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ON BAN ESTIMATORS FOR CHI SQUARED TEST CRITERIA

By KERRY G. BEMIS AND VASANT P. BHAPKAR'
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Wijsman (1959a) developed the theory of BAN estimators of a parameter
B under some fairly general conditions assuming that n'/*(y, — g(8)) = N (0,
a(B)). The present article considers the complementary, but somewhat more
general, approach under the constraint equation model that restricts the
parameter p so that f(x) = 0 under general conditions requiring n'/*(y» — p)
—1, N.(0, 6*(n)). At the same time, this article weakens Wijsman’s differenti-
ability requirement by introducing a p-differentiability condition for regular
estimators. Next the theory of BAN estimation is developed for a model
combining features of both of these approaches. As a special case of the model
above, weighted least squares estimators for a general linear model are shown
to be BAN.

.

1. Introduction. Neyman’s work (1949) on best asymptotically normal (BAN) esti-
mators and related test criteria for multinomial samples has been extended by, among
others, Barankin and Gurland (1950), Taylor (1953), Chiang (1956), Ferguson (1958), and
Wijsman (1959a, b). Suppose y. is a sequence of random vectors such that n'/*{ y, — g(8)}
—1, N, (0, 6(B)), where g is a parameter in an open p-dimensional set w. While developing
the theory of BAN estimation of 8, Wijsman (19593, b) used assumptions which are weaker
than those required in Neyman (1949). Wijsman (1959b) gives the following definition:

DEerFINITION 1.1.  The p X 1 vector function [f (y) is called regular if (i) ﬁ( £(B)) = B for
all B € w; (ii) ,é is differentiable at every point g(B8) of g (w); then let B(8) = a,é/ 3(g(B)), the
p X s differential matrix.

We will adopt the notation B(y.) = B.. If B, is regular then g, will be called a regular
estimator. This definition of regular estimators is weaker than the one used in Neyman
(1949) and Chiang (1956) which required £ to be continuously differentiable. Wijsman and
others did not allow a regular estimator to be an explicit function of n, except through y..
To include estimators from multiple random samples with different samples sizes, we
should allow the estimator to be an explicit function of n. We might also allow our
estimator to be a function of other random variables, which could be additional information
gathered in the current experiment or previous experiments. Wijsman (1959a) mentioned
this possibility but did not pursue it. Chiang (1956) describes regular estimators that are
functions of the sample covariance matrix. However, he indicates that this extended class
of regular estimators would yield a different minimal matrix.

Although Wijsman restricted the class of regular estimators to functions of y., he
attempted in his first paper (1959a) to extend the class by weakening the differentiability
requirement. He wanted to replace (ii) of Definition 1.1 by a weaker version that assumed
the existence of a p X s matrix B(B) for all 8 € w such that

(L1) n*(B(y.) — B(g(B)} — BBN*(yn — £(B)} —r 0.

However, he pointed out in the (1959b) paper that the earlier paper contained an error
and, thus, settled on a definition that is given as Definition 1.1.
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The model used by Wijsman (1959a,b) is often called a “freedom equation model,” say
Model 1 (see, e.g., Aitchison and Silvey, 1960); an alternative way of describing a model is
by means of “constraint equations.” Under this model, say Model 2, n/*(y, — p) =1, N5(0,
0*(u)) where the s-dimensional parameter u satisfies  constraints f(u) = 0.

Neyman (1949) used both models with the implication that they are equivalent when p
= s — r. Although the two approaches are equivalent locally (given Assumptions F and G
in Section 2), this equivalence is not necessarily global (see Section 2). Since the constraint
equation approach is more general than the freedom equation approach, it is desirable to
develop the theory of BAN estimation for the constraint equation model. Furthermore,
the constraint equation approach seems to be favored for the hypothesis testing problem
(see Wald, 1943, Aitchison and Silvey, 1960, Stroud, 1971) where the hypothesis is H: u €
Ap, where Ay is the restricted parameter space where the parameter p satisfies the
constraints f(u) = 0.

It may also be pointed out here that Ferguson (1958) developed some methods of
generating BAN estimates of 8 under the freedom equation Model 1. These estimates are
obtained as roots of certain linear forms. Furthermore, these roots seem to be easier to
compute than other BAN estimators of 8 such as minimum Pearson Chi squared esti-
mators, minimum modified Chi squared estimators, etc., and have the same asymptotic
properties as the latter. (Although Chi squared estimators were originally developed for
the multinomial distribution model by Neyman (1949), these can be defined under the
more general Model 1 by minimizing quadratic forms as seen in Ferguson (1958).) These
roots of linear forms, as BAN estimators, can be used also to construct the asymptotic Chi
squared test criteria. For reasons mentioned in the previous paragraph, it is thus desirable
to develop corresponding results under the more general Model 2.

In Section 2 a constraint equation model, M, somewhat more general than the one given
by Model 2 under Conditions F, is discussed in relation to the freedom equation model
given by Model 1 under Conditions G. A general class of regular estimators is defined: the
class of regular (I) estimators possessing the property of p-differentiability (see (2.6))
rather than the stronger property of differentiability required of the subclass of regular
(IT) estimators.

It is shown in Section 3 that the class of asymptotic covariance matrices in the limiting
normal distributions of these regular (I) estimators has a minimal covariance matrix.
Furthermore, after deriving the conditions for a regular (I) estimator to be BAN in
Theorem 3.1, Theorems 3.3 and 3.4 establish results concerning BAN estimators obtained
by a linearization technique (see Neyman, 1949, Ferguson, 1958) and asymptotic Chi
squared test criteria, using these BAN estimators, for testing the hypothesis H: u € Ag.

Section 4 discusses admissibility of regular (II) estimators in the sense of requiring the
estimate A (y) of u to belong to Ay when the model M requires that p € An. Roots of
certain equations are shown to be admissible BAN estimators under suitable conditions.
These results are thus generalizations of those concerning minimum Chi squared and
modified Chi squared estimators for the multinomial model (Neyman, 1949), and are the
constraint equation model analogs of the results established by Ferguson (1958) for the
roots of suitable equations.

In Section 5, the development is now extended to consider optimal asymptotic estima-
tion and testing procedures based on Chi squared criteria for a parameter A defined by
both a freedom and constraint equation model described by Conditions M*. Regular
stimators are defined for parameter A under the model M* and the existence of the
minimal asymptotic covariance matrix in the class of CAN estimators of A is established
in Theorem 5.1.

Section 6 discusses a general linear model as a special case of the model M * and derives
an explicit BAN estimator for A. Such general linear models have been considered in the
statistical literature for normal distributions (see, e.g., Bhapkar, 1976) and multinomial
distributions (see, e.g., Berkson, 1953, Grizzle, Starmer and Koch, 1969). The validity of
the weighted least squares method of estimation as an efficient method is established in
Theorem 6.1. An application to the problem of testing a homogeneity model for the
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exponential family is discussed and relationships to some test criteria in the multinomial
case have been pointed out.

The matrix notation used in the sequel is standard, e.g. for a matrix A = [a;;], the norm
|A|=(:Y;a%)"? A~ denotes any generalized inverse of A, while A* denotes the unique
Moore-Penrose generalized inverse (see Graybill, 1969). The notation f € C* indicates
existence of continuous ith derivatives of f.

2. The constraint equation model. Consider first the following distributional as-
sumptions for Model I:

Conprtions D1. (i) y. is a sequence of random vectors taking values in A, the closure
of A, an open set in R®; (ii) the distribution of the y, depends on the parameter 8 taking
values in an open subset w in R” where p < s; (iii) it is assumed that n'/*{y, — g(8)} -1
N.(0, o(B)) where g is a function from w into 4; (iv) o(8) € C® and is positive definite on
w.

Let A; = g(w). Wijsman (1959a) made the following assumptions concerning g:

ConpITIONS G. (i) g:w — A, is one-to-one, onto, and has a continuous inverse; (ii) g
€ CY on w, (iii) the s X p differential matrix G(8) = dg/aB is of rank p on w. For Model 2,
we have the following distributional assumptions:

ConpitioNs D2. (i) as in D1 (i); (ii) the distribution of y, depends on the vector
parameter y taking values in A; (iii) p € Ag, where Ay = {u € A: f(u) = 0}; (iv) n'*(y, —
w) =z N(0, 6*(u)) for all p € Ag; (v) 6*(u) € C© and is positive definite on Ag.

For the constraints fin (iii), we consider the following assumption F.

ConpiITioNs F. (i) fis an r X 1 vector function defined on A into R’, then r < s; (ii) f
€ CY on A; (iii) the r X s differential matrix F(u) = of/u is of rank r on Ag.

We first note that the model under D2 is more general than the freedom equation model
under D1 in the following sense: Assume D1 and let p = g(B). Then there exists a function
ffA— R"suchthatr=s—p,A,=g(w) = {0 €EA: f(u) =0} = Ay, and fsatisfies Conditions
F. Furthermore, Conditions D2 are satisfied by taking o*(u) = o(8) for u in Ay. The
existence of f follows as outlined by Spivak (1965, problem 5-4, page 114 and problem 5-14,
page 121).

On the other hand if the space Ay is defined in terms of constraint equations it may be
difficult to find a set w and function g that satisfy Conditions G. If this is the case then we
cannot directly use the methods of generating BAN estimators developed by Wijsman
(1959a,b) and; Ferguson (1958). Aside from these practical difficulties, if Ay has the
“constraint equation” structure D2 with Conditions F there may not even exist a “freedom
equation” structure D1 with Conditions G. As a counter example: a differentiable manifold
may not be homeomorphic (let alone diffeomorphic) to an open subset of Euclidean space,
e.g. the unit circle in RZ

Suppose, for the moment, that there exists the representation Ay = A, for some function
g such that Conditions D1 and G are satisfied. Wijsman (1959a) shows that for a regular
estimator S, i

2.1) n'2(B, — B) =1 N, (0, BsB’)

where B = B(fB) and o = o(8). Therefore the class of regular estimators is a subset of the
class of consistent asymptotically normal (CAN) estimators. For the class of regular
estimators, he also points out the existence of a minimal asymptotic covariance matrix
(G’ 67'G)7}, where G = G(B). This matrix is minimal in the sense that BB’ — (G'0'G) ™"
is non-negative definite for all 8 € w, where BoB’ is the asymptotic covariance matrix of
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the limiting distribution in (2.1). Furthermore he shows the existence of BAN estimators,
i.e. regular estimators with minimal asymptotic covariance matrix in the class of CAN
estimators. He also provides a method of generating these estimators as roots of equations.
Before we formulate a constraint equation approach to BAN estimation in the general
case, it is instructive to examine the estimator ji = g(B) that logically follows from the
freedom equation approach in case it also works. If ,én is BAN then Wijsman shows

(2.2) n"*(Bn = B) =1 N, (0, (G'a7'G) 7).
Then n'*(g(B.) — g(B)} =1 N.(0, G(G’o'G) 'G’). Hopefully the matrix
(2.3) G(G'e7'G)'G’

would be minimal if Wijsman’s theory were to be extended to include estimation of
functions of 8. This matrix is minimal when considering the more restricted class of regular
estimators and more restrictive model defined by Chiang (1956).

Since the freedom equation formulation D1 for Ay may be alternatively expressed using
the constraint equation formulation D2 one might suspect that the matrix (2.3) might have
an alternative expression in terms of the differential F = F(u) given by F (iii). This
alternative expression is straightforward to derive and is given by

(2.4) G(G'07'G)"'G’' = 6 — oF'(FoF') 'Fo

for all B € w where G = G(B), 0 = o(B), F = F(u) = F(g(p)). /
We might expect a reasonable definition of regular estimator for u € Ay in a constraint
equation model to yield the minimal covariance matrix

(2.5) V=0*—o*F'(Fo*F') 'Fo*,

where 6* = 6*(u) = o(B) for p € An.
We shall now reformulate the constraint equation model under assumptions which are
somewhat more general than D2 and F. These assumptions M are listed below.

MobEeL M. (i), (ii), (iii) as in D2 (i), (ii), and (iii), respectively; (iv) n'?(y, — p) —1
N, (0, o(p)) for p € Ag; (v), (vi), (vii) as in F (i), (ii), and (iii), respectively.

Note here that we have dropped for simplicity of notation the asterisk * for ¢* in D2
(iv). Also, Condition D2 (v) has been dropped. In the sequel we may write for simplicity of
notation simply F for F(u) and o for o(u). We would also like to consider a more general
class of regular estimators. We will show that there are many reasonable estimators of p
€ Ay where the limiting distribution has covariance matrix V (see(2.5)). These estimators
are not regular in the context of previous Definition 1.1. This means, of course, that we can
not call these estimators BAN unless we verify that an extension of the class of regular
estimators to include these also has V as a minimal covariance matrix. It will be shown
that a slightly stronger condition than (1.1), but which is more general than Definition 1.1,
when suitably adapted to the constraint equation model, will not only imply the existence
of a minimal covariance matrix, but will allow a regular estimator to be a function of other
random variates. This condition will however be weaker than differentiability.

DEFINITION 2.1. Assume Model M. Let u € Ay and N be a neighborhood of u. For
each fixed y € N let A, (y) denote a sequence of s X 1 random vectors. We will say the
sequence h,(y) is p-differentiable at u € A if there is an s X s matrix H (u) such that

(26) |hn(xn) - hn (IL) - H(IL)(xn - ,U') | = |xn - ,Utlﬁn

where x, —, p implies ¢, —, 0, x, is any sequence of random vectors in N and ¢, is a
sequence of non-negative real valued random variables. The matrix H (u) will be called the
p-differential, and is easily shown to be uniquely defined for the sequence A,.

We are now in a position to define a regular estimator of u € Ay for our constraint
equation Model M.
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DEFINITION 2.2. Assume Model M. Let i € Ay and let N be a neighborhood of p. For
each fixed y € N, let h,(y) denote a sequence of s X 1 random vectors. We will call the
sequence h,(y) regular (I) at pif (i) A.(y) =y on N N Ax, and (ii) A, (y) is p-differentiable
at .

If h.(y) is regular (I) at p € Ay and p is the true value of the unknown parameter then
h.(y,) will be called a regular (1) estimator for p € Au. If h,(y) is regular (I) at every
point p in Ay we will say A, (y) is regular (I) on Ay and h,.(y,) is a regular (1) estimator
for An.

The next lemma, which is a direct consequence of Definitions 2.1 and 2.2, shows that
the class of regular (I) estimators is a subclass of the class of CAN estimators. The proof
is straightforward and will be omitted.

LEMMA 2.1. Assume Model M. If h.(y,) is a regular (I) estimator for u € Ay then
(2~7) nl/z{hn(yn) - l‘} —L NS(O) HOH:))
where H = H(u) is the p-differential of the sequence h,(y) and o = o(p).

Before proceeding, it will be useful to define a subclass of regular (I) estimators which
we will call regular (IT). The regular (IT) estimators are analogous to the regular estimators
defined by Wijsman (1959b) in Definition 1.1 for the freedom equation model.

DEFINITION 2.3. Assume Model M. Let p € Ay and let N be a neighborhood of p. Let
h(y) be an s X 1 vector function defined on N. Then we will call A(y) regular (II) at p if
(1) A(y) =y on N N Ay, and (ii) A(y) is differentiable at p.

Let H(u) denote the s X s differential of A at p.

If A(y) is regular (II) at u € Ay we will call A(y.) a regular (II) estimator for u € Ay. If
h(y) is regular (II) at every p € Ay, we will say A(y) is regular (II) on Ag, and A(y.) a
regular (I1) estimator for Ag. The fact that regular (II) estimators are also regular (I) with
p-differential H(p) is easy to show.

3. BAN estimators under model M. The following lemma will characterize the
matrix H for the class of asymptotic covariance matrices HoH’ in (2.7). This characteri-
zation will be useful in demonstrating the existence of a unique minimal covariance matrix.

LEMMA 3.1. Assume model M and let p € Ag. If h,(y) is regular (1) at u, H = H(p)
is the p-differential of h.(y) at p, and F = F(p) is the differential of f, then
3.1) H=1-DF

for some matrix D.

ProoF. For a neighborhood N of u there exists a function g that satisfies Conditions
G in Section 1 (see Auslander, 1963, page 32). By (i) of Definition 2.2 h,(g(8)) = g(B). If
h.(y) were differentiable at p then HG = G for B € w. It is straightforward, though tedious,
to show that p-differentiability implies HG = G, or (I — H)G = 0. Because f(g(8)) = 0 we
have FG = 0. Finally (I — H)G = 0 and FG = 0 imply I — H = DF for some D.

LEMMA 3.2. Assume model M and let p € Ay. Define the class of non-negative
definitive matrices C(o, F') generated by F and o as
(3.2) C(o, F) = {HoH' : H= I — DF for some D}.
Then C(o, F) has the unique minimal matrix

(3.3) V=0 — oF(FsF’) Fo.
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Proor. Let M =I,— AF. Then MoM' € C (o, F). Now take A = o F’(FoF’)™ for some
g-inverse. Then AFo is invariant and symmetric and, furthermore, AFoF’ = o F’ for any
choice of g-inverse (FoF)™ in A. Then, V = ¢ — AFo is also invariant and symmetric.
Moreover,

(3.4) FV=F(oc—0dF'A’)=Fo — FoF'A"=0.

Also, V = Mo = e M’, so that MoM’' = MV = (I — AF)V = V, in view of (3.4). Now let
HoH'’ € C(o, F); then in view of (3.2), H = I — DF for some D. Then HoM’' = HV = (I
— DF)V =V, in view of (3.4); hence, Mc H' = V. Let now @ = (H — M)o(H — M)’, a non-
negative definite matrix. Then @ = HoH' — MoM’, which shows that Mo M’ is minimal in
C(o, F) and, thus, V is minimal. This proves the lemma.

Then we have the following lemma:

LEMMA 3.3. Assume Model M, p. € Ay and let C (o, F) be the class defined by (3.2).
() If H= I — oF'(FoF’')"F for some g-inverse, then HoH' is minimal in C(o, F); (ii) if
HoH' is minimal in C (o, F), then Ho = V; and (iii) if rank(F) = rank(Fo), then HoH' is
minimal if and only if H = I — oF'(FoF’)"F; in this case, H is invariant under any
choice of g-inverse of FoF"'.

The proof is a straightforward consequence of Lemma 3.2 and is therefore omitted.
In view of (2.7) and Lemma 3.3, we have the following theorem and corollary.

THEOREM 3.1. Assume Model M and let p. € Ay. Let h,(y») be a regular (I) estimator
for u. Then h,(y,) is BAN for p if the asymptotic covariance matrix HoH' in (2.7) is equal
toV=0—oF (FoF') Fo.

COROLLARY 3.1. Let h.(y,) be a regular (1) estimator for u € Ay under model M with
p-differential H. (i) If H = I — oF'(FoF')"F, then h.(y.) is BAN at p. (ii) Conversely,
ha(y») is BAN at u only if Ho = V; furthermore, if rank(F) = rank(Fo), then h,(y.) is
BAN onlyif H=1— oF'(FoF')"F.

The use of a BAN estimator 4, (y,) in constructing asymptotic Chi squared test criterion
for testing the hypothesis H :u € Ay follows in view of the following:

THEOREM 3.2. Assume Model M and let p. € Ayn. Let h,(y.) be a regular (1) estimator
for u with p-differential H. Let T, be a sequence of s X s random matrices such that T,
—, 0~, where ¢~ is any g-inverse of o, and X*(p) = n(y, — p)Tn(yn — ). f H=1 —
oF'(FoF')"F, then X*(hn(y.)) =1 x(d), d = rank(F o).

PROOF. Let rn = nV%{hn(yn) — p} — Hn'*(y, — p); then r, —, 0. Let z, = n'/*{(y, —
hn(¥n)} = 0V (yn — ) — 02 {hal(yn) — p} = L — H)n*(yn — p) — rn; then Z, —1 2 ~ Ni(0,
B), where B = (I — H)o(I — H)'. Then X*(hn(yn)) = n(¥n = Bn(¥n)) Tn(¥n — hulyn)) =
20Tz —1 2’0~ 2. We will now show that Bo~B = B, which would imply (see Rao and
Mitra, 1971, page 171) that 2’6"z ~ x2(d), with d = rank(B¢™). Letting A = o F'(FoF')",
we have I — H = AF. Then B = AFoF'A’ = oF’A’ = AF’s, since AF6F’ = oF’. Hence
Bo B = AFso 6F’A’ = AFoF’A’ = oF’A’ = B. Thus, o™ is a g-inverse also of B; then
rank(Bo~) = trace(Bo~) = rank (B). Also, rank(B) = rank(F'¢), since rank(B) < rank(Fo)
< rank(B), in view of the relation BF’ = oF".

REMARK. Note that under the assumptions of the theorem, %.(y.) is BAN for u € Ax.

The following is easy to show:

COROLLARY 3.2. Assume Model M and the further condition rank(F¢F’) = rank(F),
for u € Au. Then, under the conditions of Theorem 3.2, d =r.
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The following theorem will describe a class of regular (I) estimators. This class of
estimators will serve as the basis for our definition of i*, the generalized version of the
linearized minimum modified Chi squared estimator.

THEOREM 3.3. Assume Model M and further assume that f is defined on A. Let A, be
any sequence of s X r random matrices such that A, —, A whatever be . in Ay, and h,(y)
=y — A.f(y). Then, (i) h.(y) is regular (I) on Ag, and (ii) h.(y,) is BAN forp € Agif A
= oF'(FoF')~ for some g-inverse.

The proof is routine and will be omitted; likewise for the following:

THEOREM 3.4. Assume Model M and let p € An. Further assume that f and F are
defined on 4, and S, is a sequence of s X s random matrices such that S, —1, o for all p
in Ag. Let F = F(y,) and

@) F*(w) = f(m) + Fu = y,), (i) A= (w € R*: f*(u) = 0},
(3.5)  (iii) £* = yo — SuF'(FS.F)*f (y2),
(iv) L*(u) = {I — SuF"(FS. F') F}(yn — ), (v) X2 (1) = n(yn — p)'Si (3 — 1)

Then (a) i* is BAN for Ax, (b) X%(ii*) =1 x*(d), where d = rank(Fo) and (c) ji* uniquely
satisfies i* € Ak, L*(n*) = 0. Furthermore, if rank(FoF’) = rank(F') for all p € Ag then
d=r.

REMARKS: (a) For simplicity of notation we have suppressed y, in the subscripts from
the correct notation 3 (u) = f(y») + F(u — y,) and Ak, = {n € R*:f5 (u) = 0}. Here, of
course, f* is the linearized version of f at y,. (b) i* may be termed a BAN estimator
obtained by using the linearization technique. It is thus a generalization of the use of
Neyman’s (1949) technique for the multinomial case. Also, note that L*(u) is the version
that is appropriate to the constraint equation model of the linear form by Ferguson (1958,
see (3.15) and (3.17)) for the freedom equation model. (c) In the special case where S, is
positive definite, it can be shown that (see, e.g., Rao, 1965, page 49, (ii))

X% (@) = infuem, X% (1) = nf ' (3:) (FS,. F')f (),

and the infimum is attained at fi*.

4. Admissible regular (IT) estimators. The definition of a “regular” function by
Wijsman (1959a) under assumptions D1 and G did not require that ,Z?( y) be in w the
parameter space. If 8(y) € w then Wijsman called the function admissible (not to be
confused with the decision theoretic definition). Ferguson (1958) described a method of
generating admissible “regular” estimators as the roots of certain equations. Wijsman
(1959a, b) generalized this approach under his model. The following theorem is due to
Wijsman (1959a, b) (see Theorem 2):

THEOREM 4.1. Assume Conditions G and that w is an open set. Let E (B, y) be a p X
s matrix function continuous on w X M where M is some neighborhood of A;. Further
assume E (B, g( B))G(B) is nonsmgular for all B € w. Then there is a nezghborhood N of
Ag and a function B: N — o such that B(g(B)) = B for B € w and that on N, B(y) satisfies
the equation

4.1) EB,»{y—8&B)}=0.
Furthermore any such B is differentiable on A, with differential (EG)™E where E = E (B,
&(B)) and G = G(B).

By Definition 1.1 we see that ﬁ( y) is “regular” and it is clearly admissible. Under
stronger conditions, B(y) is unique and continuously differentiable.
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COROLLARY 4.1. Under the assumptions of Theorem 4.1, if we also assume E (B, y) €
C? on w X M, then B(y) € C? on N. Furthermore B uniquely satisfies both (4.1) and the

property that ﬁ(g(ﬁ ) =B for B E w.

The proof is straightforward and will be omitted.

Wijsman (1959a) goes on to show that if ,é( y) is the admissible regular function
described by Theorem 4.1 then 8(y,) is BAN if E (8, g(8)) = G'(8)o*(8). We would like
to generalize this procedure of generating “regular” admissible functions to our constraint
equation model M. An analogous definition of admissibility would require ji(y) to be in
Ap.

DEFINITION 4.1. Assume Model M. Suppose A(y) is a regular (II) function at u € Ag.
Then A(y) is said to be admissible on a neighborhood N of pif : N — Ay N N. If h(y) is
an admissible function then A(y,) is said to be an admissible estimator.

The following theorem and corollary are the constraint equation analogs of Theorem
4.1 and Corollary 4.1. The function i in Theorem 4.2 is clearly regular (II) on Ay and
admissible on N.

THEOREM 4.2. Assume Model M. Let M (p, y) be an s X s matrix function continuous
on Ag X A. Further assume M (u, ) is idempotent with rankp = s —r on Ay and F(p)M (u,
1) =0 on Ay. Then there is a neighborhood N of Ay and a continuous function ji: N —
Ag such that [(u) = p on Ay and that on N, [i(y) satisfies the equation

4.2) M(p, y)(y —p) =0.
Furthermore any such [i is differentiable on Ay with differential M (u, j1).

Proor. It suffices to prove the theorem locally first, after which the global version can
be derived by taking advantage of the properties of a partition of unity; this argument will
be omitted, see Auslander (1967), page 242. Let po € Ay and N a neighborhood of p,. Since
M (o, po) has rank p there is a full rank p X s submatrix B,. Let B(y, y) be the p X s matrix
consisting of the p rows of M (u, y) which were used to construct Bo. Let E (8, y) = B(g(B),
y) where g is a function that satisfies G of Section 1; this function exists, see Auslander
(1963), page 32. It can be shown that the~conditions of Theorem 4.1 are satisfied. Therefm:e
there is a function ,é : N — w such that 8(g(8)) = B8 and (4.1) is satisfied. Define fi = g(8)
and it can be shown that i satisfies the requirements of this theorem on N.

COROLLARY 4.2. Under the assumptions of Theorem 4.2, if we also assume that M (u,
) €ECY on Au X A, then ji € C" on N and ji uniquely satisfies both (4.2) and the property
that i(u) = p on Ag.

The assertion follows from Corollary 4.1 and the proof is omitted.

DEFINITION 4.2. Assum~e M~odel M. Let S(y, y) be any s X s non-negative definite
matrix function defined on A X A and continuous on Ax X A. Further assume that S(u, )
= o(u) for p € Ay. Now define

4.3) (i) Lisy(p, y) = {I — SF'(FSF')*F}(y — p), and
(44) (i) XTs)(p, y, n) = n(y — p)'S*(y — p),

where S = S(y, y) and F = F(u).
The matrix S(y, y.) may be considered an approximation to ¢ (u). Furthermore, S (g, y»)

—p 6([1.)

THEOREM 4.3. Assume Model M where we further assume rank(Fo) = rank(F') on
Ag. Then there is a neighborhood N of Ag and a function [i defined on N and continuous
on Ay such that (i) L(s)(fi(y),y) =0 for y € N, (ii) i(y) is regular (II) on Ay, and (iii) i(y)
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is admissible on N. Moreover, if A is a subset of N, (iv) ji(y.) is BAN for An, and (v)
X%5) (B (), Yn, n) =1L X*(r). Furthermore if S(p, y) € C¥ on Ay X A and F(p) € C* on
Ap then ji(y) € C® on N and ji uniquely satisfies (i) and the property that ji(u) = p on
Ap.

Proor. Let M(p,y) =1— SF'(FSF’)"F. The proof follows from Theorems 3.2, 4.2 and
Corollaries 3.1, 4.2.

Consider now the case where o(u) is a non-negative definite matrix defined for p € A
such that the condition M (iv) is satisfied and ¢ is continuous on A. Then we could take
S(p, y) = o(p) so that (4.4) becomes X7%,)(y, 3, n) = n(y — p)’o*(y — p); this may be
referred to as the generalized form of the Pearson Chi squared (distance) function since it
does reduce to the familiar form when ny, has multinomial distribution, as pointed out by
Ferguson (1958). The corresponding estimator ji(y.) from Theorem 4.3 may then be
considered a generalization of the minimum Chi squared estimator for the constraint
equation model. Another choice is S(p, y¥) = o(y). The resulting estimator fi(y,) from
Theorem 4.3 may then be similarly termed a generalization of the minimum modified Chi
squared estimator for the constraint equation model.

On the other hand, letting S, = S(y., y.), where S satisfies the conditions in Definition
42and F=F( ¥»), the expressions (4.3) and (4.4) reduce to L*(u) and X2 (u), respectively,
given in (3.5), if we substitute S by S,, F' by Fand y by y». The solution of L*(u) =0 is
then uniquely given by fi* in (3.5). This estimator was shown to be BAN in Theorem 3.4;
however we note that i * € A%, defined in (3.5) and therefore, is not necessarily admissible.
i* was referred to earlier as the generalized version of a BAN estimator obtained under
the linearization technique. More appropriately, it may be interpreted now as the gener-
alized version of the minimum modified Chi squared estimator subject to linearization.

REMARK. The results of Sections 2-4 remain true when the model is modified so that
fhas dimension 7> r where the 7 X s differential has constant rank r < s on a neighborhood
of Ay (see Bemis, 1979).

5. The general model. The constraint equation model M, where f(u) = 0, will now
be extended to the model M*, where d (1) = e(A). Consider the following model assump-
tions:

MobpEeL M*. (i) y. is a sequence of random vectors taking values in A, the closure of
A, an open set in R? (ii) the distribution of the y, depends on the parameter p taking
values in A; (iii) 4 € Ag, where Ag = {up € A: d(n) = e(A) for A € 0}, O being an open set
in RY, g <s; (iv) n"*(y, — p) =1 N:(0, a(p)) for p € Ag; (v) d:A — R¥(q < ¢ < s), where
d € C" on A and the ¢ X s differential D(u) has rank at ¢ on Ag; (vi) e: ©® — d(Ag) where
eis 1 — 1, onto, has a continuous inverse, and e € C® on © where the ¢ X ¢ differential
E (M) has rank ¢ -on 0; (vii) there exists o(y) defined on A such that (iv) holds and ¢ is
continuous on A; furthermore, rank Do = ¢, so that Do D’ is non-singular for all p € Ag.
The following lemma shows that the general model is a special case of the constraint
equation model M.

LEmMMA 5.1. Under Model M* there exists fwith r = t — q such that model assumptions
M hold.

Proor. It is easy to see that e:® — d(Ap) satisfies the regularity conditions G in
Section 1. There is a corresponding constraint equation formulation as discussed in the
first paragraph of Section 2. More formally there is an open set N in R‘ and a function ¢c: N
— R’(r =t — q) such that
(5.1) e®) =d@n) ={rEN:c(r) =0,7=e(A),\ € O}.

Furthermore ¢ € C® on N and has r X ¢ differential C (=) with rank r on d(Ax). Therefore
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A= {p € A:c(d(n)) = 0}. Let
(5.2) f(p) = c(d(p)).

Then it is easy to verify that f: A— R” where f € C"¥ on A and the r X s differential F(u)
= C(d(p))D (1) has rank r on Agy. Then the lemma follows. We will now define the concept
of a regular estimator for A.

DEFINITION 5.1. Assume Model M*. Let & be a ¢ X 1 vector function on A which
maps Ay into §. We will call A(y) regular on Ay if (i) d(n) = e(h(p)) for all p € Ay, and (ii)
h(y) is differentiable on Ay. Let H(p) denote the g X s differential of 4 at u € Ag. If A(y)
is regular on Ay then A(y,) is said to be a regular estimator for A.

The next lemma demonstrates that the regular estimators for A are consistent and
asymptotically normal (CAN).

LEMMA 5.2. Assume Model M* and let h(y,) be a regula‘r estimator for . Then
(5.3) n'2(h(y.) —A) =L No(0, HoH’),

where H= H(u), 0 = o(u), and d(u) = e(A) with u being the true but unknown parameter
in Ag. In other words h(y,) is CAN for A.

The proof is straightforward and the details are omitted.

The next theorem specifies the minimal covariance matrix generated by the class of
regular estimators, i.e. the asymptotic covariance matrix corresponding to a BAN esti-
mator.

THEOREM 5.1. Assume Model M*. Then a regular estimator of A\ is BAN if the
corresponding limiting distribution has covariance matrix (E'(DoD’)E)™", where D =
D(u), E = E(A) = E(e”'d(n)) and d(p) = e(\) with u being the true but unknown
parameter in Ag.

PROOF. As given by (5.2) in the proof of Lemma 5.1 there is a function f:A — R"(r =
t — q) satisfying regularity conditions F such that Az = {u € A: f(n) = 0}. It can be shown
that EH = (I + BC)D for some matrix B where C'is defined in Lemma 5.1 and H is defined
in Lemma 5.2. Hence the class of asymptotic covariance matrices Ho H' in (5.3) correspond-
ing to regular estimators A (y,) for A is in the class generated by different matrices B. Let
now S = D¢D’, which is nonsingular by assumption (vii) in M*, and let N = E’'S™' E.
Consider B = (EN'E’S™! — I)C'(CC’)™" = B, say; then H = N'E’'S™'D = H,, say.
Observe that HyoHy = N7} thus, the theorem is established if we show that HoH’ —
HyoHj is at least positive semi-definite for any B. But

HoH' = N'E’'S™'(I+ BC)S(I + C’'B’)ST'EN™
(5.4) = HyoHy + N'E’'S™Y(BCS + SC’'B’ + BCSC’'B’)S™'EN™
= HwoHy + N'E’'S™BCSC'B’)S'EN;
this is a consequence of the relation CE = 0 which follows by the chain rule of differentiation
from the relation c(e(A\)) = 0 for A € 0O, as seen from the definition of Ax in (iii) of M* and

the Lemma 5.1. Since BCSC’B’ is at least positive semi-definite, so is the right hand side

of (5.4) and the proof is complete.
Let us now consider the restriction of estimators of A to functions of z, = d(y,). Under

model M*, we note that
(5.5) n'?{z, — d(n)} =1 N0, S),
where S(n) = D(u)o(p)D'(p). Suppose now that for p € Ay, S(p) = W(A), where W is
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continuous. Then (5.5) may be equivalently expressed as
(5.6) n*(z, — e(\)} =1 N0, W());

furthermore, z, satisfies the distributional assumptions D1 with respect to parameter A
and the regularity conditions G are satisfied by e. Hence it follows from Wijsman (1959a)
that for regular estimators based on z, the minimal asymptotic covariance matrix is
(E'WE)™! as noted from (2.2). Thus, if A (zn) is BAN in the restricted model for z, and
A, then A(d( ¥»)) is expected to be BAN also in the unrestricted model M* for y, and A.
This is stated formally in the following theorem.

THEOREM 5.2. Assume Model M* and suppose that there exists a t X t matrix W(A)
continuous on © such that, for p € Ag,

(5.7) W) = D(p)o(u)D’ ().

If X(zn) is BAN in the class of regular estimators based on-z,, then X(d (yn)) is BAN
also in the class of regular estimators under Model M* for estimating \.

The proof is straightforward and therefore omitted.

For the general non-linear case, the existence of BAN estimators of y under Model M*
and the techniques to derive some specific estimators of this type, as well as the validity
of appropriate asymptotic Chi squared criteria (based on such estimators) to test the
goodness of fit of Model M*, would follow from the results established for the constraint
equation model, in view of Lemma 5.1.

Alternatively, if the condition of Theorem 5.2 is satisfied, one could show the existence
of BAN estimators of A, and consider techniques to derive some such specific estimators,
and also establish the validity of respective asymptotic Chi squared criteria to test M*,
from the results established by Wijsman (1959a) for the freedom-equation model by
reducing the problem to z, = d(y»).

6. The general linear model. In Model M * suppose now that e(A\) = X\ where X is
a t X g matrix of known constants with rank q. For this general linear mogel which
specifies that d(p) = XA for u € An, the following notation will be used for y € A

(i) S(y) =D(yo(ND'(y), (i) A(y) = {X'S*(NX}'X'S*(y) d(y),
(6.1) (iii) T(y) = nd’(»)S*(y)d(y) — nX"(NX'S* (»)XA(y),
(iv) X2(\, y) = n(d(y) — XN)'S*(»)(d(y) — X));

see Bhapkar (1976) for similar notation and model.

In addition, we will strengthen assumption (vii) in M * by assuming that S is positive
definite for y € A. The next theorem describes the properties of A(y) and T(y) for the
general linear model.

THEOREM 6.1. Under the general linear model the following are true: (i) X y) is regylar
on Ay (ii) n/*(A(ya) = A} =1 No(0, (X'S™(w)X)™); (iiD)A(ya) is BAN; (iv) T(y) = X*(\(y),
y) fory € A (v) X*(\(y), ) = infaerX *(A, ) for y € A; and (vi) T(y.) -1 x*(t — q).

The proof is routine and therefore omitted.

The estimator A( ¥.) may be referred to as the weighted least squares estimator for A.
It should be noted that it can be explicitly obtained from the data, unlike the maximum
likelihood estimator which usually needs an iterative computing routine; furthermore, the
estimator is efficient in the sense that it is a BAN estimator. Similarly, the test criterion
T(¥n) = X2%x(om.y for the goodness-of-fit of the model M* may be termed the weighted
least squares statistic. The weighted least squares estimators and test criteria discussed in
Grizzle et al (1969) are now seen to be applications of our results in Theorem 6.1 to the
special case of multinomial distributions.
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Let us suppose now that y), - - -, ¥ are a random sample of vectors in R*, each with
pdf from the exponential family of the form
(6.2) &(yw|8) = exp{yud — p(d)}

with the standard regularity conditions as outlined in Berk (1972). Define u = Es(y) and
o(p) = Vars(yw). Let now y, = Y1 yu/n. We have then Es(y,) = p, Vars(y,) = o(p)/n
and, furthermore, n'*(y, — p) =1 N,(0, o(p)). Also, y, is sufficient for the family of
distributions of (y), - - -, ¥w). Hence without loss of generality we could confine attention
to estimators based on y, in order to derive suitable BAN estimators of . and, similarly, for
constructing Chi squared criteria based on such BAN estimators under restricted models
of the type p € Ag = {u € A: f(n) = 0}. The results in Sections 2-4 are thus applicable
provided f satisfies the regularity assumptions needed for Model M. Similarly, the results
under the general model and, specifically, the general linear model d(u) = XA continue to
apply. Note that for the exponential family, o(u) is positive definite on A and hence so is
S(p) provided D(p) has rank ¢ on A. .

Such a linear model with ¢ = 1 and X = j, where j = (1, 1, - - -, 1)’, will be termed here
the homogeneity model. For this special case we have from (6.1)

A ya) =J'S*(yn) d(¥2)/j'SH(yn)]
(6.3) and
T(yx) = n[d"(y)S™ (yn) d(¥n) — ('S (yn) d(¥2)}2/J'S* (y)f ).

In view of Theorem 6.1, if d(u) = jA, then
(6.4) n*{N(yn) — A} =2 N1(0, 1/°S7(w)j) and  T(ya) =1 X*(t — 1).

SPECIAL CASE. Consider now the case where, for p €Ay, S(p) in (6.1) has a symmetric
(or interchangable) structure with respect to the ¢ coordinates of d, i.e.

(6.5) S(p) = y(wWI + $(p)d,

where J = jj’ and y(n) > 0, ¢(p) are continuous on A. For this special case, if we utilize the
known structure given by (6.5) of S(u), for u € An, to obtain

S7Hp) =y W — o(w)J/{y(w) + to(w)}],
and use thisin A and 7' given by (6.3), then we get
A (yn) = 75" d(yn)

n(t — D[d'(yx) d(yn) — {7’ d(y)}7]
trace S(y.) — t'S(y.)j

(6.6) and

T*(yn) =

REMARK. A simpler expression for T*(y,) would replace the denominator by
(t — 1)y(y»). However the given expression may be evaluated independently of the
assumption (6.5) and is occasionally used in place of T'(y,) because it is easier to compute,
e.g. Cochran’s @ which will be discussed shortly.
_ It is worthwhile to note that, in general, A ¥») and A*(y,) are not identical. Although,
A(p) = A*(p) for p € Ag, the two statistics may not have the same value for y, in A, since
the structure (6.5) is assumed only for p in Ay and that structure might not hold outside
Ag. The same comment applies in relation to statistics T'(y,) and T *( y.). However, we can
show now that, for p € Ay, A(y») and A*(y,) are asymptotically equivalent and, similarly,
for T(y.) and T*(y,).

:I‘HEOREM 6.2. Under the homogeneity model d(p) = jA, if (6.5) is true, then (i) A*(y,)
= M yn) =p 0, (i) A*(yn) is BAN, (iii) T(y.) — T*(yx) =p 0, and (iv) T*(y.) =1 x*(t — 1).

The proof is straightforward and therefore is omitted.
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It may be noted here that the use of criterion T'*(y,) as a Chi squared criterion for
testing the fit of the model Ay is valid only if the side condition (6.5) holds, while the use
of T'(y»), as a Chi squared criterion for testing the model Ay, remains valid regardless of
the condition (6.5).

One such specific application is to the problem of testing equality of ¢ matched
dichotomous proportions under the multinomial assumption. Then the statistic T'(y,)
reduces to the Wald statistic (or, rather, the weighted least squares statistic) W offered by
Bhapkar (1965) for testing the hypothesis of equality of ¢ marginal probabilities from 2'-
cell multinomial probabilities. On the other hand, the commonly (but somewhat incor-
rectly) used statistic @ (see, e.g., Bhapkar, 1973) is related to T *( y,); both have limiting
x’(t — 1) distributions under the model only if a specific structure is assumed a priori for
S(p). Although the @ statistic was designed by Cochran (1950) for the stronger hypothesis
of interchangability of the ¢ dimensions of the multinomial, its use for testing equality of
marginal probabilities is questionable unless a side condition specifying the structure of
S(p) is assumed a priori. .
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