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TESTING WHETHER NEW IS BETTER THAN USED WITH
RANDOMLY CENSORED DATA®

By YuanN YAN CHEN, MYLES HOLLANDER AND NAFTALI A. LANGBERG

Syracuse University, Florida State University, and University of Haifa

A life distribution F, with survival function F = 1 — F, is new better than
used (NBU) if F(x + y) < F(x)F(y) for all x, y = 0. We propose a test of Hy: F
is exponential, versus H; : F'is NBU, but not exponential, based on a randomly
censored sample of size n from F. Our test statistic is J = [ [ Fu(x + y)
dF.(x) dF,.(y), where F, is the Kaplan-Meier estimator. Under mild regularity
on the amount of censoring, the asymptotic normality of ¢/ ;, suitably normal-
ized, is established. Then using a consistent estimator of the null standard
deviation of n'/2J ;, an asymptotically exact test is obtained. We also study,
using tests for the censored and uncensored models, the efficiency loss due to
the presence of censoring.

.

1. Introduction and summary. Consider a life distribution F, i.e. a distribution
function (d.f.) such that F(x) = 0 for x < 0, with corresponding survival function F =1 —
F. F is said to be new better than used (NBU) if

1.1) Fix +y) < F(x)F(y) for =x, y€[0, x).

(Inequality (1.1) may be interpreted as stating ‘that the probability F(x) that a new item
will survive to age x is greater than the probability that an unfailed (used) unit of age y
will survive an additional time x. That is, a new unit has stochastically greater life than a
used unit of any age.) The dual notion of a new worse than used (NWU) life d.f. is defined
by reversing the inequality in (1.1). The boundary members of the NBU and NWU classes,
obtained by insisting on equality in (1.1), are the exponential d.f.’s.

The NBU class of life distributions has proved to be very useful in performing analyses
of lifelengths. These d.f.’s provide readily interpretable models for describing wearout, play
a fundamental role in studies of replacement policies (Marshall and Proschan, 1972), shock
models (Esary, Marshall, and Proschan, 1973), multistate coherent systems (El-Neweihi,
Proschan and Sethuraman, 1978), and have desirable closure properties (c.f. Barlow and
Proschan, 1975).

Hollander and Proschan (1972), hereafter abbreviated HP (1972), developed a test of
Hy: F(x) = exp(—x/p), x = 0, n > 0 (n unspecified) versus H; : Fis NBU, but not exponential,
based on a random sample Xj, - - -, X,, from a continuous life d.f. F. Let D(x, y) = F(x)F(y)
— F(x + y). The HP (1972) test is motivated by considering the parameter

y(F) =f f D(x, y) dF(x) dF(y) =%—f J F(x + y) dF(x) dF(y) =% — A(F),
0 0 1] 0

say, as a measure of the deviation of F' from exponentiality towards NBU [or NWU]
alternatives. The HP (1972) test rejects H, in favor of H; if A(G,) is too small, where G, is
the empirical d.f. of Xi, ..., X,; Ho is rejected in favor of Hi:F is NWU, but not
exponential, if A(G,) is too large. For further details about the parameter A(F) see HP
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(1972), and for other discussions of the HP (1972) test see Hollander and Wolfe (1973), Cox
and Hinkley (1974), and Randles and Wolfe (1979).

In this paper we consider a randomly censored model where we do not get to observe
a complete sample of X’s. Let Xi, X;, --- be independent identically distributed (i.i.d.)
random variables (r.v.’s) having a common continuous life d.f. F. The X’s represent
lifelengths of identical items. Let Y1, Y, - - be ii.d. r.v.’s having a common continuous
df. H. The Y’s represent the random times to right-censorship. The censoring d.f. H is
unknown and is treated as a nuisance parameter. Throughout we assume the X’s and Y’s
are mutually independent and the pairs (Xi, Y1), (Xz, Y3), --- are defined on a common
probability space (R, 4, P). Further, let I(A) denote the indicator function of the set A,
andfori=1, ..., n,let Z; = min(X;, Y;), and §; = I(X; = Y:). Using the incomplete data set
(Z1,81), + -+, (Z,, 8,), we wish to test Hy against H;. Due to the censoring, the empirical d.f.
G, corresponding to F cannot be computed. Thus, we propose to reject Hp in favor of H;
for small values of

.

(1.2) AF,) =1 dn = J J Fu(x + y) dFa(x) dF.(y)
0 0

where F, is the Product Limit Estimator (PLE) of F, introduced by Kaplan and Meier
(1958) and defined by

(1.3) Fo(x) =1— Fax) =11 n—1i/(n—i+1}o,

{i:Zp)=x) {(
where Z;) < + -+ < Z» denote the ordered Z’s, and &), - - -, 8n) are the &’s corresponding
to Zy, + -+, Zn respectively. In (1.3), we treat Z, as a death (whether or not it actually is)
so that 8,y = 1. Furthermore, although our assumptions preclude the possibility of ties, in
practice ties will occur. When censored observations are tied with uncensored observations,
our convention, when forming the list of the ordered Z’s, is to treat uncensored members
of the tie as preceding the censored members of the tie. For strong consistency of the PLE
see Peterson (1977) and Langberg, Proschan, and Quinzi (1981) and for strong uniform
consistency see Foldes and Rejto (1981).
For computational purposes, it is convenient to write </ as

JS =31 Fu(2Z) {(dF.(Zw))? + 2 ¥, FuZiy + Z)) dFu(Zw) dF.(Z),

where dF,(Z) = Fu(Zi-1) — Fu(Z).
In Section 2 we establish the asymptotic normality of the sequence n'/*{J — A(F)}
under the following assumptions:

(A.1) The supports of F and H are equal to [0, ),
(A.2) sup{[F(x)]"*[H(x)]™, x € [0, ©)} < o, for some 0 < & < 1.

Condition (A.2) restricts the amount of censoring allowed in the model. To see this in a
simple case, consider the proportional hazards model where H = F¥ for some 8 > 0. Then
P(X; <Y = (B8 + 1), and Condition (A.2) implies that 8 < 1. Thus, in the proportional
hazards model, the J test is appropriate only when the expected amount of censoring
P(Y, < X)) is less than 0.5.

The null asymptotic mean of </ ; is %, independent of the nuisance parameters p and H.
However, the null asymptotic variance of n'/?J,* does depend on p and H and must be
estimated from the data. A consistent estimator, 6%, is given by (2.4). The approximate
a-level NBU test rejects Hp in favor of H; if n'/?{J 5 — (Y4)}6 ;' < —z, where z, is the upper
a-percentile of a standard normal distribution. This asymptotically exact test is, under
suitable regularity, consistent against all continuous NBU alternatives. Section 3 considers
the loss in efficiency due to the presence of censoring. Section 4 contains an application of
the J; test to some survival data.
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2. Asymptotic normality of the NBU test statistic. In this section we establish
the asymptotic normality of the test statistic J, defined by (1.2). Let K(¢) = F(t)H(¢), t
€ (—o0, ), and let {¢(¢), t € (—oo, )} be a Gaussian process with mean zero and covariance
kernel given by:

_ = w
@.1) E{6()6 ()} = F(t)F(s) JO {K(2)F(2)} " dF(2), 0=ss=t<

0, s<0 or t<O.
Further let Z = max{Z;, i = 1, .-+, n}, and let W,(t) = n'2{F,(min(¢, Zy))) —
F(min(¢, Z))}, n =1, 2, - ... Unless otherwise specified, all limits are evaluated as n —

o, and all integrals range over (—o, ). The main result of this section is Theorem 2.1.

THEOREM 2.1. Assume that Conditions (A.1) and (A.2), given in Section 1, hold.
Then n* 2{J ¢ — A(F)} converges in distribution to a normal r.v. with mean zero and
variance o7, given by:

22) o’= J J J J E[{o(t + s) — 2¢(t — 5)}

A{o(u + v) — 2¢(u — v)}] dF(t) dF(s) dF(u) dF(v).

In the proof of Theorem 2.1 we use the result that our conditions (A.1) and (A.2) imply

(A.3) the processes {W,(t), t € (—, ®)} converge to a Gaussian process with mean zero
and covariance kernel given by (2.1).

Result (A.3) is a particular case of Gill’s (1981) Theorem 2.1 with A(f) = F(¢t). Gill’s
Condition (2.1) for A(¢) = F(t) follows easily from (A.1) and (A.2).

To prove Theorem 2.1 we will utilize Lemmas 2.2 and 2.3. Let M,(x, y) = F.x+y —
F(x + y), Ru(x, y) = F.(x — y) — F(x — y) (where we have suppressed, in the notation, the
dependence on F and F,) and note that by integration by parts and change of variables.

nl/z{J;'; - A(m} = Bn,l + Bn,2 - Bn,3 + Bn,4,

where

n’B,, = f J M,(x, y) dFu(x) dF.(y) — J J M, (x, y) dF.(x) dF(y),

n~?B,; = J J M, (x, y) dF,(x) dF(y) — J J M,(x, y) dF(x) dF(y),

n"Y?B,s = J J Rn(x, y) dF.(x) dF(y) — J J R.(x, y) dF(x) dF(y),

n"V?B,, = J J [Fu(x +y) — F(x + y) — 2{F(x — y) — F(x — y)}] dF(x) dF(y).

Let B, , be defined as B,,, where n'/*{F,(-) — F(.)} is replaced by W,(-),¢=1, -, 4. By
the continuous mapping theorem (Billingsley, 1968, page 30), the paths-continuity of the
process {¢(t), t € (—oo, )}, the convergence w.p.1. of Z, to « and some simple integral
evaluations, we obtain

plim|B,L,q—§,L_q|=O, g=1,...,4.

Consequently, to prove the result of Theorem 2.1 it suffices, by Slutsky’s Theorem
(Bllhngsley, 1968, page 49), to show that B,,, B, and B,.5 converge in probability to zero
and that B, converges in distribution to a normal r.v. with mean zero and variance o2,

given by (2.2).
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To establish the convergence of B, through B, , we introduce some notation. Let D be
the set of real valued, bounded, and right-continuous functions defined on (—, ), with
finite left-hand limits at each ¢ € (—x, ), and finite limits at # = *c. Throughout we view
D as a metric space with the Skorohod metric (Billingsley, 1968, page 112). Further let @",
@, @, and @ be the probability measures on D induced by the processes: {¢(f), t €
(=0, )}, {¢p(x + y) — 26(x — ¥), x, ¥ € (=00, )}, {Wp(?), t € (—®, ®)}, and {Wa(x + y)
— 2W(x — y), x, y € (—, )}, respectively. Finally let S;, S» be two sets, let A be a subset
of S; and let £ be a mapping from S; to Sp; then £7(4) = {s:s €S, £(s) € A}.

LEMMA 2.2. Assume (A.1) and (A.2) hold. Then (@) Bu1, Bn2, and B3 converge in
probability to zero, (b) B, converges in distribution to the x.v. [ [ {¢(x + y) —2¢(x — y)}
dF(x) dF(y).

ProorF. ForyE€D,andn=1,2, ... let

&na(Y) = J J Y(x + y) dFu(x) dFn(y) — J j Y(x +y) dF,(x) dF(y),
§nay) = j j Yx + y) dF,(x) dF(y) — J J Y(x +y) dF(x) dF(y),

na(y) = J’ f Yx — y) dFu(x) dF(y) — f J ¥(x — y) dF(x) dF(y),

and

W) = J f {¥(x +y) — 2¢(x — y)} dF(x) dF(y).

The probabilities @, converge weakly to @' by (A.3). By (A.3) and some standard
arguments it can be shown that @2 converges weakly to @2, and that the supports of @'
and Q? coincide with the set of all continuous functions in D. By the definitions of the
mappings and the probability measures we have:

Qié':zl{(_oo) x]} = P(En,q = x)) x € (_00) OO), q= 1) 2) 37 n= 1’ 2) M)
Qig_l{(_m’ x]} = P(§m4 = x)) x € (_00) OO), n= 1) 2) Tty
Q% {(—w, x]} = P{J J [o(u + v) — 2¢(u — v)] dF(w) dF(v) = x}, x € (—%, ®).

Thus to obtain the desired results it suffices to show, by the Extended Continuous Mapping
Theorem (Billingsley, 1968, page 34, Theorem 5.5), that for every sequence y,, € D that
converges to a continuous function ¢ € D, lim &,,(y») = 0 w.p.1 for ¢ = 1, 2, 3, and
Lim £(n) = £().

We now prove the preceding statements. Let ¢, € D, n = 1, 2, ..., and let ¢ be a
continuous function in D. Assume lim y,, = {. By a well-known result (Billingsley, 1968,
page 112)

lim sup{|yn(x) — ¥(x)|, x € (=0, )} =0.

Clearly lim £,,(¢) = 0 w.p.1 for ¢ = 1, 2, 3. Consequently, by simple integral evaluations we
obtain that lim &, ,(,) = 0 w.p.1 for ¢ = 1, 2, 3, and that lim £(Y.) = £(y). 0

LEMMA 2.3. Assume that (A.1) and (A.2) hold. Then g,,,4 converges in distribution to
a normal r.v. with mean zero and variance o?, given by (2.2).

Proor. By Lemma 2.2(b) it suffices to show that the r.v. [ [ {¢(x + y) — 2¢(x — »)}
dF(x) dF(y) is normal with mean zero and variance o2 Note that the process {¢(x + y)
— 2¢(x — ¥), x, y € (—o, )} is Gaussian, and that under (A.2), 6> < «. Consequently the
desired result follows by the theory of stochastic integration; cf. Parzen (1962), page 78.
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TaBLE 1
Monte Carlo Properties of 6% and the Normal Approximation for J*
[F = Exponential (1), H = Exponential (\)]

A=Y

n A A

Ave. 6%, S P(J* = —2,10) P(J* = —2_05) p(J* = —2_01)

100 .0139 .0008 224 131 .047

150 .0139 .0007 185 117 .035

200 0139 .0006 181 .102 .029
A=

100 .0150 .0013 202 119 .029

150 .0149 .0010 .187 .104 .032

200 .0149 .0009 .186 .098 .019

As indicated in Section 1, in order to perform the test, the null asymptotic variance of
n'/2J ¢ needs to be estimated from the data. To do this, first consider the function

1
(2.3) a*(9) = f fR{K(-0Iln2)}"dz, 0€E (0, w),
0 .

where f(2) = 2°(1 + 41In z + 4(In 2)%}/16, 0 < z < 1. Straightforward calculations show
that o7, given by (2.2), reduces when H, is true to the expression ¢%(x). Thus to obtain a
consistent estimator 62, say, of the null asymptotic variance of n*/2J ¢, in (2.3) we replace
K(t) by K.(¢8) =n"' Y I(Z; > t) and 8 by i, = (X 8) 7'+, Z;. Under H,, p lim i, = p and thus
under Hy, 6%(j% ») = 6%, obtained by making the aforementioned substitutions in (2.3), is
a reasonable estimator of o%. Chen, Hollander and Langberg (1982), abbreviated as CHL
(1982), prove that under Hy, p lim 6% = ¢, assuming that ¢%(8) is finite in an interval that
contains y. Furthermore, assume ¢(f) is finite in an interval that contains n = {P(X; <
Y1)} 'EZ, that u < o, and that (A.1) and (A.2) hold. Under these conditions CHL (1982)
prove that the test which rejects Hp in favor of H; if J* = n'2{J¢ — (%)}6,' < —z,, is
consistent against all continuous NBU alternatives.
For computation purposes 62 can be written as

& =0128)""+ ¥ n(n — i+ 1) '(n — )7 {(128) 7! — (32)'Zy (jin) !
(2.4) + (16)7'Z%) (fin) *}exp{—4Z (fix) ™} — n{(128)™" — (32) ' Zw(jin) *
+ (16)_Iz%n)(I-In)_z}exp{_‘iz(n)(ﬂn)_l}-

Table 1 investigates the accuracy of 65 as an estimator of ¢® and the accuracy of the
normal approximation in the cases where F is exponential with scale parameter 1 and H
is exponential with (censoring) scale parameter A, for the choices A = % and A = %. For
these choices, 6® = .0137 and .0146, respectively. Column 2 of Table 1 gives the average
value of &, averaged over 1,000 Monte Carlo replications. Column 3 gives the sample
standard deviation s of the 1,000 62 values. Columns 4, 5, 6 give estimated probabilities of
the events {J* = —z,}, « = .10, .05, .01. In these cases, although 62 does well as an
estimator of ¢% the convergence to asymptotic normality is very slow. The probability o,
assigned to the event {J* < —z,} by the normal approximation, is less than the correspond-
ing Monte Carlo estimate P{J * < —2,}. Thus the normal approximation to the NBU test
tends to give P values that are less than the true P values. This happens because, although
J» is an asymptotically unbiased estimator of A(F), for finite n, it underestimates A(F)
because F, underestimates F. The normal approximation can be improved by defining F,
via (1.3) and allowing 8, to be 0 if Z, is a censored observation. The Table 1 results are
for the case where §(,) = 1, whether Z;,, is censored or not.
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TABLE 2
Asymptotic efficiency of J° relative to J when H is Exponential with Scale Parameter A
A: % Y% Ys Ya Yio
eu(Je, J): 519 .681 790 .844 939
pH: 571 .667 750 .800 .909

3. Efficiency loss due to censoring. Recall that the J test is a generalization of
the HP (1972) test for the uncensored model based on the statistic <, (see equation (1.5)
of HP (1972)). In this section we study the efficiency loss due to the presence of censoring
by comparing the power of the oJ, test based on n observations in the uncensored model
with the power of the 3+ test based on n* observations in the randomly censored model.
Let F be a parametric family within the NBU class with F, being exponential with scale
parameter 1 (for example, one such family is the Weibull F,(x) = 1 — exp(—x"), y = 1 and
yo = 1) and assume the randomly censored model with F = F, and with censoring
distribution H. Consider the sequence of alternatives y, = yo + dn™ "% with & > 0. Let
Bn(y-) be the power of the approximate a-level J, test based on n observations in the
uncensored model and let 8,+(y.) denote the power of the approximate a-level test based
on J¢ for n* observations in the randomly censored model. Consider n* = A(n) such that
lim B.(y») = lim B.+(y.), where the limiting value is strictly between 0 and 1, and let % =
lim(n/n*). The value of 1 — % can be viewed as a measure of the efficiency loss due to
censoring. % is adopted from Pitman’s (cf. Noether, 1955) measure of asymptotic relative
efficiency but the interpretation of £ must be modified because J, and J;, are not competing
tests which are both applicable in the randomly censored model. Roughly speaking, for
large n and NBU alternatives close to the null hypothesis of exponentiality, the J7 test
requires n/k observations from the randomly censored model to do as well as the oJ, test
applied to n observations from the uncensored model. Since ¢/, and /5 have the same
asymptotic means, k reduces to k& = eu(J°, J) = (5/432)/6%(1) where (5/432) is the null
asymptotic variance of n'/%J, and ¢%(1), given by (2.3), is the null asymptotic variance of
n'2JS. Thus note that £ depends only on the censoring distribution H, and not on the
parametric family F, of NBU alternatives. Hence we use the notation ex(J*, o), rather
than eru(J°¢, J).

We consider the case where the censoring distribution is exponential, H(x) =1forx <
0, A(x) = exp(—Ax), x = 0. For this choice of H, in order for (A.2) to be satisfied we must
impose the restriction A < 1. Then using (2.3) we find ex(J¢, J) = 5(3 — N3/{27(\% — 2\
+ 5)}. Note that, as is to be expected, as A tends to 0 (corresponding to the case of no
censoring), ex(J°, J) tends to 1. Values of ex(J*, JJ) are given in Table 2. In order to
provide a reference point to the amount of censoring, and thereby facilitate the interpre-
tation of ey (J ¢, J), we also include in Table 2 the value of pz = P(X; < Y1) = (1 + AL the
probability of obtaining an uncensored observation when X; is exponential with scale
parameter 1 and Y; is independent of X; and has the censoring distribution H.

4. An example. Table 2 of Hollander and Proschan (1979), hereafter abbreviated HP
(1979), contains an updated version of data given by Koziol and Green (1976). The data
correspond to 211 state IV prostate cancer patients treated with estrogen in a Veterans
Administration Cooperative Urological Research Group study. At the March, 1977 closing
date there were 90 patients who died of prostate cancer, 105 who died of other diseases,
and 16 still alive. Those observations corresponding to deaths due to other causes and
those corresponding to the 16 survivors are treated as censored observations (withdrawals).
As reported by Koziol and Green (1976), there is a basis for suspecting that had the
patients not been treated with estrogen, their survival distribution for deaths from cancer
of the prostate would be exponential with mean 100 months.
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HP (1979) developed a goodness-of-fit procedure for testing, in the randomly censored
model, that F'is a certain (completely specified) distribution. They applied their test, and
competing procedures of Koziol and Green (1976) and Hyde (1977), to the prostate cancer
data. The hypothesized F was taken to be exponential with mean 100. Although Hyde’s
test and the HP test yielded high P values, those tests are directed to speciai types of
alternatives and are unable to detect certain types of alternatives to the hypothesized
distribution. The Koziol-Green test is broader in nature, and its two-sided P value was .14
suggesting that a different model might be more appropriate. Furthermore, Csérgé and
Horvath (1981) proposed some goodness-of-fit tests which (for certain alternatives) will be
more powerful than the tests of HP (1979), Koziol and Green (1976), and Hyde (1977).
Csorgd and Horvath obtained a two-sided P value of 0.0405 for the prostate cancer data,
strongly indicating a deviation from the postulated exponential, with mean 100, distribu-
tion.

Possible alternative models include an exponential distribution with a mean different
than 100, or a distribution, such as an NBU distribution, that could represent “wearout”.
Chen (1981) tests the composite null hypothesis of exponentiality H, using a correlation-
type goodness-of-fit test and obtains a two-sided P value of 0.02. To test H, against the
possibility of an NBU alternative, it is reasonable to apply the test based on J5. Applying
the J; test to the prostate cancer data, we obtain J%; = 0.193, 62;; = 0.105 and
(211)2(J 11 — (%4)} 631 = —2.56 with a corresponding one-sided P value of 0.0052. The test
indicates (despite the optimistic bias of the normal approximation) strong evidence of
wearout and suggests that an NBU model is preferable to an exponential model.
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