(®)ho(B)r{BoZ:(t)}

all (¢, i), where r: Z — 2 is some fixed twice continuously differentiable function. An
additional condition is necessary to ensure the positivity of r{8°Z;(t)} for B in some
neighborhood of B, for each i = 1, - .., n. A sufficient requirement is simply r(w) > 0, w
€ 2, but this condition is too strong to permit inclusion of regression model forms of
particular interest, such as the linear form r(-) =1 + (.). A weaker positivity requirement
for r is introduced below (Condition F'). The partial likelihood argument leading to (1.4)
(see Self and Prentice, 1982) is unaffected by this relaxation of intensity model form and
yields a maximum partial likelihood estimator 8 that is a solution to 4 log L(8, 1)/68 = 0,
where, now,

t

log L(B, t) = E’=1f log r{B'Z;(s)} dN(s)
(1.6) i 0

- f log[Y%1 Yi(s)r{B’Zi(s)}] AN(s).
o

A number of authors have noted that an exponential form for the hazard (intensity)
function’s dependence on covariates may not be the best choice in specific applications.
Cox (1981) points to this topic as one meriting careful attention. The linear intensity
function model, r(-) = 1 + (-), provides particular motivation for the generalization (1.5).
For example, a linear (polynomial) relationship between the incidence rates for certain
types of cancer and radiation exposure level is often taken to be a consequence of biological
models for the effect of radiation on individual cells. Daffer, et al. (1980) develop asymptotic
distribution theory for the special case of a single fixed (time-independent) exposure
variable and a polynomial relative risk function having non-negative coefficients. A linear
relative risk model also provides a natural framework within which to assess departures
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from an additive relative risk model when two or more risk factors are studied in relation
to the incidence of a disease (e.g., Thomas, 1982; Prentice, et al, 1983). Aalen (1980)
considers asymptotic distribution theory for a less flexible model in which the entire
intensity process (rather than just the relative risk) is modeled as a linear function of
covariates.

2. Asymptotic distribution theory. Asymptotic distribution theory for A from (1.6)
involves the limiting behavior of log L(B, t) — log L(Bo, t) and its first and second
derivatives with respect to 8 and the limiting behavior of the “score” statistic variance
matrix. The following processes arise in their consideration:

SO, t) =n'Y Yi)r{B'Z(t)}

SU(B, &) = aS(B, /08 = n™ T YuOZ(O)r (B'Zu(t))

SP(B,8) = 7' § Vi Z(Ou (BZOYr{BZ(0))

SUB, 1) = 3°S(B, /0" = n' T YiOZW®r ¥ (B'Zu(1))

SUB, 1) = n” T YilO[u(B'Z0)) — u(BoZA0YIr(BsZ(0))

SO(B, 1) = aS“(B, /08 = n”' 3, YO Z(O)u® (B Z(t))r{BsZi(®)}
SO(B, t) = 328 (B, £)/38% = n' Y Yi(t)Zi(8)®*u® {B'Zi(8)}r{ B4 Z:(D))}.

In these expressions all summations are over [ = 1, - - -, n, for any vector a’ = (a1, - -, ap),
a®? denotes the p X p matrix with (i, j) entry a;a;, r'V(x) = dr(x)/dx, r®(x) = dr(x)/dx,
u(x) = log r(x), u®(x) = du(x)/dx = r'(x)/r(x), and u®(x) = du®(x)/dx = r®(x)/r(x)
— {r"(x)/r(x)}*. Note that S® (8, t) = S (8o, t) and S®(Bo, t) = S®(Bo, t) — SP(Bo, ¢).
Note also that under the exponential regression form, given by r(-) = exp(-), one has
SO(B, t) = SP(B, t), SU(B, t) = (B — Bo)SV(Bo, t), S®(B, t) = SP(Bo, t) and S©(B, t)
= 0, while under the linear form, 7(-) =1 + (.), S®(8, t) = 0.
Also set

E(B,t) =SB, t)/S(B, )
V(By t) = S(Z)(By t)/S(O)(B’ t) - E(By t)®2-

Note that E(f, t) and V(Bo, t) can be thought of as the expected covariate vector at time
t and corresponding covariance matrix for a study subject failing at ¢, given %- and given
the fact that a failure occurs at ¢. Note also that

V(B, 1) =3 YiO)r{B'Z:t))S (B, ) [Zi(t)u® ( B'Z:(t)} — E(B, )]*

so that V(B, ¢) is positive semidefinite. )
The following conditions for the asymptotic normality of n'/*(8 — B8,) generalize those
given in AG:

1
A. (Finite interval). f Ao(t) dt < .
()

B. (Asymptotic stability). There exists a neighborhood % of By (# C %, as defined below)
and functions s©, ..., s© defined on # X [0, 1] such that for j=0, ---, 6

SUPero,13,8c2 || Sm(ﬂ, t) — Sm(ﬂ, t)|—-p0

C. (Lindeberg condition)

f n7t Bk [Zu@)u® (B6Zi(2)} — E(Bo, 1):FYi(O)r{BoZi(t)}
0

I{n™'*| Zy@u® {BoZi(t)} — E(Po, t):| > e}ho(t) dt —p 0
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foranye>0,i=1,...,p.

D. (Asymptotic regularity conditions). Set e = s/s® and v = s®/5® — %2 For each j
=0, -.-,6,s"(-, t) are continuous functions of 8 € 4, uniformly in ¢ € [0, 1]. Also, s,
J=0, ..., 6 are bounded on # X [0, 1], s is bounded away from zero and the matrix

1
2 = f U(ﬁo, t)S(O)(ﬂo, t)}\o(t) dt
0

is positive definite. Also, s*(g, ¢) and s“)(B, ) are assumed to be twice differentiable with
respect to 8 on £ X [0, 1].

E. (Asymptotic stability of observed information matrix).
1
SUpPge 2 f nEYE | Zue) || *u® {B'Z:(2)} 2 Y: () r { B4Z:(t) YN0 (t) dt —p 0.
0 .

F. (Regression function positivity). There exists a neighborhood %, of B8, such that, for
B € %o, r{B’Z} is locally bounded away from zero foralli =1, ..., n.

In these conditions || - || refers to the supremum norm and convergence properties
involve n — . In the special case r(-) = exp(-), these conditions reduce precisely to those
given by AG with the exception of the Lindeberg condition C. As it stands C is precisely
the condition required to apply the Rebolledo central limit theorem in the form given in
Appendix I of AG. It can be interpreted as requiring the contribution from [¢, ¢ + dt) to the
variance of standardized score statistic at 8o to be asymptotically trivial for any ¢ € [0, 1].
Condition C can be simplified slightly as in AG (page 1107). Upon applying their inequality
and using conditions A and B, condition C is implied by

1
f n7t Bier Yo()| Zu @) u (B Zi(@)} Pr {BoZi )} {n™?| Zu ()u™ {Bo Zi(2)} |
' >e}do(t)dt—, 0  (E=1,---,p)
which, in view of condition A and condition B in respect to S, is implied by:
C’. (alternate Lindeberg condition)
n " ?sup; | Zi(t)uP{BoZ:(t)} | —p 0

In view of the n? factor, condition E is rather weak. It ensures that the variance of the
observed information matrix converges to a zero matrix. As with C, it could be replaced by
a similar, but more restrictive, condition in which the supremum of the integrand over ¢
€ [0, 1] converges in probability to zero. Condition E is vacuous in the special case r(-)
= exp(-). Condition F is required for such processes as log r {8’Z;} and r *{8’Z;} be locally
bounded for €%, i=1, --., n. Condition F will trivially hold if r(w) > 0 for all w € .
Note that it follows easily from B and D that s®(8, t) = as (B, t)/3B, s@(B, t) =
3% OB, t)/aB% s® (B, t) = as(B, t)/3B, sO(B, t) = 9% (B, t)/8B%, s (Bo, t) = sP(Bo, t)
and s© (B, t) = s® (B, t) — s®(Bo, t) for all ¢ € [0, 1].

LEmMA 2.1. (Consistency of B) B —p fo.

Proor. For B € & set
X(B’ t) = n_l{l()g L(By t) - lOg L(BO: t)}

and define

ABt) = f [S(B, w) —10g{S(B, w)/S(Bo, w)}S(Bo, w)]Ao(w) duw.
0
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Using (1.1), (1.5) and (1.6) one can write

X(B,t) — A(B, t) = J n Yie1 log[r{B'Ziw)} /r{B6Z:(w)}] dMi(w)

(]

- J log{S(B, w)/S(Bo, w)} dM(w),
0

where M = M, + .-- + M,. The predictableness of each Z;, the continuity of r and
condition F ensures log r{8’Z;} and log S (B, -) to be predictable and locally bounded for
each B € %,. It follows that X(B, -) — A(B, -) is a local square integrable martingale with
variance process B (8, -) given by

t

B(B, t) =f n? Yin [u{B'Ziw)) — u{BoZiw)} —1og{S (B, w)/S(Bo, w)}I°Ni(w) duw.

0

We would like to show that B(8, 1) —p 0 so that X(8, 1) and A(B, 1) will be shown to
converge in probability to the same limit. Expanding the squared term in the above
expression and substituting from (1.5) gives

1

B(B, 1) =f n 2 Yk Vi) u{B'Z:w)} — u{BoZ:(w)}1*r{BoZ:(w)} o (w) dw

—2J' n7? Yin1 Yiw)[u{B'Zi(w)} — u{BoZiw)}]
-1og{S(B, w) /S (Bo, w)}r{B6Zi(w) }ho(w) dw

1
+n7 f 1og*{S(B, w)/S(Bo, w)}S(Bo, wWIho(w) duw.
o

The final integral in this expression converges in probability to zero in view of conditions
B and D on S© along with the finite interval condition A. The middle integral will
converge to zero if the first does upon applying the Schwarz inequality and using the
convergence just noted for the third integral. It remains to show that the first integral in
the expression for B(8, 1) converges to zero.

A Taylor expansion about S, gives

u{B’'Z:(w)} — u{BoZi(w)}
= (B — Bo) Zi(w)u " {B6Z:(w)} + %(B — Bo) Ziw)**u? (B, Z:w)} (B — Bo),

where 8, = B,(w) is between B and Bo. Upon substitution the first integral in B(S, 1)
equals

1
(B-= ﬂo)’[f n72 Pk Yi(w) Zi(w) **u® { B6Zi(w) Y r ( BoZi(w) I o(w) dw](ﬁ = Bo)
0

+(,8—Bo)’[ J' 20 S Yi(w) Zew)u®{BoZi(w))

(B = BoY Zi(w)®*u® (B’ Z:(w)} r{ B6.Z: (w)} No(w) dw] (B = Bo)

1
Va(B — ﬂo)'[f n7? ¥ Yiw) Ziw) (B — Bo)(B — Bo)' Zi(w)*u® (B, Zi(w) }*
0

-r{BoZ;(w)}o(w) dWil(ﬂ = Bo)-
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The first term in this expression converges in probability to zero on the basis of condition
A and conditions B and D in respect to S®. The middle term will converge in probability
to zero if the final term does, again on the basis of the Schwarz inequality. The final term
is equal to or less than

1
%J' n7 Yi Yi@)p*|| B = Boll* 1| Z: ) *u®{ B Z: (w)}°r{BoZ:(w)} Ao(w) dw,
0

which converges in probability to zero on the basis of E. It now follows that B(8, 1) -» 0
so that by an inequality of Lenglart (Appendix 1 in AG) X(8, 1) converges in probability
to the same limit as does A(, 1), for each 8 € 4.

From conditions A, B and D

1
A(B, 1) —>PJ [s“(B, w) —og{s (B, w)/s(Bo, w)}]1s(Bo, WIho(w) duw.
0

Following the arguments of AG, the boundedness conditioris in D now allow one to take
first and second derivatives of A(B, 1) with respect to 8 by differentiating under the
integral sign. The first derivative vector is, therefore, equal to

1
f [s®(B, w) — {sV(B, w)/s”(B, w)}s”(Bo, w)Mo(w) dw
0

which is equal to zero at 8 = B, since s® (8o, w)= (8o, w). The negative of the second
derivative matrix can be written

1 1)) (1) ®2
oy - f [s@( 5 w)_{s Bw) VB, w) }s“”wo, w)]ko(w) o,
0

SOBw)  sO(8, wy

which at 8 = B, equals
1l @ (1) ®2
f [s (Bo, 1) _ 5(Bo, ) ]s«»( o, o) dio = 3
0

sO>Bo, w) VB0, w)?

(by virtue of s©(8o, w) = s®(Bo, w) — s®(Bo, w)) which is positive definite by condition
D. The continuity conditions D on s©, s®, s® and s® for 8 € %, uniform in ¢ € [0, 1],
condition A and the positive definiteness of (2.1) at 8 = B, imply the existence of a
neighborhood %, C 4 of B8, such that (2.1) is positive definite for 8 € %;. It follows that for
B € %, X(B, 1) converges in probability to a concave function of 8 with unique maximum
at B8 = Bo. Since f maximizes X(f, 1) one can argue exactly as in Andersen and Gill,
Appendix 2 to show 8 —p So.
THEOREM 2.1. (Asymptotic normality of ).

n'%(B - Bo) »p N(0,=7").

ProoF. A Taylor expansion of d log L(8, 1)/38 about B, evaluated at ,é, gives
(22) n~"%3 log L(Bo, 1)/3fo = {~n""a"log L(B,)/ap3In"*(B — Bo),
where B, is between ,é and B, whence it is sufficient to show
n~%9 log L(Bo, 1)/880 —p N(0, )
and ~n~'0%log L(B,, 1)/08% —>» 5

for any random S, such that 8, —p Bo.
Using (1.1) one can write

n~'"?3 log L(fBo, t)/3f0 = f Y n VA Zi(w)u " {BoZi(w)} — E(Bo, w)] dM; (w).
0



810 R. L. PRENTICE AND S. G. SELF

Upon setting H;(¢) = n V[ Z;(t)u{B6Z:(t)} — E(Bo, t)],i =1, - - -, n it is only necessary
to note that H; is predictable and locally bounded (using condition F, the local boundedness
of Z; and the continuity of #”") and that

J Y Hiw)®A\i(w) dw = J [S®(Bo, w) = SV (Bo, w)**Mo(w) dw
0 0
=f V(Bo, w)S(Bo, w)ho(w) dw
0

—>pj v(Bo, w)s(Bo, w)Ao(w) dw
0

(using conditions A, B and D) in order to apply the Rebolledo central limit theorem to the
local square integrable martingale n™/%9 log L(f,, ¢)/3 0 (see Andersen and Gill, Appendix
1). The desired distributional result for n'/?9 log L(8o, 1)/38 then follows upon noting
that the limiting variance function [§ v(8o, w)s?(Bo, w)Ao(w) dw evaluated at ¢ = 1 is .
Now consider convergence in probability for the observed information matrix. For
B € % one can write
t

—n7'9%log L(B, t)/3p* = J’ n7' Bk [UB, w) — Zi(w)®u®{B'Z:(w)}] dN: (w)

0

where U(B, w) = S®(B, w)/S(B, w) — SV(B, w)®*/S(B, w)*. Define
C(B,¢) =j n' Tk [UB, w) — Zi(w)*u®{B'Z; (w)} I\ (w) duw.

Then — 8%log L(B,-)/88% — C(B, -) is a (p X p) local square integrable martingale (the
continuity of 7 is required here) with variance process D(8, -) given by

t

D(B, t) = f n= Yi [U(B, w) — Zi(w)*u®{B'Zi(w)} '\ (w) dw

0

t

= f n U (B, w)*2 SO (8o, w)ho(w) dw — 2 J’ ntU(B, w)S® (B, w)ho(w) dw
0

0
+ j n? Yk Zi(w) ¥ Z;(w) P u P { B Z:(w) Y Yi(w) r { BoZ:(w) YA o(w) duw.
(1]

In the expression for D(f, 1) the first two integrals converge to a zero matrix by virtue of
the stability, regularity and boundedness conditions B and D and condition A while the
final integral converges to a zero matrix on the basis of condition E. It follows that D(8, 1)
converges in probability to a zero matrix so that —n'9%log L(8, 1)/d8% and C(8, 1)
converge in probability to the same matrix for 8 € 4. By conditions A, B and D

C(B’ 1) —>p J’ {8(3)(:8’ w)s(m(ﬁo, w)/s(o}(ﬂ9 w)
b .

— sP(B, w)®2 9 (Bo, w)/s(B, w)? — s(B, w)}Ao(w) dw.

Hence 8, —p Bo together with the continuity in 8 of s©, s©, s® and s® uniform in ¢
(condition D) along with condition A imply

C(B*’ 1) '—)PJ {s(a}(ﬁfb w) - s(l)(ﬁ% W)®2/S(O)(ﬂo, w) - 5(6)(ﬂ0’ w)}AO(w) dw = 2,
0
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since s®(Bo, w) = s®(Bo, w) — s?(Bo, w), concluding the proof.

In order to apply Theorem 2.1 it will usually be necessary to insert an estimator for .
The last part of the above proof shows —a%log L(3, 1)/ 3% to be a consistent estimator, but
this estimator need not even be positive semidefinite. In view of the definition of X (see
condition D) we may instead consider 3 ( ,é) as a variance estimator, where

1
2B =n" f V(B, t) dN(¢).

(V]

As noted above 3( B) is positive semidefinite. A very simple martingale argument, of the
type given above for —n"'a%log L(8, 1)/382 shows 3 (/) to be a consistent estimator of
3; in fact, it is only this result that requires the asymptotic stability and regularity
conditions (B and D) on S®. It is interesting to note that the variance estimator 2(8,) can
be obtained by applying a finite population variance argument to the contributions at each
failure time to the score statistic n™"/?log L(80, 1)/38. Under By = 0 the score statistic
standardized by $(0) is precisely equal to that from the exponential special case
{r(-)= exp(-)} for any intensity function form r. Note that if 8 = 0 it will be necessary that
r’(0) # 0 in order that 3 can be positive definite as is assumed in condition D.

Consider now estimation of the cumulative hazard function Ao(z) = I6 Ao(w) du,
t € [0, 1]. A natural candidate for such estimation is

Aw) = j (Tm: Yiw)r{f'Z:(w)}) ™" dN(w).
0

THEOREM 2.2. (Weak convergence of n"*(A — A,)). n"%(B — Bo) and the process
given at t € [0, 1] by

n'2{A(t) — Ao(t)} + n%(B — Bo)'J' e(Bo, who(w) dw
0

are asymptotically independent, the latter converging in distribution to a Gaussian
martingale with variance function

J {s(Bo, w)} Ao(w) dw.
(1]

Proor. The proof goes through in a virtually identical manner to that given in AG for
the special case r(-) = exp(-).

From Theorem 2.2 it follows, for example, that at any ¢ € [0, 1], n2(A(¢) — Ao(¢)} is
asymptotically normal with mean 0 and variance

j {s(Bo, w)} No(w) dw + ( f
0 0

which is readily shown to be consistently estimated by

t

e(fo, w)Ao(w) dw) E(J' e(fo, w)ho(w) dw)
0

¢
n f {SB, w)}* dN(w)
o

S8 Bw) o N ea (oo [ SPGB W
* (" fo SO, w)? dN(w)) 24 (" J SO, wy? dN(w))

3. Discussion. A referee has suggested that Conditions A to F be considered in the
context of some simple failure time data problem with a linear intensity process. For this
purpose consider a non-negative scalar covariate Z with monotone increasing sample paths
and suppose r(-) = 1 + (-) and that 8, > 0. Suppose also that the observations (N;, Y;, Z;)
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are iid. For example, such a model may describe the relationship between a cancer
incidence rate function and the cumulative exposure to a carcinogenic substance. Condi-
tions A through F are implied by

1
J' Mo(t) dt <o, P{Y(t) =1V t€[0,1]} >0, E{Z(T)'} <o
0
and
1
f Var{Z(¢)| Y(¢t) = 1}Ao(t) dt > 0,
0

where T = sup{¢:Y(¢) = 1}. Conditions B, D and E may be verified using the same
arguments as in AG Theorem 4.1 in conjunction with the monotonicity of the sample paths
of Z. The positivity of X follows by noting that V(8,, ¢) may be bounded below by

E[Y()Z(t)r{BoZ ()} 1\ r{BoZ(t)
E{Y(t) (Z(t)'— [ S(O)([;;){,Bt(; }]) ;{(52,30, ti}

which is positive if Var{Z(¢)| Y (¢) = 1} > 0. To verify Condition C it is sufficient to show

' SOy, 8) S(Bo, t)
-1y ; ’ -1/2 4
fo n= Y Yi(2) SO, 7) Iyn™" S9(3.7) >e( Ao(t) dt —p 0

and

. ZX(t) e Zilt)
1977 . 1/2
J; n w1 Yi(2) SN ATY BoZi() I {n FEYNATY BoZi(D) > e ¢ Ao(t) dt —, 0.
The first limit follows immediately from convergence of S (8, -) and S®(Bo, -) and the
finite interval assumption. The second limit follows similarly from moment conditions on
Z and the assumption B, > 0. Finally, Condition F follows immediately from range
restrictions on 8, and Z(¢).

Careful attention may be required in covariate modeling, to near violations of the
relative risk positivity Condition F. Such near violations may cause data on individual
study subjects to substantially impact the parameter space and the likelihood function. In
such circumstances enormous sample sizes may be required for the asymptotic distribution
theory to apply. For example, consider a single fixed covariate Z(¢) = z and linear relative
risk function r(z) = 1 + Bz with 8, < 0. Only z values less than —8;' are consistent with
the model while a value near —8;" may very substantially affect the likelihood function
shape. In such circumstances covariate transformations or a change of model form r(.)
would usually be appropriate. Corresponding to specific choices of r(-) it would be useful
to study parameter transformations, § = g(8), that will reduce the sample sizes necessary
to suitably apply the above distribution theory.

REFERENCES

AALEN, O. O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist. 6 701-
726.

AALEN, O. O. (1980). A model for nonparametric analysis of counting processes. In Lecture Notes in
Statistics 2. Springer-Verlag, New York.

ANDERSEN, P. K. and GILL, R. D. (1982).Cox’s regression model for counting processes: a large sample
study. Ann. Statist. 10 1100-1120.

Cox, D. R. (1972). Regression models with life tables (with discussion). J. Roy. Statist. Soc. B34 187~
220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62 269-276.

Cox, D. R. (1981). Discussion of paper by D. Oakes, entitled “Survival Times: Aspects of Partial
Likelihood”. Internat. Statist. Rev. 49 235-264.



INTENSITY FUNCTION REGRESSION 813

DAFFER, P. Z., CRUMP, K. S. and MASTERMAN, M. D. (1980). Asymptotic theory for analyzing dose-
response survival data with application to low-dose extrapolation problem. Math. Biosci-
ences 50 207-230.

PRENTICE, R. L., YosHIMOTO, Y. and MasoN, M. (1983). Cigarette smoking and radiation exposure in
relation to cancer mortality in Hiroshima and Nagasaki. J. National Cancer Institute 70
611-622.

SELF, S. G. and PRENTICE, R. L. (1982). Commentary on Andersen and Gill’s distribution theory for
the Cox regression model. Ann. Statist. 10 1121-1124.

TroMAS, D. C. (1982). General relative-risk models for survival time and matched case-control
analysis. Biometrics 37 673-686.

DivisioN oF PuBLic HEALTH SCIENCES DEPARTMENT OF BIOSTATISTICS

THE FRED HUTCHINSON CANCER RESEARCH CENTER SCHOOL OF HYGIENF. AND PuBLIic HEALTH
1124 COLUMBIA STREET JouNs HoPkINs UNIVERSITY

SEATTLE, WASHINGTON 98104 615 N. WOLFE STREET

BALTIMORE, MARYLAND 21205



