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CONSTRUCTION OF OPTIMAL BALANCED INCOMPLETE BLOCK
DESIGNS FOR CORRELATED OBSERVATIONS!

By CHING-SHUI CHENG

University of California, Berkeley

Some methods for the construction of equineighbored balanced incom-
plete block designs introduced by Kiefer and Wynn (1981) are presented. An
algorithm for constructing designs with % = 3 is developed. Kiefer and Wynn’s
result for £ = 3 is difficult to implement in practice. Our algorithm provides a
practical solution and makes use of the decomposition of complete graphs into
disjoint Hamiltonian cycles. The construction of designs with 2 = v — 1 and
v — 2 is also completely solved. The neighbor designs proposed for use in
serology are useful for the construction of equineighbored balanced incomplete
block designs. Several infinite families of equineighbored balanced incomplete
block designs are listed. .

1. Introduction. Balanced incomplete block designs (BIBD) have been shown to be
optimal for the elimination of one-way heterogeneity under homoscedastic and additive
models. Kiefer and Wynn (1981) initiated the study of optimal designs under some “nearest
neighbor” correlation models. In an experiment for the comparison of v treatments in b
blocks of size k£ with k < v, the position of an observation in a block becomes important
when the observations are assumed to be correlated. Let y;, be the observation taken at
the rth position in the jth block. One covariance structure considered by Kiefer and Wynn
(1981) assumes

ot if j=j, r=r,

(1-1) COV(J’in yj'r') = {PUQ, if j=j,’ | r—r’ | = 1»
0, otherwise.

Let g(j, r) be the treatment number of the rth observation in the jth block, A; the set of
blocks in which treatment i occurs, and define

eir =#{J:JEANA,Lg(U,1)=1i or g(jk) =i}
+#{(J:JEANALg(j,1)=1i or g(,k) =1i});

i.e., e; is the number of blocks in A; N A;- in which i occurs at an end plus the number
where i’ occurs at an end. Also define

Ni=#{j: g0, r)=1i,8(,s)=1,|r—s|=1}

i.e., N is the number of times i and i’ are adjacent in a block. Then Kiefer and Wynn
showed that under the nearest neighbor model (1.1), a BIBD in which all the quantities
eiir + RNy (i # i) are equal possesses strong optimality properties in the set of BIBD’s.
This induces the interesting problem of constructing BIBD’s with the additional condition.
Since the £N;;’s usually are much bigger than the e;;’s, Kiefer and Wynn suggest that it is
also useful to look for designs with all N;;- equal. They called a BIBD with all N;- equal an
equineighbored BIBD (EBIBD).

Kiefer and Wynn showed that a necessary condition for the existence of a BIBD with
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all e; + kN;;- equal is

(1.2) k| 4A,

where A = bk(k — 1)/v(v — 1). When £ is odd, (1.2) is equivalent to
(1.3) kA

They also showed that if an EBIBD exists, then

(14) k| 2A.

Of course, this condition is stronger than (1.2). Again, (1.4) is equivalent to (1.3) if % is odd.

The present paper is concerned with the construction, for given % and v, of EBIBD’s
and BIBD’s with all e;- + 2N, equal, for which b is as small as possible. For example,
Kiefer and Wynn showed that for £ = 3, the smallest BIBD with all e; + 2Ny equal has
b= v(v — 1) when v is even and b = v(v —1)/2 when v is odd. Such designs also have all
N equal. But their proof is based on the theory of distinct representatives. No simple
algorithm for construction is available. In the next section, for 2 = 3, we shall present an
explicit construction of BIBD’s with all e;;- + £N;;- equal. This provides a practical solution.
The construction makes use of the decomposition of complete graphs into Hamiltonian
cycles. In Sections 3 and 4, some methods of construction for other values of % are
presented. These methods may or may not yield designs with smallest possible b. As an
application, the construction of EBIBD’s with £ = v — 1 and v — 2 is completely solved.
The neighbor designs introduced by Rees (1967) turn out to be useful for the construction
of Kiefer-Wynn type designs.

For given v and k&, we call an EBIBD with the smallest possible value of b a minimum
EBIBD.

2. An algorithm for 2 = 3: construction via graph theory. Kiefer and Wynn
showed in their Theorem 5.2 that for £ = 3, a necessary and sufficient condition for the
existence of a BIBD with all e;;- + £N;;- equal is

2.1) k=3 A=3m, b=mv(v—-1)/2, r=3m@-1)/2
with m even or m and v odd.

Thus, for 2 = 3, the smallest BIBD with all e;- + EN;- equal has b = v(v — 1)/2 when v is
odd and & = v(v — 1) when v is even. Bigger designs can be obtained by making copies of
this smallest one. In this section, we shall present an explicit method of construction which
is useful from a practical point of view.

To fix the idea, assume that v is odd. We need to construct a design with v(v — 1)/2
blocks. Firstly, we pick the BIBD with £ = 2 and b = v(v — 1)/2, i.e., all the possible pairs
of v treatments. The problem is how to add one treatment to each block so that the
resulting design is a BIBD and all the e; + kN;:- are equal.

If we are able to partition the v(v — 1) /2 blocks of size two into v groups By, By, -+, By
of (v — 1)/2 blocks each such that for each i, the ith treatment does not appear in B; and
each other treatment appears in B; exactly once, then inserting treatment i in the middle
of each block in B; will produce a design desired. In fact, since each treatment other than
the ith appears exactly once in B;, in the (v — 1)/2 blocks of size 3 constructed from B;, the
ith treatment is adjacent to any other treatment exactly once, which makes all the N;-
equal in the new design. This together with the fact that the original v(v — 1)/2 blocks of
size 2 constitute a BIBD imply that the new design is a BIBD with all the e;;’s also equal.
For even v, we need to take two copies of the BIBD with 2 = 2 and b = v(v — 1)/2 and
partition the v(v — 1) blocks into v groups By, By, - -, B, of v — 1 blocks each such that
for each i, the ith treatment does not appear in B;, and each other treatment appears in B;
twice. In what follows, we shall show by direct construction that the above partition always
exists. The construction turns out to be closely related to the partition of complete graphs
into disjoint cycles. Thus we need some terminology from graph theory.
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In a graph with v vertices, a cycle is a closed path, i.e., a path with the same starting
and ending vertices. A Hamiltonian cycle is a cycle covering all the v vertices, i.e., a cycle
with length v. For convenience, the complete graph with v vertices (i.e., a graph in which
any two vertices are connected) is denoted by K,. An edge connecting vertices x and y is
denoted by (x, y). For another application of Hamiltonian cycles to design construction
see, e.g., Cheng and Wu (1981).

In the rest of this section, we shall split the discussion into two cases, according as v is
even or odd.

2(a) v odd. As we mentioned earlier, we need to partition the blocks of a BIBD with
k=2and b = v(v—1)/2 into v groups By, By, -+ , B, of (v — 1)/2 blocks each such that
for each i, treatment i does not appear in B; and each other treatment appears exactly
once in B;. Now consider the v treatments as the v vertices in a graph and consider each
block of size two as an edge connecting the two treatments in the block. Write v =2n + 1
and label the v treatments by 0, 1, 2, --., 2n. For each i, 1 = i < n, let C; be the
Hamiltonian cycle (0, i, + 1,i — 1,i + 2, - - - , i + n, 0), where all the components except
0 are taken as the positive integers 1, 2, - - - , 2n mod 2n. Note that C;,, is obtained from
C; by adding 1 mod 2n to each component except 0. By a well-known result in graph theory
(see e.g., Berge, 1973), Cy, C,, .- - , C, together cover each edge in K, once.

In each C;, let f(i) and g(i) be the two middle vertices; then we have f (i) — g() =
n (mod 2n). For example, whenn=3,C;= (0,1, 2,6, 3,5,4,0), f(1) =6, g(1) = 3. The 2n
+ 1 edges in C; except (f(i), g(1)) can be partitioned into two sets C; and C! of n edges
each such that C; covers all the vertices except f(i) and C/ covers all the vertices except
g(i). For example, when n = 3, we can take C; = {(1, 2), (3, 5), (4, 0)} and C{ = {(0, 1),
(2, 6), (5, 4)}. Let By (Bg), respectively) consist of the n blocks of size 2 defined by C:
(C?, respectively). Since (i) — g(i) = n (mod 2n), f(E + 1) =f()) + 1, and g(i + 1) = g(?)
+ 1, we have {f(1), gQ1), ---, f(n), g)} = (1,2, ---, 2n}. Therefore for each i, 1 =i <
2n, we have already constructed a collection B; of n = (v — 1)/2 blocks of size 2 such that
treatment i does not appear in B; and each other treatment appears exactly once. Finally,
let B, consist of the n blocks {(f(1), g(1)), - -+, (f(n), g(n))}. Then treatment 0 does not
appear in By and each other treatment appears once. By the way C; and C/ are constructed,
B, U B, U ... U B, is exactly the BIBD with 2 = 2 and & = v(v — 1)/2. Now by the
observation in the beginning of this section, inserting treatment i in the middle of each
block in B; produces a BIBD with all e;- + 2Ny equal. This design actually has all N,
equal and all e;- equal.

ExamMpPLE1l. Forv=7,n=3 Wehave C;=1(0,1,2,6,3,5,4,0),C.=(0,2,3,1, 4,6,
5,0), and C; = (0, 8, 4, 2, 5, 1, 6, 0). So B; = {(2, 3), (4, 6), (5, 0)}, B: = {(3, 4), (5, 1),
(6,0)}, Bs = {(0, 1), (2, 6), (5,4)}, B« = {(3, 1), (6,5), (0, 2)}, Bs = {(4, 2), (1, 6), (0, 3)}, Bs
={(1,2), (8,5), (4,0)}, Bo= {(1, 4), (2,5), (3, 6)}. Thus for 2 = 3, v = 7, a minimum BIBD
with all e;- + ENy- equal is (213), (416), (510), (324), (521), (620), (031), (236), (534), (341),
(645), (042), (452), (156),+(053), (162), (365), (460), (104), (205), (306).

2(b) v even. The case that v is even is a little bit more complicated. It suffices to
partition two copies of K, into v cycles A,, A,, - -+ , A, of length v — 1 such that A; does not
pass through the ith vertex. Then each A; defines v — 1 blocks of size two which can be
taken as B;. In other words, we only have to construct, for each i, a cycle A; of length v —
1 which does not pass through the ith vertex such that A;, As, - - - , A, together cover each
edge in K, twice.

The detailed procedure goes as follows:

(1) Write v = 2n + 2, and label the v treatments by 0, 1, 2, - - - , 2n, and . Consider the
v treatments as the v vertices in a graph. For each i, 1 < i < n, let C; be the Hamiltonian
cycle (0,i,i+1,i—1,i+2, -+ ,®, -+, i+ n, 0), where  is put in the middle and all the
components except 0 and o are taken as the positive integers 1, 2, - - - , 2n mod 2n.
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(2) For each i, 1 = i = n, let A; be the cycle of length v — 1 obtained by deleting
the two edges (0, i) and (i, { + 1) from and adding the edge (0, i + 1) to C;, i.e., A; =
(CA\{(0, 9), (, i + 1)}) U {(0, i + 1)}. Then A; does not pass through vertex i.

(3) In each A;, 1 =< i < n, make the following transformation of the vertices:

22) n+i—i for 1=si<n, i»n+i+1 for 0<i=n-—1 n—o, -0

Then A,; is transformed to a cycle of length v — 1 which does not pass through vertex n +
1+1i,1=<i=n, where 2n + 1 is interpreted as c. Denote this cycle by A,+1+:. Then n more
cycles A1z, Anss, +++ , Agn, A of length v — 1 are constructed.

(4) Let A be the cycle (1,2, 3, ---, 2n, «, 1) and A, be the cycle («,0,1,n + 2,2, n
+3,3, -+ ,2n,n, ). Then Ay and A, have length v — 1 and do not pass through vertices
0 and n + 1, respectively. Now we have constructed v = 2n + 2 cycles Ag, Ay, - -« , Azn, A
of length v — 1. Using the well-known fact (see Berge, 1973) that C;, C,, -- -, and C, are
mutually disjoint and together cover all the edges in K, except (0, ), (1, n + 1), (2, n + 2),
-+, and (n, 2n), one can easily show that Ao, A1, As, .. ., Asn, A« together cover each edge
in K, twice.

(5) Foreachi,i=0,1, .., 2n, o, let B; be the v — 1 blocks of size two obtained from
A; by considering each edge as a block.

(6) Put treatment i in the middle of each block in B;. Then the resulting v(v — 1) blocks
of size three constitute a BIBD with all e;;- + 2Ny equal. In fact, for this design, all the N;;-
are also equal.

ExampPLE 2. For v =8, we have C; = (0, 1, 2,6, , 3, 5,4,0), C; = (0,2, 3, 1, 0, 4, 6, 5,
0), and C; = (0, 3, 4, 2, 0, 5, 1, 6, 0). Then the eight cycles of length seven are A; =
(02603540), Az = (031004650), A3 = (042005160), A4 = (0001526300), A5 = (463000214), A =
(400501324), A.. = (41602534), A, = (1234561). Note that A;, A,, and A; are obtained from
Cy, Cs, and Cs by deleting vertices 1, 2, and 3, respectively, and As, Ag, and A, are obtained
from A;, A,, and Az by making the transformation 4 - 1,5 — 2,6 — 3,0 > 4,1 — 5, 2
— 6,3 — o, 0 — 0. Thus, for v = 8, £ = 3, a minimum BIBD with all e;- + 2N, equal is
(012), (216), (61), (013), (315), (514), (410), (023), (321), (1200), (x024), (426), (625), (520),
(034), (432), (230), (035), (531), (136), (630), (040), (041), (145), (542), (246), (643), (3400),
(456), (653), (350), (05%), (x052), (251), (154), (46), (2065), (560), (061), (163), (362), (264),
(4001), (1006), (6200), (002), (2005), (5003), (3004), (102), (203), (304), (405), (506), (600),
(0001).

3. Construction via neighbor designs. Neighbor designs were introduced by Rees
(1967) for use in serology. These designs are very similar to those considered by Kiefer and
Wynn. The major difference is that in neighbor designs, the treatments are arranged in
circular blocks. A neighbor design is a collection of circular blocks in which any pair of
treatments appear as neighbors equally often. In the NN structure considered by Kiefer
and Wynn, the two ends in a block are not considered as neighbors. So, there is one extra
pair of neighbors per block in neighbor designs. Despite the difference, neighbor designs
are useful for the construction of Kiefer-Wynn type designs. We have the following:

THEOREM 3.1. If there exists a BIBD d with parameters v, b, r, k, A which is also a
neighbor design, then there is an EBIBD d* with parameters v* = v, b* = kb, r* =
—1rk*=k—1, A= (k-2

Proor. By construction. From each circular block of d, say (x;x; - -- x:) with x; and
xr. also considered as neighbors, we now construct & linear blocks of size £ — 1 by cyclically
permuting xi, Xz, « -, Xa (X1, Xz, =+, K1), (X2, X3, =+, Xr), -, (Xr, X1, +++ , Xp—s). The
resulting design is an EBIBD. 0

Note that the design d* constructed in Theorem 3.1 have all N,;- equal, but may not
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have all e;- equal. With proper choice of d, d* can be a minimum EBIBD. For example,
consider Sprott’s (1954) Series B. This is a series of BIBD’s with parameters v = 2mk + 1,
b =muv,r=mk, k, A = (k — 1)/2, where v is a prime power. These designs are obtained by
adding 1, 2, ---, v — 1 (mod v) to the m initial blocks (x’, x**?", ... x™*™) i =0, 1,
..., m — 1, where x is a primitive element of the Galois field GF (v). It was shown by
Lawless (1971) that these BIBD’s are neighbor designs. Thus, by our Theorem 3.1, there
is an EBIBD with parameters v* = 2mk + 1, b* = mkv, r* = mk(k — 1), k* =k — 1, A*
=k-1)(k-2)/2 provided that v is a prime power. For m =1 and v = 3 (mod 4), this
produces an EBIBD with v, b = v(v — 1)/2, k= (v —3)/2,r = (v — 1)(v — 3)/4, and A=
(v—3)(v—5)/8. We claim that this is a minimum EBIBD. If there exists an EBIBD with
parameters v, br k= (- 3)/2 and A, then by (1.4), k| 2X. On the other hand, (v — 1)

=k-1)r=(k-1)|20*k+ A= (k- 1) 2 since % — 1 is odd. Therefore k(k — 1)| 2X and
hence the smallest possible value of \is k(k — 1)/2, which is (v — 3)(v — 5)/8. In summary,
we have the following theorem.

THEOREM 3.2. If v = 3(mod 4) is a prime power and k= (v — 3)/2, then there is an
EBIBD with b blocks of size k if and only if v(v — 1)| 2b.

For an odd integer v = 2n + 1, let C;, Cs, ---, C, be the n Hamiltonian cycles
constructed in Section 2(a). Each Hamiltonian cycle can be considered as a circular block
of size v. Using the same scheme as in Theorem 3.1, from each C;, we can construct
v linear blocks of size v — 1 by cyclic permutation. This yields an EBIBD with b =
v(v—1)/2 and k = v — 1. By (1.4) the following can easily be proved:

THEOREM 3.3. If v is odd, then there exists an EBIBD with b blocks of size v — 1 if
and only if v(v — 1)| 2b.

4. Construction via an ordinary BIBD. Kiefer and Wynn introduced a method for
making a single block equineighbored. Given any positive integer &, the & X k square whose
(J, ) cell (1 =j, /=< k) contains the treatment

4.1) Yia (CD7r = 1) + ¥ (F)(r = 1)

reduced (mod k) is such that the % rows for k£ odd, or the first 2/2 rows for k even provide
an equineighbored complete block design with % treatments. Kiefer and Wynn (1981, page
754) only applied the method, however, to the initial blocks of the difference set method.
Applying the method to every block of a BIBD, we obtain the following.

THEOREM 4.1. If there exists a BIBD with parameters v, b, r, k, A, and k is odd (even,
respectively), then there is a BIBD with parameters v, kb, kr, k, kX, (v, bk/2, kr/2, k,
kA /2, respectively) in which all e;;: are equal and all Ny are equal.

This is a simple device which can be used to expand an ordinary BIBD to an EBIBD.
If the initial BIBD has A = 1, then the resulting design is a minimum EBIBD. For odd %,
it even achieves the minimum possible value of b for the equality of all e;;- + 2N Finite
planes provide examples of BIBD’s with A = 1. The following two corollaries are ohtained
by applying this device to finite Euclidean and projective planes:

COROLLARY 4.2. Let v = s? and k = s, where s is an odd prime power. Then there
exists a BIBD with b blocks such that all the e;r + kN are equal if and only if
s%(s + 1)| .

COROLLARY 4.3. Letv=s?2+ s+ 1and k= s + 1, where s is an odd prime power.
Then there exists an EBIBD with b blocks if and only if (s + 1)(s* + s + 1)| 2b.
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One can easily write down similar results for v being a power of 2. Applying Theorem
4.1 to Sprott’s series with m = 1, we obtain the following result.

COROLLARY 4.4. Ifv = 3(mod 4) is a prime power and k = (v — 1)/2, then there is a
BIBD with b blocks such that all e;: + kN are equal if and only if v(v — 1)| 2b. Such a
design can be constructed to have all N equal and all e; equal.

Note that Kiefer and Wynn (1981) have a similar result for 2 = (v + 1)/2, but for v a
prime only (see their Theorem 5.4).

As a final application, when v is even, consider the symmetric BIBD with b = v, and %
= v — 1. By Theorem 4.1, there is a BIBD with parameters v, b =v(v—1),and 2 =v — 1,
which has all N;;- equal and all e; equal. This design is a minimum EBIBD and also
achieves the minimum possible value of b for the equality of all e; + 2N;;.. We state this
as

COROLLARY 4.5. If v is even, then there is an EBIBD (or c‘z BIBD with all e;; + EN;;
equal) with b blocks of size k = v — 1 if and only if v(v — 1)| b. Such a design can be
constructed to have all N equal and all e;- equal.

Note that Corollary 4.5 and Theorem 3.3 together solve the construction of EBIBD’s
withk=v -1

5. Construction of designs with 2 = v — 2. We shall conclude the paper with a
complete solution of the EBIBD’s with 2 = v — 2:

THEOREM 5.1. There exists an EBIBD with b blocks of size v — 2 if and only if
v(v — 1)| 2b.

Proor. By (1.4), it is easy to see that if there is an EBIBD with & blocks of size v —
2, then v(v — 1)| 2b. We shall show that an EBIBD with v(v — 1)/2 blocks of size v — 2
always exists.

For odd v, we know that K, can be decomposed into (v — 1)/2 disjoint Hamiltonian
cycles. Each Hamiltonian cycle can be considered as a circular block of size v. From each
of these Hamiltonian cycles, we can construct v linear blocks of size v — 2 by the method
of cyclic permutation similar to that employed in Theorem 3.1. The resulting design is
obviously an EBIBD with v(v — 1)/2 blocks of size v — 2.

Designs of even v can be constructed from array (4.1). Consider the v X v square A
whose (j, ¢)th cell (1 <j, £=< v) is given by a;, = Y5 (=1)"(r — 1) + 3o (=1)"(r — 1)
reduced (mod v). Each of the v rows of A contains v — 1 pairs of adjacent treatments. A
block of size v — 2 can be obtained by deleting any of such pairs while keeping the order
of the other treatments. For example, from the jth row (a;1, a2, « - -, @;,), v — 1 blocks B;;
= (a3, Qjg, ++ -, a;v), B2 = (aj1, @jsy -, ), +++, and B, 1= (ajl, Qjz2, +++ , Qjy—2) Of size
v — 2 can be constructed. We claim that the v(v — 1) /2 blocks of size v — 2 thus constructed
from the first v/2 rows of A constitute an equineighbored BIBD.

As indicated earlier, the first v/2 rows of A define an equineighbored complete
block design with v treatments. It follows immediately that the v(v — 1)/2 blocks
{Bj ;}1=j=v/2,1= ¢=v—1 constitute a BIBD. It remains to show that this BIBD is equineighbored.
Clearly, array A is symmetric with respect to the two diagonals, i.e.,

Q= Qsj = Qu+1-jp+1—¢= Quri—¢,v+1—js ¥ ], L.

the v rows of A, each pair of treatments appear as neighbors equally often.
Originally, the jth row of A has v — 1 pairs of adjacent treatments (a,1, a;2), (a;2, a;3),
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-, (@jv-1, @;u). Each Bj,only contains v — 3 adjacent pairs. The two pairs (a;1, a,2) and
(aj2, a;3) (respectively, (ajv—2, @,-1) and (a;,-1, @;,)) are missing from Bj; (respectively,
B;,-1), while in each B;,with ¢ 1, v — 1, the three pairs (a;,,-1, @;, ), (@, ¢ @;,,+1), and
(@), 7+1, @), ,+2) are missing and there is one extra pair (a;, ,—1, @, ,+2). So it is enough to show
that {(a1, @j2)}1=j=0, {(@v-1, @) }1=j=0, a0d {(@)s, @, ¢+3)}1=)=v,1= ¢=v—3 together cover each
of the v(v — 1) pairs {(i, j)}1=ixj=v €xactly once. This follows immediately from the fact
that for each j,

{aj2 — aj1, @jv — Gj,u-1, Gjs — Qj1, Qjs — Qja, =+, Ay — Qjp—3} = {1,2, - -+ , v — 1} (mod v)
and that each of the v treatments appears exactly once in each column of A. [

ExamMpPLE 3. For v =6, array A is

WHARDNI -
B OTW N =
N WH &AW
T A= WN
N O WU
DTN R W

Therefore a minimum EBIBD with v = 6 and & = 4 is (5243), (6243), (6143), (6153), (6152),
(6354), (1354), (1254), (1264), (1263), (4132), (5132), (5632), (5642), (5641).
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