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EFFICIENCY OF THE CONDITIONAL SCORE
IN A MIXTURE SETTING!

By B. G. LINDSAY

The Pennsylvania State University

The conditional score function is found to be generally fully informative
concerning a parameter of interest when the conditioning statistic S is suffi-
cient for the nuisance parameter and has an exponential family distribution.
Information is here measured by assuming the nuisance parameter to have
been generated by an unknown mixing distribution and then computing the
minimal Fisher information. The solution depends upon a study of the
geometry of centered likelihood ratios within the space of zero-unbiased
functions of S. The two-by-two table model is considered in detail.

1. Introduction. Consider the following problem: We observe a sequence of random
variables Xi, X, X5 - .. where the ith observation comes from the two parameter density
f(+; 6, ¢:). Here the real-valued parameter 6 is of interest; the values ¢, ¢2, ¢3, - -+ are
regarded as nuisance parameters. In this setting Neyman and Scott (1948) showed that
the usual asymptotic properties of maximum likelihood estimation fail to hold. In partic-
ular, 8 could fail to be consistent, or, even if it were consistent and asymptotically normal,
it could fail to have lowest asymptotic variance among such estimators.

A resolution of this problem which is sometimes appropriate is to model the ¢’s
themselves as independent and identically distributed random variables from an arbitrary
unknown mixing distribution . The resulting marginal density for X, is the mixture

(1.1) folx; 0) = J flx; 0, ¢) dQ(9).

In this formulation the sequence X;, X,, X5, --- is now an ii.d. sequence from the two
parameter model (4, @). Kiefer and Wolfowitz (1956) showed that in this model the
aforementioned inconsistency problem with maximum likelihood estimation of 6 is alle-
viated. This theoretically important result seems to have had no practical impact at the
time, as the new maximization problem is much more difficult. However, modern compu-
tational abilities have enabled recent use of this estimator (Heckman and Singer, 1982).

In this paper we are concerned with measuring the information about ¢ in the density
(1.1). The measure used herein, called minimal Fisher’s information, was suggested by
Stein (1956) and adapted for the mixture problem by Lindsay (1980). The measure has
been further developed by Begun, Hall, Huang, and Wellner (1983).

In an important class of models, there is a natural competitor to the Kiefer-Wolfowitz
estimation method which has substantial computational advantages. In these cases there
exists a conditional likelihood which seems to carry much of the information about 6.
Discussion of the issue as to when the conditional likelihood has all the information about
a parameter of interest has been presented from many points of view. This paper considers
the Fisher information in i.i.d. replications from model (1.1). Although Basawa’s (1981)
results appear similar, in his model the entire string of observations X;, X;, X3, --- comes
from a single realized value ¢ of the mixing distribution rather than from a sequence of
realized values ¢1, ¢z, ¢z, + -+

Before discussing the general nature of the results herein, we further introduce the
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models of interest. Suppose that for density f(-; 6, ¢) there is a minimal sufficient statistic
S = S(0) for ¢ when 8 is fixed. Suppose log f is differentiable in § and that U = D, log f.
Then the conditional score function is defined to be

(1.2) U°=U-EU|S).

Its value at 6, can also be derived as the #-derivative of the conditional (given S(,)) log
likelihood. We illustrate with two common exponential family structures: if

(1.3) flx; 0, ¢) = exp{fy + ¢s — (6, $)},
then U=y — Eo(Y|S = s). If
(1.4) ' f(x; 8, ) = exp{¢s(6) — (6, $)},

then U = ¢[S"(8) — Eo{S"(6)| S(8)}].

In the model (1.3), and quite generally when S is free of 6, the conditional score is free
of the nuisance parameter. This model can arise as a result of paired comparisons, where
the treatment effect § is represented by a difference in natural parameters. Several
examples are treated in Section 6. We now review briefly results for conditional score
methods which can be found in E. B. Andersen (1973). The conditional score yields directly
an estimating equation for §:

ZUf = E{YL - EB(YL I St)} = 0:

the solution to which is called the conditional maximum likelihood estimator. Under
regularity conditions this estimator, normalized, has an unconditional asymptotic variance
under the mixture model which is the inverse of the conditional score information i. =
E(U®* If, as will be shown, i. is the minimal Fisher information for the density, then
conditional maximum likelihood estimation is fully efficient.

In the model (1.4), the conditional score depends upon the nuisance parameter but only
as a weight, and quite generally the conditional score eliminates potential score bias caused
by the estimation of ¢. Details can be found in Lindsay (1982). In this setting an alternative
to the Kiefer-Wolfowitz joint maximization over (4, @) would be to estimate @ as §(6)
from maximization over @ of the marginal density of (S:(8), - - -, S.(8)) for 6 fixed, then
estimating 6 from the conditional score by

0=Z2E§0(®|X)[S!(0) — E{Si(0)]|S:(0)}].

The results in this paper concerning i. suggest that this method is potentially fully efficient.

The method of approach in this paper will be a geometric one. Thinking of conditional
expectations as L, projections, we see that the conditional score U° = U — E(U| S) is the
component of the #-score U which is orthogonal to the space of S-functions. Full inform-
ativeness of U* will devolve to the issue of determining whether E(U | S) is in the subspace
of the S-functions generated by the nuisance parameter scores.

The result is that in the natural interior' of the parameter space the conditional
information i. quite generally equals the minimal Fisher information. If the null parameter
point is on the boundary, then the answer depends on the structure of E(U|S), but as
discussed in Remark 7.1 a continuity extension of the information to the boundary would
make the conditional score everywhere fully informative.

This paper has the following organization: Section 2 introduces directional score
functions and minimal Fisher information, then argues their relevance to the measurement
of information. Section 3 briefly presents a direct minimization approach to measuring
minimal information, then identifies a critical decomposition of the directional score
functions. In Section 4, the interior of the parameter space is identified and the informa-
tiveness of the conditional score is shown by appeal to the properties of convex sets in
topological vector spaces. A famous example, the two-by-two table, is considered in depth
in Section 5. The next-to-last section deals with parameter points on the boundary; it is
followed in Section 7 by several remarks.
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2. Minimal Fisher information. This section defines minimal Fisher information
and outlines its relevance. The next two sections treat it in a general fashion, returning to
the mixture application in Section 4. The fundamental idea can be found in Stein (1956)
with extensions in Lindsay (1980). Let f(-; 6, ¥) be a two parameter family of densities, §
real-valued, with a cross product parameter space 6 X ¥. In the mixture application, ¢ will
become the unknown mixing distribution @. The problem of estimating 8 at the null point
wo = (6o, Yo) is at least as difficult as estimating 7 at 7 = 0 in any one-dimensional parametric
subfamily w(r) = (6o + 7, ¥,), where 1 is defined in a neighborhood of 0 and v, picks out an
element of ¥ for each value of 7. Given a smooth family w(-) we define the likelihood ratio
function

L (1) = L(w(7), w(0)) = fAX; w(7))/X; w(0)).

With a differentiability assumption we may define the directional score statistics corre-
sponding to w(-),

U,=D.L,|.=0;
and the information corresponding to w(-) at wo,
iu(wo) = Eo(U.,)%

The geometric term “directional” score is meant to refer to directions in the space of
likelihood ratio functions. For example, if the sample space is & = {x, - - -, x,}, then the
function L.(7) on % can be coordinatized as a vector (L.(7)(x1), -« -, L.(7)(x:)). In this case
the score statistics U, = (U, (x1), - - -, U,(x,)) indicates the direction in Euclidean ¢-space
from which L, (7) approaches L,(0) = 1.

Further regularity conditions of the Cramér-type are required on the family {L.(7)} to
ensure that the information i, can be used in the usual fashion for lower bounds. Typical
assumptions allowing the second order interchange of integration and differentiation yield

Eo(U,) =0 and i,=—E¢{D?log L.(1)}|o.

The minimal Fisher information i*(w) is defined to be the infimum of the informations
i,(wo) over all functions w(-) for which L,, satisfies regularity conditions whose specification
will occur later in this section.

If @ is vector-valued, then one may define the minimal Fisher’s information in the
direction « (a unit vector) to be the information in the least favorable one-dimensional
family of the form w(r) = (6o + Ta, ¥.). We note that if y is real-vector valued and if

1= [T I
Iy, I,

is the Fisher information matrix for parameters (6, y), then the minimal Fisher information
equals the marginal Fisher information about 6:

(2.1) i* = Iop — Iy Iy I,

(see Stein, 1956; Lindsay, 1980, Section 3.2).

Lindsay (1980) noted that in a rich parametric setting such as the mixture model, one
may be faced with unusual boundary problems in that there will exist smooth one-sided
sequences of likelihood ratios L,(7), for 7 > 0 (or 7 < 0), whose analytic extension to 7 < 0
(or 7 > 0) define true likelihood ratios which do not, however, come from the parameter
space. This one-sidedness arises naturally in the mixture setting from such families as
{w(ry =@ +7,1—7)Q+ 7P),0 =1 =1}.

Although one might define the smooth interior of the parameter space based on the
extendability of the likelihood ratios, in an information sense it is more productive to focus
on the possible directional score functions; that is, the sets of directions from which L,(7)
may approach L,(0) = 1. These sets may differ depending on whether 7 | 0 or 7 1 0.
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Correspondingly, we define an upper directional score U,,+ to be the right hand derivative
of L.+ () at 7 = 0 for a smooth one-sided parameterization {w*(r) = (6 + 7, ¥,) : 7= 0}; a
lower directional score U, corresponds to a left-sided parameterization {w (1) = (6 +
7, ¥,):7 = 0}. The corresponding informations are i, and i,—. (Extensions to dim § > 1 are
treated in Remark 7.2.) We will say that wo = (6o, ¥o) is in the symmetric score interior of
the parameter space if the set of upper scores with finite information and the set of lower
scores with finite information are nonempty and equivalent in the sense that each is dense
in the other with respect to the Ly-metric {Eo(g — h)?}"/2. A symmetric score boundary
pointfails to have this property. The scores are the directions from which L, (7) approaches
1; at a symmetric score interior point the set of directions are independent of 7’s sign. In an
undimensional problem, score symmetry corresponds to the equality of the left and right
derivatives of the log likelihood.
We define the upper and lower minimal Fisher informations to be

** =infli (@)}, 7 = inf{i-(w0)},

where the infima are taken over one-sided families of likelihood ratios satisfying the
following regularity conditions:

(1) Eo{L.(1)} =1, (2) D:Eo{L.()}|s=0t = Eo(U%) =0, (3) DIEo{Lu(7)}s=0= = 0.
We define
7 = min(i**, i*7)

to be the modified minimal Fisher information. By working with i** rather than i*, we will
avoid the need to consider any but one-sided approaches to the null point wo.

A question remains as to whether i** is relevant as a measure of information. The
answer as provided by Lindsay (1980) is yes on several counts. The inverse information
(z**)”! provides a Cramer-Rao type lower bound for unbiased estimation of . It also
provides a lower bound for the asymptotic variance of those consistent asymptotically
normal estimators {7} which are smooth in the sense that they are uniformly median
unbiased. That is, P, [T, < §(w)] — % uniformly for w in a neighborhood of w,. This is, of
course, a weaker condition than uniform approach to asymptotic normality.

In effect one can generally use i** just as one would use Fisher information for
generating lower bounds. Of course the importance of any such bound largely lies in its
attainment by some estimator. In the problems here discussed there is a conditional
likelihood score U° = U — E[U| 8] with information i. = Eo(U°)? so that when in Section
4 it is demonstrated that i. = i**, we will have asymptotic lower bounds which are generally
attained by the conditional maximum likelihood estimators.

The most obvious and useful applications of this approach arise from assuming that S
has an exponential family density in ¢ for each fixed 6,. Looking ahead to Corollary 4.4
and Theorem 5.1, we find that the efficiency of the conditional approach is one if the null
mixing distribution @, is sufficiently “diffuse.” If S has an absolutely continuous distribu-
tion, this would mean any @, which is not concentrated on a topologically discrete set. If
S has a finite number K + 1 of points of positive mass, diffuseness means that @, has more
than K/2 points of support. Corollary 5.2 applies this result to the two-by-two table. In
Section 6, consideration is given to the problem’s nature and solution when @, does not
satisfy the diffuseness criterion.

3. Minimization and decomposition. We first describe in outline a direct minimi-
zation approach to finding minimal Fisher’s information. Utilizing the fact that the
informations i, are the second derivatives at 7 = 0* of E[log L...(7)], one may be able to
generate “least favorable” directional scores by defining for each

w*p(1) = (6o + 7, ¥F)

where ¥} minimizes — Eo[log L(6y + 7, {; 6o, ¥o)] over ¥ in ¥. Then the minimal Fisher
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informations are

o

. 2
l = lw:tLp = wo(UmiLF) .

Although this approach can be generally useful to find minimal information and indeed
generates the correct solution for the mixture problem, the geometric arguments to follow
provide a greater insight.

We first decompose the scores U,, into a #-component and a y-component, which yields
a geometric structure for identifying whether the conditional score U° can be found as a
directional score U,,.

Let w(r) = (6o, ¥-) be defined for 7 = 0, and let

d
Vi, = — L(w(t), wo) | r=0*.
dr

The upper and lower directional scores corresponding to w*(r) = (6, + 7, ¥»), 7 = 0, and
w (1) = (0o + 7, Y—,), 7= 0, are

(3.1) Us=U+V,, U-=U-YV,

respectively. This gives i** and i *~ as the infima of Eo(U + V,,)? and Eo(U — V)2 over the
class of y-scores V.. Under regularity assumptions, the functions V, lie in the space of
functions of the minimal ¢-sufficient statistics S which satisfy Eq(V) = 0. Another element
of this space is E[U|S], which is the projection of U onto that space. Since it minimizes
Eo(U — V)% over V in that space, it follows that if there exists w(-) such that + V, is
arbitrarily close to E(U|S), then i. = Eo{ U — E(U|S)}? = i**. Thus the problem devolves
into a geometric one involving the Hilbert space of zero-unbiased functions of S with
covariance inner product.

4. The geometry of the likelihood ratios. For the mixture model, with the mixing
distribution @ playing the role of nuisance parameter 1, a large class of parametric families
are generated at null (6,, Qo) by the function

(4.1) (1) = (6, (1 — ¢7)Qo + cTP), c=0, O<secr=1,
which in correspondence with (3.1) yields upper and lower scores of the form, for ¢ = 0,
Uss = U % c[L{(65, P), (65, Q)} — 1].

For fixed null point wo = (6o, Qo), with 8(¢) denoting point mass at ¢, define the centered
likelihood ratios to be

V(¢) = L{(6o, 8(¢)), wo} — 1

and

V(Q) = L{(6o, Q), wo} — 1.

For the following treatment, we treat the space of finite variance (under wo) functions
of S as an L, — space with covariance inner product. The subspace ¢ is defined to be the
linear subspace consisting of finite variance functions of S with zero mean (wo). We assume
that Vi(¢) is in & for every ¢, hence so are the V() when they have finite variance, which
will certainly be true when @ has finite support. Let # be the convex hull in . of the set
{V(¢): ¢ € ®}. The closure of #; written cl (#), equals the closure of the set {(V(@)
L:: @ a mixing distribution}. The closure of the set of positive rays from 0 through points
in 7, here written

4.2) ¢=cl{cg € L:¢=0,q€ #)},

is the closed convex cone with apex 0 which represents all possible mixture scores generated
by (4.1), plus their limit points. The point 0 = V(Q,) is a support point of % if there exists
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F1c. 1. The function V(¢) traces out the bowl shape. The set # consists of the bowl and its interior.
The set € is the half plane containing #.

afunction WeE &£, W0, such that Eo(WH) < 0 for all H € ¥. An equivalent requirement
is that Eo{ WV(¢)} = O for all ¢ € ®@. In Euclidean space, the support points of a closed
convex set are those which have support hyperplanes to the set passing through them and
so are equivalent to the usual boundary points. The following theorem is a generalization
of the finite dimensional result that the union of the rays from a point p of a convex set
through other points of the set are either the whole space, if p is interior to the set, or
contained in a half space, if p is a boundary point.

TueoreM 4.1. (Klee, 1969, page 244). If V is a point of a convex set € in a locally
convex space E, then V is a support point of % if and only if the union of all rays from V
through the various points of ¥ fails to be dense in E.

CoOROLLARY 4.2. If0 is not a support point of the convex set € defined in (4.2), then
(6o, Qo) is a symmetric score interior point of the mixture parameter space and

(4.3) U= = =

ProoOF. Note that —# and —% are the convex hull and closed convex cone correspond-
ing to the lower score functions —V(¢), and that Theorem 4.1 holds for —% also. Clearly 0
is a support point for one of % or —% if and only if it is a support point for both. If it is not
a support point, then the limit sets of upper and lower scores, being of the form {U+ V:V
€ ¢}and (U+ V:VeE— €},bothequal {U+ V: Ve £}, and so (6y, Qo) is a symmetric
score interior point of the mixture parameter space. It also follows that E(U|S) is in =%,
so (4.3) holds.

A model of low dimension for which the ideas may be pictorially represented is the
paired Bernoulli model. Let Y and Z be independent 0 — 1 random variables with
probabilities of success

py=-exp(d + ¢)/{1 + exp(0 + ¢)}
(4.4) and

p- =exp(p)/{1 + exp(¢)}

respectively. This is a model of form (1.3), with S = Y + Z as a complete and sufficient
statistic for ¢ when 6 is fixed. We may graphically represent a function V in % as a
three-vector with coordinates (V(0), V(1), V(2)). The constraint Eo{V(S)} = 0 =
N2 _o Po(S = s) V(s) defines the two-dimensional space & pictured in Figure 1, in this case
with wy = (6o, Qo) = (0, 8(0)). The set # is the convex hull of the bowl-shaped curve
{V(¢): —0 < ¢ < }. The cone % is the closed half-space containing . Its boundary con-
sists of constant multiples of the ¢-score function V' = D, V(¢) | ., = D,log f(X; 6, ¢) |.,. In
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Figure 1, it can be seen that V(wo) = 0 is a support point. We note, however, that if @, were
a two point mixture, say ad(¢o) + (1 — a)d(¢1), the picture would differ in that the point
V(wo) = 0 of % would be on the line joining the vectors V(¢o) and V(¢1) and so be in the
interior of #, thus making 4 = %, Thus Corollary 4.2 applies to two point mixtures in this
case. This result will be generalized to larger sample sizes in Section 5, after developing
some analytic techniques to identify null points we with %(wo) = Z(wo).

From Corollary 4.2 we see that the critical issue is to determine if 0 is a support point
of %. This may be replaced with a probabilistic criterion as follows.

THEORP;M 4.3. If the statement
E(ﬁn,¢)(W) =0 ae. [QO]
implies that W = 0, then %(wo) = £ (wo).

PrRoOOF. Suppose that ¢ # %, so that by Theorem 4.1 there exists W 5 0 such that
Ey{(WV($)} =0 forall ¢ €.

When we integrate the left side d@o(¢), we get Eof WV(Qo)} = Eo( W-0) = 0. It follows that
E4 (W) =0 a.e. [Qo].

We conclude this section with a corollary which indicates that in an exponential family
setting, if the true mixing distribution is sufficiently rich, then the conditional score is fully
informative. In the next section this result will be amplified for a specific example.

COROLLARY 4.4. Suppose for fixed 6, the statistic S has a univariate exponential
family density with natural parameter ¢. If the mixing distribution €, is not a discrete
measure with topologically discrete support points, then the conclusions of Corollary 4.2
hold.

Proor. The function Eg4,{ W(S)} is analytic in ¢ and so when W # 0 it can have only
a finite number of zeroes in any interval. Thus it can be zero almost everywhere @, only
if @ is a discrete measure with topologically discrete support points.

5. The two-by-two table. A classic problem asks if the marginal totals of a 2 X 2
table are noninformative for the log odds ratio of the table. The model is as follows: let
(Y, Z) be independent binomial random variables with respective parameters (m, p,) and
(n, p.) with p, and p. as in (4.4). The parameter of interest is the log odds ratio §. The
question, as posed here, has the following expression. Given a sequence of pairs (Y, Z,), i
=1, ---, N generated from a common @ but with ¢, varying as if generated by a random
sample from an unknown mixing distribution @, does the conditional distribution of
{Y;i=1, ..., N} given the complete and sufficient statistics {S;, =Y, + Z;,i=1, ---, N}
contain all the information about §? The answer is that if the true mixture @, has more
than (m + n)/2 points of support in R, then the null point is in the symmetric score interior
and the conditional information is both the upper and the lower minimal Fisher informa-
tion. On the other hand, if @, has (m + n)/2 points of support or fewer, then, as will be
seen in Section 6, exact computation of the minimal Fisher informations i** is not
elementary. However, see Remark 7.1.

THEOREM 5.1. Suppose that statistic S has an exponential family density under
parameter § with K + 1 discrete points of support. If W = W(S) satisfies E,(W) < 0 and,
in addition,

(5.1) E (W)=0
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for more than K/2 distinct points ¢ in the interior of the parameter space, then W = 0
with probability one.

Proor. Let {so, - --, sk} be the support points of the exponential family density, when
expressed in the canonical form exp{¢s — k(¢)}. We may write

Ey (W) = Y& w(s)exp{¢s, — k(¢)}
which has the same sign and zeros as
H(¢) = Y w(s;)exp(¢s.).

It can easily be shown that if W # 0 then any such function has at most K zeroes counting
multiplicities. We cite, for example, Karlin and Studden (1966, page 10). The points ¢
satisfying (5.1) are maxima and so are even order zeros, leading to the conclusion of the
theorem.

COROLLARY 5.2. In the two-by-two table model, if Qo has at least (m + n + 1)/2
points of support, then oo = (65, Qo) is symmetric score interior point with

i = .

= =
Proor. In this example S = Y + Z has, for 6 fixed, an exponential family density of
the form

P{S =s; (0, $)} = C(s) d(8, $)exp(¢s).
Theorem 5.1 together with Theorem 4.3 gives the result.

6. The symmetric score boundary. Although the symmetric score interior points
(60, Q) must have a symmetry of information, the same situation will arise if Eo(U|S)
falls in € N —%, in which case we still have {** = {** = {*~ = .

The objective of this section is to identify when this occurs and to give several examples.
We also give an example of a point of information asymmetry. Consider the one point null
mixing distribution @y = 8(¢o). Suppose that V(¢) is differentiable (two-sided) in ¢ at ¢y,
with a derivative V' which is in .. Then clearly V' is in ¥ N —%. More generally, if @, =
Zmd(¢.) is a k-point mixing distribution, the 2k — 1 score functions corresponding to the
parameters (1, -« -, Tr-1, ¢1, + -+, ¢z) are all in € N —%. This implies that if E(U|S) is
expressible as a linear combination of the parametric score functions, the conditional score
is best from above and from below. In this case the marginal Fisher information about ¢
(equation (2.1)) is also the conditional information.

The atomic mixing distributions §(¢) would appear to be the most likely candidates for
finding asymmetry in the information, being in some sense the extreme points of the space
of mixing distributions. The following theorem formalizes this intuition.

THEOREM 6.1. Suppose Eo{ U(wo)| S} € B(wo) for every wo of the form (6o, 8($)). If Qo
= 2m8(¢,) is a finite point mixing distribution, then for w§ = (6o, Qo) we have

Eo{U(«})| S} € 6(u¥).

Proor. Suppose first Eof U(6o, 6(d)))| S} has an explicit representation for each j

J flx; 60, $) QS | )
f(x; 00) (I)J)

as an element of %(6o, 6(¢;)). We note that for a finite range of j we may choose @(- | ¢,) in
such a way that c(¢,) = ¢, some constant greater than zero, and we do so.

c()) 1
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Since

f U(bo, $)f(x; 60, ¢) dQo(d)
U(wf) =

J’ f(x; 60, ¢) dQo(¢)

we have

J’ Eo{U(6o, ¢)| S}f(x; 6, ) d@o (o)
Eo{Uw)|S} =

J’ f(x’ 00; ¢) dQ0(¢)

¢ f { f f(x; 60, 6) dQ&|$) — flx; 00,4))} d6y ()

J f(x; 6o, ¢p) dQo(9)

f f(x; 60, $) dQ*($)

=c —1s,
ff(x; bo, ¢) dQo($)

where Q*(4) = [ Q(A | ¢) dQo(¢). Thus we have an explicit representation of Eo{ U(w§)| S}
as an element of €(wd).

To complete the proof, we note that even if explicit representations are impossible we
can find a sequence (¢, @n(-|¢)) which generates points in %(¢o, 6(¢)) approaching
Eo{U(6,, )| S}. They will yield a corresponding sequence (c.., @) which generates points
in 4(wh) approaching Eo{ U(wh)| S} in the Lo(w§) sense.

COROLLARY 6.2. If X has an exponential family density of the form
(6.1) f(x; 8, ¢) = exp{ly + ¢s — (0, $)}

and if Eo(Y|S) is linear in S, then E {U(w) | S} is in @(wo) N —%(wo) for every wo =
(6o, Qo) where Qo is a finite mixing distribution, and

**(wo) = i**(wo)= i* (wo) = ic(wo).

ProoF. In this model with wo = (6o, 8(¢p)) the projected 6-score is Eo(U|S) = Eo(Y | S)
— Ey(S) and the ¢-score is V' =S — Ey(S). Thus Eo(U | S) is in €(6, 8(¢p)) N —%(6o, 5(¢))
if Eo(Y | S) is linear in S. We extend to finite ppint distributions Qo by Theorem 6.1.

This gives us now a simple linear criterion for testing when there is no inherent
unconditional information loss in conditioning regardless of the unknown mixing distri-
bution. Two of the following examples have the linear structure, two do not.

ExXAMPLE 6.1. If (Y, Z) are jointly independent normal with means (8 + ¢, ¢) and
variances (1, 1), then S = Y + Z and linearity holds:
Eo(Y|S) = %(S + 6).
ExaMpPLE 6.2. If (Y, Z) are jointly independent Poisson variables with means

(exp(0 + ¢), exp ¢), then S = Y + Z and linearity holds:
Eo(Y|8S) =Se’/(1 + ¢°).
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ExaMpLE 6.3. If (Y, Z) are jointly independent exponential variables with means
((@+¢)",¢7"),thenS= Y + Z and

~_ )8/2 for 6=0,
E[Y|S]= {{exp(aS) —1- 65)/[0{exp(dS) — 1}] for 650.

ExAMPLE 6.4. In the paired binomial example of Section 5, the mean is a complicated
nonlinear function of S except where § = 0, in which case Eo(Y|S) = mS/(m + n). See
Harkness (1965).

Now Examples 6.3 and 6.4 are candidates to be points of score asymmetry for which the
conditional information is not both the lower and the upper information. We treat Example
6.4 further, extending slightly our geometric techniques for the purpose of illustration.

If Eo(U|S) is not linear in V' at null point wo = (6, 8(¢)), we may next reduce the
problem by one dimension by considering %, the subspace of ¥ generated by those
functions of S which are uncorrelated with V’. In the exponential family model (6.1), this
means functions g such that Cov{g(S), S} = 0. Note that V(Q) is in % if and only if E¢(S)
= Ey(S). Define %, and 5% to be the sets corresponding to restrictions of ¥ and # to %.
Define p = E(UV’)/{E(V’)}. then E(U|S) — pV"’ is the projection of U onto %. If it is
in % or —%,, then Eo(U | S) is in % or —%, and so the conditional score is correspondingly
upper or lower fully informative.

EXAMPLE 6.5. Suppose that in the paired binomial model of Section 5, one has 6, =
log 2, @ = §(0), m = 2, and n = 1, the sample sizes having been chosen to make % two-
dimensional. In Figure 2 it is demonstrated how + . sits in %, and the ray in —%, upon
which

4 16 11
EWU|S)—-pV'=EX|S)—=—=—[S——
W1$) ~pv' = E(¥I8) -5 -2 (s -5
may be found is illustrated. The conditional score is lower fully informative but not upper,
SO wo is a point of score and information asymmetry.

7. Some remarks.

REMARK 7.1. When one has parameter point wo which is in the symmetric score
boundary of the parameter space and for which E(U |S) is not in ¥ N —%, then, as seen in
Example 6.5, the information problem involves a careful analysis of the geometry of €. If
for some wy, E(U|S) is not in ¥ U —%, then in theory it may be possible to construct a
smooth consistent asymptotically normal estimator {7,} which has a smaller asymptotic
variance at wo than the conditional maximum likelihood estimator. We do note, however,
that such an improved estimator generally cannot have an asymptotic variance Vr(6, @)
which is weak convergence continuous in . For example, in the exponential family case
(6.1), one can always find symmetric score interior points (6, P,) with P, —,, Q. Since the
lower bound for Vr(f, P,) is i.' = {[ Es,(U°)* dP,}”", the weak continuity of i, ensures
that a lower bound at wo for continuous variances Vris iz! = ([ Eg,(U)? dQo} . If Vris
discontinuous, we note it may be difficult to estimate sensibly. Thus it is held that a
detailed analysis of the cones is usually unnecessary, with the conditional score being the
only generally satisfactory base for inference in the mixture setting.

REMARK 7.2. If the parameter of interest @ is of dimension higher than one, then one
should consider one dimensional families of the form w(r) = (6, + 7a, ;) for each unit
vector a. The decomposed scores (3.1) are now of the form

a-U+V,
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ray upon which V(wg)=0
E Luls1-pV'lies

F16. 2. Functions of S which are orthogonal (Ey) to 1 and V' lie in this two dimensional space. The
function E(U|S) — pV’ lies in the cone generated by #5.

where V,, is generated by the likelihood ratios of {w(r) = (6o, ¥,), 7 = 0}. As in the one
dimensional case, the scores are symmetric at wo if for each V,, there exists w* with V, =
—V%. Once again, the full informativeness of the conditional likelihood depends on whether
E(U|S) can be expressed as V,, with this result guaranteed in the mixture setting if the
cone of centered likelihood ratios ¥ is dense in the space % of zero-mean functions of the
sufficient statistic S. Thus the conclusions in this setting match those of the unidimensional
case.

REMARK 7.3. Two likelihood models are possible for a sequence of observations X;,
..+, X, from the mixture density. One is the mixture likelihood:

L6, Q) =1I f(x; 0, Q).

The other conditions upon the realized values ¢, ---, ¢, of the mixture @, giving a
likelihood of the Neyman-Scott type

L0, ¢1, - -+, ¢n) =1 f(X., 0, $2).

The mean square error of an estimator 7, under the mixture model is simply the average
of its mean square error over samples ¢1, - - -, ¢, from the mixture @. As such, one may
conclude that an estimator which performs optimally for every sequence will certainly do
as well in the mixture model. On the other hand, an estimator which is best in the mixture
model may be far from the best along individual realized sequences; however, those
estimators which beat it along one realized sequence must lose to it along other sequences
in order for the mixture estimator to be superior on the average. More comments on this
problem may be found in Lindsay (1980, 1982).
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