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REPRODUCTIVE EXPONENTIAL FAMILIES

By O. BARNDORFF-NIELSEN AND P. BL&SILD

Aarhus University

Consider a full and steep exponential model .# with model function
a(9)b(x)exp{f - t(x)} and a sample x1, - - -, x» from .. Let t={tx) + -+ +
t(x,)}/n and let £ = (£, ;) be a partition of the canonical statistic t. We say
that 4 is reproductive in ¢, if there exists a function H independent of » such
that for every n the marginal model for  is exponential with n6 as canonical
parameter and (H (Z,), #,) as canonical statistic. Furthermore we call ./ strongly
reproductive if these marginal models are all contained in that for n = 1.
Conditions for these properties to hold are discussed. Reproductive exponen-
tial models are shown to allow of a decomposition theorem analogous to the
standard decomposition theorem for x>-distributed quadratic forms in normal
variates. A number of new exponential models are adduced that illustrate the
concepts and also seem of some independent interest. In particular, a combi-
nation of the inverse Gaussian distributions and the Gaussian distributions is

discussed in detail.

1. Introduction. Consider an exponential model .# given by
(1.1) a(@)b(x)%

where the canonical parameter 6 and the canonical statistic ¢ are vectors of dimension k.
The mean value of ¢ under (1.1) will be denoted by 7, and © will stand for the domain of
variation of . Furthermore, vectors are taken to be row vectors and the transpose of a
vector v is denoted by v*.

Let 8 = (61, 62), and 7 = (71, 72) and ¢ = (t1, £2) be similar partitions of , = and ¢, and let
the common dimension of 6;, 7; and ¢; be denoted by k;, ¢ = 1, 2. Our interest in this paper
is with cases where the marginal distributions of # constitute an exponential family that
has 6 and (H (%), t2), for some vector function H, as corresponding canonical variates, a
property that we express by writing

(1.2) t; ~ EM((H (%), ); 6)
where EM is an abbreviation for “exponential model”.

In general, ¢ does not follow an exponential model, and even when it does that model
need not be of the form (1.2), as shown by the following counterexample.

ExaMPLE 1.1. Let u and v be positive random variables with joint probability density
function

plu, v; 6, ¥) = L @ + V) ™2u exp(—(%)v"u? — (B)Yv — du)
2

where ¢y = 0 and ¢ > —«/E. Here u follows the negative exponential distribution with
parameter ¢ + Vi, ie.

pl; 6, ¥) = (@ + Vexp(—(¢ + V¥)u),

while the conditional distribution of v given u is inverse Gaussian. We have 8 =
(—%y, —¢) and ¢t = (v, ©) and
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(1.3) u ~ EM(u; —(¢ + ),
but (1.3) cannot be recast in the form (1.2). O

In Section 2 we show that, provided .# is full and steep, (1.2) is equivalent to
(1.4) t—H() Lt,
where L denotes stochastic independence, and also equivalent to
(1.5) t — H(t) ~EM(t, — H(t); 61).

One notes that in (1.5) the distribution of ¢; — H (¢) depends on 6; only.
The models discussed in the next examples 1.2-1.4 have, in fact, the property that (1.2)
holds for any sample size and with a fixed H, and this occasions the following definition.

For a sample x;, - - - , x, from (1.1) we set t=n"1(t(x) + - - + t(x,)), and we say that (1.1)
is reproductive in t, if

(1.6) & ~ EM((H (%), t); nf)

for every n =1, 2, - .. and some H independent of n. Since the model for the sample x;,

., Xxp is of the form (1.1) with ¢ and n@ as canonical variates it follows from the
equivalence of (1.2), (1.4) and (1.5) that for models which are reproductive in #; one has

(1.7 t—Hb) Lt
and '
(1.8) & — H(t;) ~EM(t; — H(%); nf)).

ExampLE 1.2. For the normal N (£, ¢%) distribution we have an exponential represen-
tation (1.1) with ¢ = (x% x) and 8 = (—1/(20?), £/0?). Since, for a sample xi, - - - , x,, the
mean ¥ is distributed as N (£, 02/n), the model is reproductive in x, and (1.7) expresses the
independence of s2 and x. O

ExampPLE 1.3. Let I'(A, a) denote the gamma distribution whose probability density
function is

(1.9) @ texp(—ax)

. NEN) exp(—ax).
The family of these distributions, both parameters a and A being considered unknown, is
reproductive in x. In fact, the family is exponential with ¢ = (In x, x) and § = (A, —a) as the
canonical variates, and if x;, - - - , x, is a sample from (1.9) then x. = x; + .. . + x, follows
the I'(nA, a) distribution, and this may be paraphrased as x ~ EM((In X, X), nd).
Furthermore, the well known independence of ¥ and £/x, where £ denotes the geometric
mean of the observations, may be seen as a consequence of (1.7). 0

ExaMPLE 1.4. The inverse Gaussian distribution with probability density function

(1.10) % exp(Vx¥)x ¥ %exp(— (%) {xx " + ¥x})

will be denoted by N~ (x, ¢). Considering both x > 0 and ¥ = 0 as unknown, we have an
exponential family with ¢ = (x 7, x) and 8 = —%(x, ¥), and this is reproductive in x because
the mean X of a sample x;, ---, x, from (1.10) has the inverse Gaussian distribution
N~ (nx, ny). The independence of n7'S(x;* — ¥ ') and & (Tweedie, 1957) is therefore an
instance of (1.7). 0

Let D(0) denote the marginal distribution of # under (1.1) and suppose that (1.2) is
fulfilled. It may happen that

~ D(né)
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for every n = 1, 2, ... and we then say that (1.1) is strongly reproductive in t;. This
property, which obviously implies reproductivity, actually holds in examples 1.2-1.4.
(Examples of models which are reproductive without being strongly reproductive will be
discussed in Section 4.)

Let k(8) = —In a(f) denote the cumulant transform of the model .#. It may be noted
that strong reproductivity of .# in ¢, can be expressed as

k2(n; n8) = nka(n"n; 6)

forn=1,2, ... and where k2(n; 8) = «(8 + (0, 1)) — k() is the cumulant transform of ¢.
under P,. That is, k, considered as a function of both 5 and 4 has a homogeneity property
of order one.

From now on we assume that the family of distributions (1.1) is full and steep (in the
sense of Barndorff-Nielsen, 1978).

Suppose ¢; and £, are of the form ¢ (x) = H(x) for some continuous vector valued
function H and #(x) = x, respectively. It is then possible to show that (1.1) is strongly
reproductive if and only if ¢ int ® C int © for every scalar ¢ > 1 and 6. is of the form

0, = —01h('T 2)

for some &; X k2 matrix-valued function A. The proof will be given at the end of Section 3.
Essentially, this result generalises Theorem 3.1 of Bar-Lev and Reiser (1981). These
authors proved the validity of the result for £ = 2, in which case the condition ¢ int ® C
© may be deleted. Furthermore, when combined with Theorem 2.1 below the result
provides an extension of the other main conclusions of Bar-Lev and Reiser’s (1981) paper,
as given in (ii) and (iii) of their Theorem 3.2.

The normal, gamma and inverse Gaussian models can also be used as building stones
in the construction of interesting examples of reproductive and strongly reproductive
models of higher exponential order, cf. Section 4.

For a further example we consider the Wishart distribution.

ExAMPLE 1.5. Let S be a random d X d dimensional and positive definite matrix that
follows the Wishart distribution

(1.11) p(S; 2) = c(f, d)|A[?| S|~ %exp(—tr(AS)/2)
where c¢(f, d) is a norming constant, = = f'ES, A = 27 and f = d, and let S be partitioned

as
_|Su Se
§= [sm s22]'
As is well known (and simple to establish by means of Basu’s theorem) (Si2, Ss2) is
independent of S1;. = Si; — 8128%'S,; and this property is an instance of (1.4), with ¢ =

Si1, t; = (Si2, Sp) and H(t;) = S128%'Se:. The equivalent formulations (1.2) and (1.5)
express other well known facts about the Wishart distribution. O

We consider reproductive exponential models in Section 3 and show that such models
allow of a decomposition theorem analogous to the standard decomposition theorem for
x2-distributed quadratic forms in normal variates. We also show that, under a mild
regularity condition, the independence result (1.7) may be reformulated as

6, L %

ie. the two components of the maximum likelihood estimator of the mixed parameter
(61, 72) are independent. Quite generally, 6, and %, are asymptotically independent, whether
we have reproductivity or not, cf. Barndorff-Nielsen (1978), Section 9.8 (vi).

How does one determine whether an exponential model is reproductive or not? If the
relevant component £ is known then it is often simple to check reproductivity in ¢ by
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inspection of the cumulant transform k() = —In a(d), cf. the examples in Section 4.
Another type of condition for reproductivity in ¢; is provided by the relation

(1.12) 1 = m(6y) + H(rs),

i.e. 71 can be written as the sum of a function m of ¢; and a function H of 7, (where H is the
same function as occurs in (1.6)). In fact, as will be proved in Section 3, (1.12) is a necessary
condition for reproductivity in #. We conjecture that this condition is also sufficient, and
can show that this is actually the case under certain additional assumptions. However, we
have no clue how to prove it in general.

Certain related results are discussed in Barndorff-Nielsen and Bleesild (1983).

2. Criteria for and implications of ¢, ~ EM((H(Z2), £2); 0). We shall repeatedly use
the fact that if Py denotes the probability measure given by (1.1), if u is a statistic, and if
p(u; 6) is the density of the lifted measure uP, with respect to some o-finite measure
dominating the class {uP;: 8 € ©} of marginal distributions of u then, for any elements 6,
and @ of ©, we have

@1 Mmm=E4¥5

0
Py u}p(u, bo),

cf. Barndorff-Nielsen (1978) Section 8.2 (iii).

In order to establish the equivalence of (1.2), (1.4) and (1.5) we need the following
lemma. In essence, this result is well known (cf. for instance Patil, 1965) but a fully general
and explicit formulation does not seem to be available in the literature.

LEMMA 2.1. Let 2= {Py:0 € ©} be a parameterised class of probability measures
with © a subset of R*, let t be a k-dimensional statistic, and suppose that there exists a
function r on © such that for every 6, € ® and § € © we have

(2.2) Eg,exp((0 — 6o)-t) =r(@)/rbo).
Suppose furthermore that © contains an open subset of R*. Then the family of distribu-
tions of t under 2 is exponential and

d(tP) _ r(6)
d(tPg) r(@)

(2.3) exp((0 — 6o)-t).
ProoF. Let 6, and @ be any elements of ® and define a measure @y by

_r (60)
& =79

exp((6 — 6)-t) d(tPy).

(Potentially, @ may depend on 6,.) For any 6 € © we then have

» Eq,exp((d — 0)-t) = :—(:;—)) Eg,exp((f — 60)-¢)
and hence, by (2.2),

Eq,exp((f — 8)-t) = r(d)/r(6).
Invoking the uniqueness theorem for Laplace transforms, we find that @y equals ¢Py. 0

The content of the following theorem is virtually the same as that of Theorem 2.1 in
Bar-Lev (1983). The results were derived independently and the proofs are somewhat
different. We wish, however, to acknowledge that our inspiration for the results in the
theorem derived from the paper by Bar-Lev and Reiser (1982), that we had occasion to see
in manuscript form.

THEOREM 2.1. Under the exponential model (1.1), let t = (1, t2) be a partition of the
canonical statistic and consider a ki-dimensional statistic of the form H(t;) for some
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function H. Then

t: ~EM((H(t), t2); 0) @ t1 — H(ty) Lty < ¢, — H(t:) ~ EM(t, — H(¢); 6)).
In this case the distribution of t, — H(t;) depends on 0, only, and, with
(24) p(t; 0) = ao(f)exp(8- (H(t,), t))

as an exponential representation of the model for t., the Laplace transform of t, — H(t,)
may be expressed as
@@+ (,0)  a@)

ao(6) a@ + (£, 0)’

where the right hand side, in fact, depends on 0 through 0, only.O

(2.5) Egexp($-{t — H(t))) =

Proor. Using (2.1) we find

Ego{exp((6: — 0n1) - (&t — H(%:)))| &}
(2.6)

a(6) " ple; 0)
[ @) exp((61 — bo1) - H(tz) + (02 002)'&):' 2 00
The left hand side of (2.6) is the Laplace transform of ¢, — H (ts) given ¢,. Hence &, — H ()
L t, if and only if the right hand side of (2.6) does not depend on & which is the same as

~ EM((H (), t2); ). The latter relation unphes that the right hand side of (2.6) is of the
form r(@)/r(6,) where
2.7 r(0) = av(8)/a(d)
and ao(#) is the norming constant in (2.4). Furthermore, since the left hand side of (2.6)
does not depend on 6; we must have that r is a function of 6; only, i.e. the distribution of

— H(t;) depends on 6, only and

()
(2:8) Eoo{exp((6: — B - (6 — H(2))} =~ 2
7 (6o1)
The implication &, ~ EM((H (t2), tz); 6) & t1 — H(t:) ~ EM(t; — H(tz); 6:) now follows by
Lemma 2.1, and (2.5) is a consequence of (2.7) and (2.8). It remains only to prove that ¢
- H(tz) ~ EM(tl - H(tz); 01) implies t — H(tz) 1 t. For brevity, write w = t — H(tz). By
assumption we have that d(wPs)/dP(wPy,) is of the form
d(wPy) — r(6:)
d(wPg) 1r(0n)

(2.9) exp((f; — o1)-w)

for some function r. On the other hand we obtain from (2.1)

d(wPy) a(0)
d(wPy,) a(0)

and comparing (2.9) and (2.10) we find that w 1 ¢.0

(2.10) exp((61 — 0o1) - w)Eg,{exp((01 — o1) - H(£2) + (02 — Oo2) - t2) | w},

Inspection of the proof shows that, in fact, when ¢, ~ EM((H (¢,), ), 8) we have
ao(0) a(bo)
ao(fo) a(@)

for any 6 and 6 in ©. This generalizes (2.5). (Note that the right hand side of (2.11) does
not depend on 6, and 6..)

(2.11) Eyo,exp((01 — 001) - (8 — H(L))) =

3. Conditions for reproductivity. Recall that the exponential model .# is said to be
reproductive in ¢, if for everyn =1, 2, . .. we have

(3.1) & ~ EM((H (%), &); nf)
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for a certain function H which does not depend on n and which takes values in R*. In
consequence of Theorem 2.1 the relation (3.1) is equivalent to

(3.2) t—HB) Lt
and also equivalent to
(3.3) 4t — H(t) ~EM(t — H(t); ndy).

LEMMA 3.1. Suppose 4 is reproductive, with H continuous. Then 11 is of the form
(3.4) 71 =m(6,) + H(rs)

for some function m. [

ProoF. For 6 € int ©® and n — = we have £ — 7 = 7(#) a.s. and hence, by the assumed
continuity of H,

t, — H(ts) > 71 — H(2).

On the other hand, from Theorem 2.1 we have that the distribution of ¢, — H(¢,) depends
on 6; only and therefore 7; — H(72) must depend on 6 through 6; only. 0O

In the terminology of Barndorff-Nielsen and Bleesild (1983), the relation (3.4) means
that ./ possesses a 7-parallel foliation, cf. Theorem 5.1 of that paper.

We conjecture that (3.4) is, in fact, not only a necessary but also a sufficient condition
for reproductivity of .#. Although we have been unable to prove this in full generality, the
sufficiency is established under certain additional assumptions in Corollary 5.4 of Barn-
dorff-Nielsen and Blaesild (1983).

It follows from (3.4) that m is a one-to-one, continuous function of 6; and that m is the
gradient of some real valued function M on int ®;, where ®; denotes the set of possible
values of 6. It also follows that H possesses continuous partial derivatives with respect to
the coordinates of 7.. We set

dH*
h(TQ) = a7 ’

2

and
H(rs) = 12h*(r2) — H(r2)

(ie. H is the Legendre transform of H, cf. Section 2 of Barndorff-Nielsen and Blesild,
1983).

LEMMA 3.2. Suppose # is reproductive, with H continuous. Let

(3.5) '~ P =t1— tah*(r2) + H(r).
The distribution of p depends on 6, only and the Laplace transform of p is of the form
(3.6) Ey exp({ - p) = exp(M(6: + §) — M(61)). O

These properties hold, in fact, for any steep model (1.1) such that 71 = m(6:) + H(72),
whether the model is reproductive or not, see Section 5 of Barndorff-Nielsen and Blesild

(1983). We draw on this generality below.
Now, for a sample x;, - - -, X, of size n, let us consider the three variates

P =t —bh*(r2) + H(r),

G = H(&:) — Lbh*(r2) + H(rz)
and

W=t — H().
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We have
3.7) P=d+u

and, by (3.2), ¢ and w are independent. Actually, the relation (3.7) generalizes, as will be
further discussed subsequently, the decomposition into independent components of quad-
ratic forms in Gaussian variates.

The statistic p is the arithmetic mean of the n values of (3.5) determined by the
observations x;, .-, X,, but may also be viewed as definition (3.5) applied to the
distribution of z In view of Lemma 3.2 the Laplace transform of  is therefore

(3.8) Eyexp({ - p) = exp(n{M(6: + n"') — M(61))}).
Next, it will be shown that the marginal distribution of t, satisfies a relation of the form
(3.4). In this marginal distribution the role of ¢ is taken over by H(¢:) (cf. (3.1)) and,
writing
71 = EoH(),
we have
71 = Eot, — Egtb = m(6,) + H(r2) — Eotb = 1is(n6;) + H(z)
where we have used (3.4) and where
ri(nd:) = m(6:) — Eqw.
Since the function H of the relation
71 = rii(nd,) + H(rz)

is the same as the function H in the relation (3.4), one sees _that ¢ may be obtained by
applying the definition (3.5) to the marginal distribution of ;. Hence, using Lemma 3.2
and letting # denote the indefinite integral of 17, we find

(3.9) Eqexp(¢ - ¢) = exp(M(nb: + §) — M(né,)).

(It should be noted that the distribution of ¢ depends on n but that we have partly
suppressed this dependency in the notations.) Thus each of the three statistics in (3.7) has
a distribution which depends on 6; only and due to the independence of ¢ and w we see
from (3.8) and (3.9) that

(3.10) Eyexp({ - 1) = exp(n{M(6;, + n"'¢) — M(6,)} — {M(n, + ¢) — M(n6,)}).

It is immediate from the definitions that the (strong) reproductivity of (1.1) implies
(strong) reproductivity in £, of the marginal model for ¢,. Suppose now that (1.1) is itself
the marginal model for &, i.e. £;(x) = x and (1.1) is of the form

(3.11) : a(8)b(x)exp(8: - H(x) + 65 - x).

If the reproductivity of (3.11) is strong then i does not depend on n. Furthermore,

Epexp({ - §) = exp(M(né: + {) — M(nb))
and
Eyexp($ - w) = exp(n{M(0; + n™'¢) — M(6:)} — {M(nb: + {) — M(n6,)}),
i.e. we may substitute M for I in (3.9) and (3.10). Furthermore, in this case we have
W=n""Yk H(x) — H(x).
We collect these results in:
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THEOREM 3.1. Letthe model # be reproductive in t,, with H continuous. The variate
P =t —&h*(r2) + H(r,)
is decomposable as
(3.12) bp=4d+uw
where
¢ = H(&) — h*(ro) + H(n), =4~ H(b),

and ¢ and W are independent. Furthermore, the distributions of p, ¢ and W depend on
6, only, and the Laplace transforms of p, ¢ and w are given by (3.8), (3.9) and (3.10).
In case t:(x) = x and M is strongly reproductive, we have 1) = n *ZH(x;) — H(x), and
the factorisation of the Laplace transform of p corresponding to (3.12) is of the form
exp(n{M(, + n”'¢) — M@6.)})
(3.13) = exp(M(nb: + {) — M(nb,))

- exp(n{M(6: + n7'¢) — M(8:)} — {M(nf: + ) — M(n6:)}). 0

Examples 1.2-1.4 are of the type discussed in the second part of the theorem and for
these the decomposition (3.12) turns out as
nIS - €)= (x— &)X+ n 3 — %)%
—In(Za/A) + Xa/X — 1 = {—~In(Xa/\) + xa/\ — 1} + In(x/X)
n—12(xi—1/2 _ \/mx}/z)z = (5—1/2 _ ‘P/xfl/2)2 + n—12(xi—1 _ 5—1)

respectively. A further illustration of the decomposition appears in Example 4.1.

We add a remark on a relation between maximum likelihood estimation of the mixed
parameter (0:, 72) and reproductivity. As a mild regularity condition, suppose there exists
an no such that ¢ € int C with probability 1 for n = no; here C denotes the closed convex
hull of the marginal distribution of ¢. The maximum likelihood estimate 0 of 0 exists
uniquely and satisfies 7 = 7(f) = ¢, provided ¢ € int C. Hence, in view of (3.4) we have, for
n = no,

m(0y) = t — H(t;)
and since m is injective we find from Theorem 2.1 that
(3.14) 0, L7

and that the di_stribution of_91 d_epends on §; only. It can be shown that, on the other hand,
(3.14) implies t, ~ EM((H(¢z), t2); nf); see Barndorff-Nielsen and Bleesild (1983).
Finally, we present the criterion for strong reproductivity commented on in Section 1.

THEOREM 3.2. Suppose t; and t; are of the form t,(x) = H(x) for some continuous
vector-valued function H and t;(x) = x, respectively. Then M is strongly reproductive if
and only if c int © C int O for every scalar ¢ > 1 and 0. is of the form

8 = —0.h(12)
for some k; X ky; matrix-valued function h. (It turns out that h = 0H* /d7..) 0
Proor. The sufficiency of the condition follows from Corollary 5.4 of Barndorff-

Nielsen and Blaesild (1983), while the necessity is a consequence of Theorem 5.6 of that
same paper and of Lemma 3.1 above. [
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Combining this result with formula (5.4) in Theorem 5.1 of Barndorff-Nielsen and
Bleesild (1983) one finds that, under the conditions of Theorem 3.2, the representation
(1.1) takes the form

(3.15) b(x)exp(—M(6:))exp(—b; - {xh*(r2) — H(r:) — H(x)}).

For 6, one-dimensional, models of this kind may be used as elements within a multivariate
extension of Nelder and Wedderburn’s generalised linear models. More specifically, the
latter models (Nelder and Wedderburn, 1972, see also Nelder, 1975) are for independent

univariate observations xi, - - -, x, with model function for the single observation x; of the
form
(3.16) b(x; d)exp(—o{yix — k(v:)}),

the parameters vy; being related by p; = f(2z;8;), where u; = k’(y;) is the mean value
of x;, the z;; are known covariates, f is a known so-called “link function”, and the 8;, j =1,
-+ +, d, are unknown parameters. Besides the exponential form of (3.16), it is an important
feature of these models that when ¢ is considered as known, the log likelihood is
proportional to ¢. This implies, in particular, that the maximum likelihood estimate of
(Bi, -+, Ba) is the same whatever the value of ¢. These properties would also hold if the
x; were multidimensional, each distributed as in (3.15) with 6, one-dimensional and
independent of i and with mean value 7; = Ex; = f(Zz;8).

4. Examples of reproductive exponential families. Some instances of reproduc-
tive exponential families were given in Section 1. Here we wish to indicate a method for
constructing new, higher dimensional examples from examples already known. We begin
with a case of some particular independent interest.

ExaAMPLE 4.1. Inverse Gaussian—Gaussian. Let u be the first passage time to level
¢ > 0 of a Brownian motion starting at 0 and with diffusion coefficient w and drift p = 0.
Further, consider another, independent Brownian motion y(-) which also starts at 0 and
which has a diffusion coefficient ¢ and a drift coefficient & and define v = y(u), i.e. v is the
value of y(.) at the moment the first process reaches level ¢. Then u ~ N™(x, ¢) and v | u
~ N(u¢, us®) where x = ¢%/w? and Y = p/w> The joint probability density function of u
and v may therefore be written

plu, v; x, &, a, B)
4.1)

= o Vxe exp(Vxla — B/R)uexp(—xu~/2 = ku~vY/2 ~ aw/2 + Bo)

where
x=c*/w’, k=1/0% a=p’/0®+E/e® B=¢/0
The distributions (4.1) obviously constitute an exponential model of order 4 and with
0 = (—%x, =%k, —%a, B),
t= W, u u v),
7= (w¥/c® + pfc, 6% + c£2/u, ¢/, ct/u)
and

4.2) a(@) = Vxx exp(Vx(a — B%/k)).

It follows at once from (4.2) that the Laplace transform of &, = (u, v) is

4.3) Esexp(u + ev) = exp(vVx{(a — 28) — (B + €)*/k} — Vx(a — B%/k))
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and hence #, = (iZ, 7) has Laplace transform
(44)  Eoexp(8i + e0) = exp(Vnx{(na — 28) — (nf + £)%/(nx)} — Vnx(na — (nf)2/(nx))).

Comparing (4.3) and (4.4) we find that (4.1) is strongly reproductive in (x, v). In other
words, if we denote by [N~, N](x, «, a, 8) the distribution (4.1) for («, v) we have

(&, 0) ~ [N~, N](nx, n«, na, nf)

or, equivalently,
@~ N7 (nx,ny), U|u~ N(i¢, ite®/n)

for every n = 1, 2, - ... The corresponding function H is

H(u, v) = (u™, u™v?)
and by (3.2) we find that the statistic

W= n"Su' - a Y niSu Wt — 7%

is independent of (iz, ¥). The Laplace transform of the distribution of u is derivable from
(3.13) or by direct calculation, using well known properties of the inverse Gaussian

distribution and the Gaussian distribution. It turns out that not only is 1 independent of
(&, ) but, writing

r=n""Zui'-al, s=n"'Sui%?-a %
we have that for n > 1 the three statistics r, s, and (&, 0) are independent and
(4.5) r~T((n—-1)/2,nx/2), s~T({n-1)/2 nx/2).
Moreover,
X=r i=s"\ p=c/u, £=0/a
We also note that in the decomposition p = ¢ + w of Theorem 3.1 we have
d=a'(Q - (p/e)a), (@ - &a)®)
and that the two coordinates of ¢ are independent and satisfy
# (1 — (p/c)i)® ~ T'(%, nx/2), @ (b — &i)? ~ I'(%, nx/2).

Though it is somewhat incidental to the theme of this paper, we wish to point out the
existence of some natural exact tests for the [N~, N] model. Firstly, the independence of
r and s together with the distribution results (4.5) shows that the hypothesis of identical
diffusion coefficients, i.e. w? = ¢ or equivalently ¢ %y = k, is testable by an exact F-test.
Assuming »® = ¢% we may proceed to test identity of the drift coefficients u and £ From
the properties of ¢ noted above we find, writing now ¢, instead of ¢ to indicate the
hypothesis w? = ¢2, that

do =@ ' (1 — (p/c)id)® + @ (0 — &) = & {(c — pz)® + (7 — &)}
follows a I'(1, n/(2¢%))-distribution. Supposing that £ = u we may rewrite ¢o as
(4.6) do = (2@)7'(@ = ¢)* + 2a(£ - §)*

where

-~

£=(c +0)/(20).

A direct calculation, by means of Laplace transforms, shows that the two terms on the
right hand side of (4.6) are independent, each having a I'(%, n/(20?))-distribution. Further,
we have from above that these two terms are independent of r and s and that

cir+s~T(n—1,n/(262)).



780 0. BARNDORFF-NIELSEN AND P. BLASILD

Thus the quotient
4.7) 22) YT —c)?/(c’r + )

yields an F-test on 1 and 2n — 2 degrees of freedom for the hypothesis ¢ = u, while if this
hypothesis is adopted, hypotheses on £ may be tested by F-tests, with degrees of freedom
1 and 2n — 1, based on the quotient

2u(£ — £)%/{c?r + s + 2) (7 — ¢)?}.
The mean value of the numerator in (4.7) is
E{@2@) (0 — ¢)*} = o*/n + Y(c/p) (& — p)®

and this is always greater than o%/n unless ¢ = p.

(Suppose p > 0 and let p = £/u. The hypothesis £ = p can then be rephrased as p = 1 and
one may ask whether the exact F-test for p = 1 generalises immediately to any hypothesis
of the form p = po. This is not the case. While it is still possible to decompose gy into two
quadratic terms, as

do= {1+ pa»)@} @/ — ¢)* + {(1 + p*) B} ( — §)%,
the first term no longer follows a (gamma-) distribution with ¢ as scale parameter.) 0

A related example with similar properties is obtained by observing the time when the
second Brownian motion y(-.), of the previous example, first reaches level uc’, rather than
observing y(u). Here ¢’ is some positive constant and ¢ is assumed to be nonnegative.
Letting now v denote this second first passage time we arrive, in effect, at the following
situation.

ExaMPLE 4.2. Inverse Gaussian—inverse Gaussian. Let u ~ N~ (x, ¢) and v|u ~
N~ (u’k, A), where the four parameters satisfy x > 0, ¢ = 0, k > 0, A = 0. (Expressed in
terms of the two Brownian motions referred to above these parameters are x = c?/«? ¢
= u?/? k = ¢?/o® and A = £%/6°.) Setting

(4.8) a=y—2VkA
the probability density function of (u, v) may be written as
pu, v; X, ¥ &, A)

(4.9)
= Vxx exp(vx Ya + 2 VkN)b(u, v)exp(—{xu~" + ku*v™" + au + Av}/2)

where b(u, v) = (2m) ‘w2072, Thus (1, v) follows an exponential model of order 4 with

1

(4.10) 0=—%(x,k, a,N), t=(@u,u’v™,uv)

and
= (x""+ YU/x 7+ YOA)/ W), Vx/¥, ¥ (xx)/@N)).
Let the distribution (4.9) be denoted by [N~, N~ ](x, ¥, k, A) and set

1

r=n"Sui'—al, 25l

s=n""Sulv;' — @
Then, as observed in Barndorff-Nielsen (1983), the following properties hold. The three
statistics r, s and (&, ) are independent and
(@, 0) ~ [N~, N~ l(nx, ny, nk, n\),
r~T((n—1)/2, nx/2), s~T({n-1)/2, nk/2).

Moreover, x =r"", = (ri?)"", & = s and A = @%/(s0?).
Comparing (4.11), (4.9) and (4.8) we find that (4.9) is strongly reproductive in (u, v).
The corresponding H-function is H(u, v) = (u™, u®v™"), and v = (r, s).0

(4.11)
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As is well known, the inverse Gaussian distribution allows of “hierarchical analysis of
variance” in complete analogy with such analysis for normal variates, cf. Tweedie (1957).
From the properties of [N~, N] and [N~, N~], as discussed in Examples 4.1 and 4.2, it is
seen that these two models similarly provide analysis of variance procedures. We refrain
from discussing any details of this.

Next we present an example of a model which is reproductive without being strongly
reproductive.

ExamPLE 4.3. Inverse Gaussian—gamma. Suppose u ~ N (x, ¥) and v|u ~
T’(uc, \) where c is a known positive constant. The joint probability density function of u
and v is

(412)  p(u,v;x, ¥, A) = ﬁ exp(Vxp)u et exp(—xu~'/2 — au — Av)

Vor T'(cu)

.

where
a=%Y—clnA.

Again we have an exponential model for (u, v), this time of order 3 and with

0=—(%x,a,\), t= ™", u v
and '

=+ W Y e/ NV

From the form of the cumulant transform

k(@) = —%In x — V2x(a + cn A
it appears that if we denote the distribution of (, v) by [N~, T'](x, &, A; ¢) then

(@, v) ~ [N7, T'l(nx, n(a — ¢ In n), nA; nc),

so that this model is reproductive in (, v). The model is however not strongly reproductive

since the transfer from (u, v) to (&, U) is accompanied by a change of index, from ¢ to nc. O

Other examples of reproductive models that are not strongly reproductive are obtainable
by assuming that part of the canonical parameter of a strongly reproductive model is
known. For instance, if for [N~, N](x, k, a, 8) the parameter « is taken as known then one

TABLE 1
Reproductive exponential models for two-dimensional observations (u, v), obtained by suitably
coupling two of the models N, T, N~. The models are reproductive in (u, v). (c denotes a known
positive constant,)

definition

reproductive strongly
model . reproductive
u~ v/u~
[N-, N] N (x ¥) N (u, us® +
[N,N7] N(¢ o?) N~ (u?, \) +
[N7,N7] N (x, ¢) N~ (u?;, ) +
[T, N1 T'A, a) N (u¢, uo?) +
[T,N7] T'A, a) N~ (u’, B) +
[T, T] T'Q, a) T(uc, B) -

[N, T] N0 ¥) D(uce, B)
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has a model which is reproductive, but not strongly reproductive, in (z, v). The model
[N-, I'] of Example 4.3 is, however, not of this type since (4.12) is no longer exponential if
¢ is considered as unknown.

There are further ways of coupling two of the distributions N, I and N~ so as to obtain
reproductive exponential models, and Table 1 indicates the various possibilities (ignoring
the obvious [N, N] combination). It may be noted that the model considered in Example
1.1 is the submodel of the model [I', N~] determined by A = k = 1. This illustrates the fact
that a full exponential submodel of a strongly reproductive model need not be reproductive.

Higher order examples may be constructed by further coupling. Suppose, for instance,
that (u, v) ~ [N-, N"1(x, ¥ «, A), and that w | (&, v) ~ N~ (u’u, v) or w| (u, v) ~ N~ (%, »)
or w|(, v) ~ N ((u®> + vy, »). Each of these three combinations gives rise to an
exponential model which is strongly reproductive in (u, v, w).

While it is thus possible to construct a considerable variety of reproductive exponential
models, a general, explicit description of the mathematical form of these models is wanting.
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