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GOODNESS OF FIT TESTING IN R™ BASED ON THE
WEIGHTED EMPIRICAL DISTRIBUTION OF CERTAIN
NEAREST NEIGHBOR STATISTICS!

BY MARK F. SCHILLING

University of Southern California

Let Xj, - -+, X, be a random sample in R™ from an unknown density f(x).
Recently Bickel and Breiman have introduced a goodness of fit test for this
situation based on the empirical distribution function of the variables W; =
exp{—-ng(X,)V(R:)},i=1, - - -, n, where g(x) is the hypothesized density and
V(R,) represents the volume of the nearest neighbor sphere centered at X;.
Under the null hypothesis H: f(x) = g(x), the empirical process is asymptoti-
cally independent of g. In this paper a weighted version of the empirical
process is shown to produce tests which are still (essentially) distribution-free
under H but in addition have asymptotic power against sequences of alter-
natives contiguous to g. The optimal weight function is obtained as a function
of the particular sequence of alternatives chosen, and consistency behavior
against fixed alternatives is determined. Monte Carlo results illustrate the
power performance of the tests for various densities and weight functions.

1. Introduction. LetXj, --., X, be arandom sample in R™ from an unknown density
f(x). For the hypothesis H : f(x) = g(x) there are suitable tests available for the multivariate
normal and a few other special models, but a dearth of effective procedures which can be
applied for general g and arbitrary m. A recent paper by Bickel and Breiman (1983)
(henceforth referred to as BB) proposes a new goodness of fit test for this situation based
on the empirical distribution function F, () of the variables

VVt:exP{_ng(Xz)V(Rz)}; i= 1) e, n,

where R, = min, ;|| X; — X;| is the distance from X; to its nearest neighbor, and V(r)
represents the volume of an m-dimensional sphere of radius r. The term g(X;) V(R;) is a
first-order approximation to the coverage (probability content) under g(x) of the nearest
neighbor sphere centered at X;.

In BB it is shown under the conditions outlined in Section 2 below that F, (¢) approaches
its asymptotic limit uniformly with probability one—under the null hypothesis H: f(x) =
£(x) this limit is the uniform distribution—and when appropriately centered and scaled
converges weakly when H holds to a Gaussian process with mean zero and covariance
function independent of f = g. Quadratic functionals of F),(t) are suggested for testing H
and are shown to be consistent against all fixed alternatives.

In the sequel let E without subscript refer to expectation with respect to the true
density f(x). It can be shown by means of an asymptotic expansion of EF,(¢) that tests
based on F,(t) have no asymptotic power in the usual sense; i.e., against sequences of
alternatives { f = f,} deviating in a particular direction from g by O(n™"/2). In this paper
a weighted version of the preceding process is considered. This process is defined in Section
2 and asymptotic results analogous to those above are obtained. It is shown that power
against any prespecified contiguous sequence of alternatives can be achieved through a
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proper selection of the weight function, and the optimal weight function, which depends
on the likelihood ratio, is given. In Section 3 quadratic functionals of the weighted process
are considered. It is shown that the optimally weighted process leads to an optimal test
based on the corresponding functional. Consistency behavior is studied. Finally, Section 4
describes how the asymptotic distributions of these quadratic functionals are produced
and presents a Monte Carlo study which presents some promising results for certain
situations.

2. The process. Assume throughout that w(x) is a continuous bounded function in
R™ and define on [0, 1] the function

Ful®) = 2 S wX)I(Wi< 1),

where I(-) is the indicator function. Let w = sup.| w(x) | and write X for X;. The primary
purpose of this section is to show that F,(¢) when normalized appropriately converges
weakly to a Gaussian process with covariance function depending only on m and the first
two null moments of w(X); this process has zero mean under H but, in general, nonzero
mean under particular contiguous alternative sequences. The weight function providing
the maximum shift in mean for a given alternative sequence is then derived. Several of the
results below are similar to those in BB; for this reason, only outlines of proofs will be
given in some cases. Various fourth moment mequahtles due to BB which are used below
are presented at the end of this section.

2.1 Asymptotic results. We shall draw from the following set of assumptions:

AssuMPTION A. A version of f can be chosen such that (i) {f > 0} is open, (ii) f is
continuous on { f > 0}, (iii) f is uniformly bounded.

AssuMPTION B. The given function g is nonnegative, and (i) {g =0} C {f= 0}, (ii) g
is continuous on {f> 0}.

Nonnegativity is immediate here since g is assumed to be a density. Note that A subsumes
B when H is true. Let

F@) = J' D (x)f(x) dx,

where

f(x)/g(x) ifg(x)>0
M) = { if g(x) =

THEOREM 2.1. If Assumption Al(iii) holds, then

lim . wsupcepo,y| Frn(t) — F(t)| =0 as.

ProoOF. Decompose w(x) into w(x) = w*(x) — w‘(~x), where w*(x) = (*w(x)) V 0.
Then w™*(x), w™(x) are nonnegative and bounded. Let 5 (¢) = (1/n), ¥t w* (X)) I(W; <
t). By conditioning on X; it is easy to show that

(2.1) EF:(t) - F*(¢) = f P w*(x)f(x) dx.
Furthermore, from Chebycheff’s inequality and (2.5),

2.2) P[|F(t) — EF:(t) | = €] = O(n™?)
for any ¢ > 0. Then (2.1) and (2.2) together with the Borel-Cantelli lemma imply that
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Fz(t) - F*(t) as. pointwise for ¢ < 1. In addition, by the strong law of large numbers,

(2.3) Fra1 ) - F=10) =f w*(x)f(x) dx a.s.

{g(x)>0}

Now let

e = {f‘;(t)/F;(l‘) t<l,

and define J*(¢) similarly for F*(¢). Then JZ(f) are distribution functions on [0, 1]
approaching the continuous limiting distribution functions J*(¢t); thus

supcero,1] = (t) — J5(@)| > 0 a.s.

The theorem follows from F, (¢) = Fyf(¢) — F; (t) and (2.3).
Now form the normalized process

Z.(8) = n'?{F,(t) — E,F,(t)}

on [0, 1]. If w(x) = 1, then F,(t) = F,(¢) and the Z, process will be denoted by Z,(¢).
Consider the testing problem involving

H:f(x) = g(x)
and the sequence of alternatives
K.:f=f.(x) = gx) + n™2h(x) + & (x),

where &,(x) ~ o(n™"?) for each x and {f,} and g satisfy

XS]

(i) J’ P dx < o,

. h ?

(i) lim oo f [nlﬂ{f;ﬂ(x) —g"(x)} - 2?(/‘% ] dx =0.

A specialization of a result by LeCam (1960) shows that {f,} is then contiguous to g. A
simple case in which (ii) is satisfied is when n'/%, (x) — 0 uniformly in x.
Define

r(x) = h(x)/g(x)

on {x:g(x) > 0}. It will be assumed throughout that the densities { f,(x)} satisfy Assump-
tion A and that r(x) is bounded in absolute value. The contiguity condition (i) above is
fulfilled by virtue of this latter assumption.

The limiting distribution of Z, (¢) under both H and {K,}, when the densities involved
satisfy Assumptions A and B, is established by Theorems 2.2 and 2.3 below. Contiguity
plays an essential part. Denote the log-likelihood ratio of f. to g by

Ly =log [T1 { (X)) /g(Xi)} = Ti=1log{1l + n7’r(X,) + &, (X,)/8(Xi)}.
The asymptotic joint behavior of L% and Z..(t) must be determined. Let
L,=n""723% r(X), o = E,r*(X).

LEmMMA 2.1. L% — L,— —0?/2 as. under H.

This is a consequence of a proposition by LeCam (1971). The lemma allows L, to be
used in place of the less convenient log-likelihood ratio.

THEOREM 2.2. Under Assumption A, (L, — 02/2, Z,,(t)) converges weakly under H to
(L, Z(¢)), where (i) L ~ N(—c?/2, o?); (ii) Z(t) is @ mean zero Gaussian process with
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covariance function

M&0=Em@mn=ku+nww+af mmam—lumwaa)
B

(s,t)
— st(1 + logst + logslogt) {E,w(X)}> for s=<t,
with
B(s,t) = {wER™:r=|w|<r+r}

and

log n(s, t, w) = f dz,

{(zER™:||z||sry, |2—w|<r2)

where ri and r; are defined by V(r\) = —logs, V(r2) = —logt and | - || represents the
Euclidean norm; and (iii) Cov(L, Z(t)) = 612 = t(1 + logt) E;r(X)w(X).

The convergence of Z, to Z occurs in D[0, 1] although Z is in fact in C[0, 1].

Proor. It is first shown that the sequence of processes Z,(t), Z(¢), - - - is tight. Write
Zn(t) = Z7(8) — Z(t) with

ZE(@) = n'*(FE(t) — E Fx(t)),

where F(¢) are defined in Theorem 2.1. It is enough to prove that the sequence {Z,}
(say) is tight. The procedure is briefly sketched below.

Define Q. (t) = 1 — H,(—logt/V(1)), where H,(-) is defined in (2.7), and for given
8 > 0 choose t,, ---, ¢, such that Q. () =ién % i=1, ..., kwithkén > =1 < (k +
1)6n~"/2. Under Assumptions A(iii) and B, @,(t) converges to a continuous distribution
function Q(t). Let

1/2

mm=mm+%

{@n(t) — @)Y {Z7(tir1) — Z7(4))

fort; <t<t1,0=<1i<k, wherety=0, tr+1 = 1. Following a method of Shorack (1973) and
using Billingsley (1968, Theorem 12.3), Corollary 2.3 to Theorem 2.4 implies that {Z%}
satisfies the moment condition

E{Z3(t) = Za(9)Y' = M@ {Q(®) - Q(s)}* 0=s¢t=1

for M independent of n and therefore {Z%} is tight with all limit points in C[0, 1]. The
monotonicity of Fii(¢) and E F (¢) can then be used to show that the sequence {Z;} is
properly “close” to {Z5} and is therefore also tight with a.s. continuous limits.

We now turn attention to the asymptotic behavior of the finite-dimensional distributions
of (Z,(t1), -+, Zn(t), Lyn) for arbitrary k and t;, ---, t,. The asymptotic normality and
limiting covariance matrix of (Z.(t), -+, Z,(t)) are determined by specializations of
results in Sections 3-4 of BB. What remains to be shown, restricting for simplicity to the
case k£ = 1 and taking ¢, = ¢, is that Z, (¢) and L, are actually joint normal asymptotically
with the indicated covariance. The argument ¢ is suppressed.

Begin by constructing a sequence of compact sets C; C C; C ... C R™ having
diameter(Cy) = N with oy = inf{g(x):x € Cx} > 0 and P(X; € Cy) — 0. For given N,
introduce a cube Dy of sidelength N containing Cy. Partition Dy into L congruent subcubes
whose closures intersected with Cy are labelled as B,, - - -, B;. Put B, = C4%, and denote
the number of points in B, by n,. Select dy > 0 and let Ey = {x:x € B,for /=1, ||x — y||
>dyVy €U, B,}. For any random variable Y, let Y* = Y — E, Y. By choosing L and
dy in such a way that max, P(X € B) — 0 as P(X € Eny) — 0 as N — o, we obtain the
desired result from the arguments below.
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For X; € B,, let R; represent the nearest neighbor distance to X; among the remaining
points in B, if any, taking R; = « otherwise. Let

Z, =n""" i h*(X;, R)),

where A(x, u) = I(x € Ex)w(x)I(exp{—ng(x) V(u)} < t). By reindexing the X; and matching
R; according to cell membership, the quantities

T, = { " h*(XJ(Z)’ RJ/,(Z)) n,>1,
0

Ny 1,
are obtained, which represent the contribution to Z; of each cell B,; ie., Z, = n™'/2.
YZ_, T,. The advantage here is the independence of the T, given n = (no, -+, nr). It
follows from (2.5) that E(Z, — Z,)? — 0 so that Z, may indeed by used in place of Z,.
Similarly, write
L,=n"?%%.Y,
with
Y, = ;’;lr(X}”), ¢{=1,..., L.

For the asymptotic joint normality of Z;, and L, it is sufficient to show that aZ;, + bL,

converges to N(0, a’k(¢, t) + 2abois + b2c?) for all real numbers a and b not both zero.

Take a = 1 without loss of generality since for a = 0 the result follows by the basic
Lindeberg-Feller Central Limit Theorem. Make the decomposition Z;, = U, + V,, where

U.=n""2 35 (T, — E(T:|n.)},
V.= n_l/2 25’;1 {E(T/l n/) - ET/}
The characteristic function of Z;, + bL, is
E{eit(Zf.+bL,‘)} — E[ethnE {eit(U,,+bL,,) | n}].

It is proved in BB that V, — & N(0, ¢?) with 6% < o and E(U?%|n) — s? as. in L; where s*
= k(¢, t) — o independently of n. Write

U, + bL,=Y%,¢,
where
¢(=n"Y4T,— E(T;|n;) + bY,}, £=1,---,L,
and note that the £, are mutually independent given n. Thus
E (Ul | 0y = [Ty fA0)
where
f(t) = E(e**’|n,), £=1,.--, L.

The f.(t) can be expanded by means of appropriate bounds on E(| &% | n,) (p=2,3)
obtained from (2.5) to yield

1%t fe) = exp{.—é Yoo E(E | n)+ An}

for ¢ in a restricted range R(t), where under appropriate limiting operations A, becomes
arbitrarily small and R (¢) grows to (—oo, «). Finally, the result

L1 E(¢%|n,) — s® + 2boy + b%? as. in L,

can be established by showing that
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1
() - L, Cov(T, Y;|n,) — 012 a.s. in Ly, and

(ii) % L Var(Y,|n;) — o as.in L,

Equation (ii) follows immediately from the independence of the terms comprising Y/, and
(i) can be shown through minor modifications of the ensuing argument, which establishes
the overall covariance of Z, and L,.

ProrosiTION 2.1. lim,_..Cov, (Z. (@), Ln) = 012.

Proor. Begin with
COVg(Ln, Zn(t)) = EgLnZn (t)
= Er(X1)wX)I(Wy=¢t) + (n — 1) Egr(Xe)w (X)) I(Wy = t).

By conditioning on Xi, it is easy to obtain tE,r(X; l)w(Xli as the limit of the first term on
the right. For the second term condition on both X; and X, to obtain

(2.4) (n — DVE{r(X)wX1) P (W = t]| X1, X2)}.
Set
[ logt Hm
on(x) = {V(l)ng(x)}

and let p, (X:) represent P,(W; < ¢| X;) with X, deleted from the sample. Then

_Jen(X1) | Xe = Xa|| = 0n(X1),
P, (Wi =<t| X1, Xz) = {0 12Xz = X1 || < 0n (X0),

and (2.4) may be written as

(n—-1) f w(x1)pn (x1)g (1) r(x2)g(x2) dx dx;

{Jlr—2x1[|=0n(x1)}

=—(n-1) f w(x1)on (x1)g(x1) f r(xz2)g(x2) dxa dx:

{||2—21]|<on(x1)}

using Er(X:) = 0. Now letting u = (x2 — x1)/0.(x1) for the inner integral we obtain

—(n-1) f w(x1)pn(x1) g(x1) r(x; + o,u)g(x1 + o, u)on(x1) du dx;.
{llul<1}
Using lim,,,«p.(x1) = ¢, continuity of r and dominated convergence, the desired result

follows.
The limiting distribution of Z, (¢) under {K,} can now be easily determined.

THEOREM 2.3. If Assumptions A and B hold, then under {K.}, Z,(t) converges
weakly to Z(t) + t(1 + log t) E,r(X)w(X).

ProoF. Convergence of the finite-dimensional distributions follows immediately from
Theorem 2.2 and LeCam’s third lemma (Héjek and Sidak, 1967, page 208). The proof of
tightness comes directly from the definition of contiguous probability measures; for given
v and &,

Plmax{|Z,(t;) — Z,(t1)|: |t —t:| <y} =e]—= 0

under H implies that the same holds under {K,} as well.
Theorem 2.3 verifies the assertion that if w(x) = 1, tests based on Z, (¢) have no power
against contiguous alternatives. Interestingly, this is also the case for tests based on Z, (e™")

for any weight function.
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2.2. Optimal selection of the weight function. Tests which use Z,.(¢) for some t € (0,
1], t # e7', as the test statistic will have asymptotic power under {K,} which depends on
the normalized shift

S() = t(1 + log t){Var Z(¢)} "2E,r(X)w(X);
maximizing | S(¢) | will make the limiting power as large as possible.

PROPOSITION 2.2. Among all possible weight functions, the choice w(x) = ar(x), a #
0, maximizes the limiting power of the test based on Z,(t) for fixed t € (0, 1], ¢ # e

Proor. VarZ(t) =k(t,¢t) = ci(t)Var,w(X) + c2($) {E, w(X)}? where c(¢), c2(t) depend
only on ¢. By considering the unweighted statistic Z () it is clear that ca(t) > 0. Thus, given
any weight function w(x) with Ezw(X) # 0, the centered version w; (x) = w(x) — E;w(X)
yields the same covariance with r(X) but makes Var Z(#) smaller, thereby producing a
larger shift than does w(x). Among weight functions w(x) ‘w1th expectation zero,

|S(@®)| = |1+ log t|ci/* (W) {E,r*(X)} " |0s (r (X), w(X)) |,

where p is the correlation; this is a maximum for w(x) = ar(x) + b, @ # 0, whence b =
E,w(X) =

Denote the statistic Z, (£) with weight function r(x) by Z*(¢). Note that Z (1) = L», so

that the test based on Z*(1) is asymptotlcally equivalent to the likelihood ratio test of H

versus {K.,}.

2.3. Moment bounds. This subsection presents some fourth moment inequalities which
are utilized in several of the preceding proofs. Within the model of Section 1, write

F) =f fx) dx; S(x, r) = (y:lly — x||= r}; D: = n""R,, i=1 ..., 0
A

Let A be a bounded, measurable function from R™ X [0, o) to R' and put h; = h(X;, D;)
and h} = h; — Eh;, i=1, ... n. The theorem and first two corollaries given below

represent Theorem 2.1 and Corollaries 2.3, 2.5 of BB respectively.

THEOREM 2.4. Let h be bounded with h = sup.a| h(x, d)|. Then

E(3%: h¥)* <= Mn®h*[(E| h|)* + n*{(E| |FA(S(X:1, R1))} + nh?]

for some M < » depending only on m.

COROLLARY 2.1. Suppose h(x, d) = u(x)v(x, d) for u, v bounded. Then
2.5) E(Tk1 ht)' = M{n*(E|u(X)|)* + n}
for some M < » depending only on m, sup;| u(x) | and supx.q| v(x, d) .

CoROLLARY 22. Ifh(x,d) = I(a < g(x) d™ < b) then
(2.6) E(S%1 h#)* < M[n*{(H,(b) — H.(a))* + n]

for M < » depending only on m, whgre

@7  Hu(y)=Q1-e™)7" J’ f(x)[l - eXp{—g F(S(x, (y/ng(x))”"‘))}] dx.

A slight extension of Corollary 2.2 is needed for our purposes. The proof is omitted.

COROLLARY 2.3. Let h(x, d) = u(x)I(a < g(x)d™ < b) for u(x) bounded. Then (2.6)
holds for some M < » depending only on M and supx| u(x).
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3. The quadratic functional. Define the functional
1
S, = f Z2(t) dt
1)

on D[0,1]. The asymptotic null distribution of S, is indicated in the following corollary to
Theorem 2.2:

COROLLARY 3.1. Iff =g and A holds, S, converges in distribution to
1
S§= f Z2(¢) dt.
0

Proor. Apply Donsker’s Theorem (Billingsley, 1968, Theorem 5.1).

3.1. Distribution of 8. The distribution of functionals such as § has been studied
extensively. The main result, due to Kac and Siegert (1947), is that Z() is equivalent in
distribution to Y71 A}"%¢;(¢) V;, where Vi, Vs, - .. are iid. standard normal variables and
{(A;, dj(t)); /=1, -+, 0} is the set of all eigenvalues and corresponding eigenfunctions of
the integral equation

L ,
3.1) f k(s, t)p(s) ds = Ao (2).
0

Each ); is positive as a result of the positive definiteness of k(s, £). The eigenfunctions
$1(2), ¢2(t), - - - form a complete orthonormal set; thus S is equivalent to Y71 A; V7.

3.2 Optimality. One would expect the functional [§ Z}%(¢) dt to possess a similar
optimality property to that of ZX(f) for a specified sequence {K,}. The Kac-Siegert
representation can be used to verify this.

ProrosITION 3.1. Among all weight functions with E,w(X) = 0, the choice w(x) =
ar(x), for any a # 0, maximizes the limiting power of the test which rejects for large
values of S,.

Proor. Without loss of generality restrict to weight functions satisfying E,w(X) = 0,
E,w*(X) = 1. Recall from Theorem 2.3 that under the sequence {K,}

(3.2) Z,(t) — Z(t) + t(1 + log t)E,r(X)w(X).

The completeness of the ¢,(¢) sequence allows the shift term in (3.2) to be expressed as
%1 Aj2a;(w)¢, (¢) for some constants a;(w), az(w), - - - . Hence the right-hand side of (3.2)
is equivalent to Y51 A}%;(£){V; + a;(w)} and thus § is representable as the sum of the
positively weighted independent non-central Chi squared variables {V; + a1(w)}?, (V2 +
az(w))?, .- .. Since each a;(w) is clearly proportional to E,r(X)w(X) independently of ¢,
the a;(w)’s are simultaneously maximized in absolute value by that w(x) which maximizes
E ,r(X)w(X), namely w(x) = r(x). This makes all of the variables {V; + aj(w)}2—and
hence S—stochastically as large as possible.

3.3. Consistency. The following theorem describes the consistency behavior of the S,
test for fixed alternatives.

THEOREM 3.1. If Assumptions A and B hold, and if (i) {x: f(ic) #gx)} N {x:w(x)
# 0} has positive probability, (ii) w(x) = Y(A(x)) for some {, then S, — o .
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1
Proor. S, = nf (Fo(t) — EfF,(2)) dt
0
1
+2n J’ (Fu(t) — EfF. ()} {EF.(t) — E,F.(8)) dt
0
1
+n J’ (E/F,(¢t) — E F,(t))? dt
0

=n J’ (E/F,(t) — E,F,(t)) dt
0

1

1 1/2
—2n[ j (F.(t) — E/F.(t))? dt J (E/F.(t) — E,F,(t))* dt}
0 0

It is enough to show that lim, ... [ {EF,(t) — EgF.(t)}? dt > 0. From Theorem 2.1 we
have

L) = lim,o{E/F.(t) — EF.(t)} = f w(x) { fx) @ — tg(x)} dx.

Define {i1(¢) = {(¢)/t. It suffices to show that t*(d¢i(t)/dt) # 0 in (0, 1]; the result then
follows from continuity of {(¢) and dominated convergence. Now upon passing the deriv-
ative,

t? dit §i(t) = J’ w(x) {A(x) — BPf(x) dx.

This can be viewed as the expectation of a constant times w(X ) {A(X) — 1} with respect to
the probability measure

*Df(x) dx
f £AOf(z) dx

On considering ¢ as a parameter, {P;(x)} defines an exponential family having Y7-; A (X) as
a sufficient statistic for . Hence {P.(x)} is complete (Lehmann, 1959, page 132) and the
result follows.

dPy(x) =

COROLLARY 3.2. If Assumptions A and B hold, the test which rejects for large values
of S, = [t Z%(t) dt is consistent against all f(x) # g(x).

Proor. Choose y(-) = 1. This result can also be proven by utilizing Laplace transforms.

COROLLARY 3.3. If Assumptions A and B hold, the S, test with optimal weight
function for testing f against g is consistent against f provided f(x) # g(x).

Proor. Choose y(u) = u — 1 in Theorem 31

Unfortunately the weighted test may be consistent against alternatives for which the
weight function is not optimal. For example if E {w(X)|A(X)} = 0 then {(¢) = 0 in
Theorem 3.1, and at least for m < 3 it can be shown that the S, test is not consistent.
However, it is easy to obtain tests which have both asymptotic power against a particular
sequence {K,} and consistency against all fixed alternatives by merely combining the S,
and S, tests. Proposition 3.2 validates this approach.

PROPOSITION 3.2. Let w(x) be chosen so that Eqw(X ) = 0. Then under the conditions
of Theorem 2.2, S,, and S,, are asymptotically independent.
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TaBLE 1
Monte Carlo powers of the S, test and competitors for m = 1, size a = 0.10. Asterisk indicates
cases where w is optimal for f. Entries in parentheses are estimates described in Section 3.

1 Density f Sample size n Statistictf
(a) gis U[0, 1]
Sa 8., w1 KS X2
f 25 17 .86(.77)* .89 .78
100 .10 .82(.68)* .86 49
f2 25 .19 .02(.12) 28 .67
100 12 .08(.11) 40 .56
fs 25 13 .56(.44) 71 52
100 .10 .56(.46) .70 .36
fa 25 12 .34(.28) 42 .36
100 A1 .32(.24) 43 22
(b) gis N(0, 1)
Sn gn, Wa gn, W3 KS X2
fs 25 12 34(.24)* .06(.07) .38 .26
100 .10 41(.33)* .08(.10) 43 21
fe 25 .10 .09(.09) .28(.26)* .14 .18
100 .07 .10(.09) 31(.21)* .16 22
(c) g is Exp(1)
Sa 8., wa KS e
fr 25 .10 37(.28)* 41 .30
100 .09 49(.40)* 42 29

thE) =1+ 10n7"2(x — %); folx) = 1+ 2725 — 20 |x — %|); fa(x) = 1 + 2.5n V2sgn(x — %);
fi(x) = 0.6 — 0.4 log x; fs is N(1.645n""%, 1); fs is N(0, 1 + 1.163n7/2); f,(x) = 0, exp(—x/0,), where
025 = 1447, 0100 = 1196

+1 Weight functions for S, are: w:(x) = V3(©@2x - 1); wa(x) = x; ws(x) = (x% — 1)/s/§; ws(x) =
x—1.

Proor. Followmg the proof of Theorem 2.2 in a straightforward manner it is apparent
that Z,(¢) and Z,(¢) are joint normal for each t. A calculation similar to that for the
covariance kernel of Z,(¢) yields, for s < ¢,

limy, ..Covg(Zy(s), Zn(t)) = limnuCoVg(Z(s), Zu(2)) = ks, ) Egw(X),

and the proposition follows.

A sunple test which combines the S, and S, tests is the test which rejects if either the
S, or the S, test rejects at level a/2. This test has asymptotic level @ — a*/4 and limiting
power approximately equal to that of the S, test with level a/2.

4. Power performance. To table the distribution of § requires solving (3.1) in order
to obtain the eigenvalues A1, A, - - - . Except in the one-dimensional case, the intractability
of the term [giy {1(s, t, w) — 1} dw prevents this. It is possible, however to produce a
simple form by letting m tend to infinity. This preserves the positive definiteness of &(s, t);
thus we may think of an infinite-dimensional version of § having covariance function equal
to the limit in m of (3.1). The distributions of S for m = 1 and m = « are quite close and
there is strong evidence that the § distributions decrease monotonically (pointwise) as m
varies from one to infinity. Hence the m = 1 and m = « distributions appear to provide
adequate approximations for experiments with 1 < m < o,
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TABLE 2
Monte Carlo powers of the 8, test and a competitor for m = 3, 5, g = N(0, I), and size a = 0.10.
Entries in parentheses are estimates described in Section 3. Asterisk indicates cases where w is

optimal for f.
1 Density f Sample size n Statistic{{
(@m=3

Sn gn, W5 gn, We gn, Wy SR

fs 25 23 .60(.56)* .06(.15) .06(.17) .14

100 21 .59(.55)* .16(.20) .08(.16) .06

fo 25 17 .06(.12) .35(.31)* .04(.08) .39

100 13 .10(.14) 44(.35)* .07(.12) .39

S, gn; Wy gn; Wsg gn, Wy SR

fio 25 12 .39(.31)* .35(.30) .08(.10) 12

100 15 .46(.39)* 41(.38) .15(.15) 12

(b)ym=5

S, gm W5 gm Weg §n’ Wy SR

fs 25 .16 .59(.51)* .10(.12) .04(.09) 13

100 .16 .64(.57)* 22(.22) .06(.12) 12

fo 25 .18 12(.14) .38(.33)* .03(.07) .33

100 15 11(.17) .47(.38)* .06(.14) 35

Sn gny W7 gn, Wsg gn, Wy SR

fio 25 13 .35(.30)* .33(.28) .08(.12) .10

100 13 .34(.29)* .39(.33) .19(.18) 12

tfo(x) = g(x) + (0,2487n7'20, .-+, 0); fo(x) = g(x1, (1 + .75n"*)xz, (1 + 150" V?)x3); fro is (1
—25n"Y3.N(0, I) + 25n7"2N((0.75, 0, - - - , 0), I).

++ weight functions for S, are: ws(x) = x2; we(x) = 1072{x3 — 1 + 2(x}3 — 1)}; wilx) =
1.151{exp(.75x: — .281) —1}; ws(x) = x1; wo(x) = 107"%{x3 — 1 + 2(x} — 1)}.

The foregoing is treated fully in Schilling (1983); Monte Carlo experiments discussed
there indicate a reasonable fit under the null hypothesis to the distributions mentioned
above for m = 1, 3, 5; n = 25, 100. Performance under the alternative is presented in this
section for the same choices of m and n and various g(x), f(x) and w(x). The nonconstant
weight functions are normalized to satisfy E.w(X) = 0, E;w*(X) = 1.

The univariate goodness of fit problem is treated first. Several distribution-free tests
exist for this situation; Kolmogorov-Smirnov distance and the Chi squared test with
equiprobable cells were selected as competitors for the S, test, which in one dimension
becomes a test based on “spacings”; see Pyke (1965) for an overview. The results are shown
in Table 1. Each entry is based on 200 trials. The uniform, standard normal and exponential
with parameter 1 were the null densities used. Alternatives were chosen in such a way as
to move in towards g according to particular {K,} sequences. Thus the sample powers
should tend to stabilize for properly weighted tests and decrease for the unweighted test
S,.. Alternative f = fi(x) (see Table 1) was studied in spite of its violation of Assumption
A(iii). Values in parentheses represent the estimated powers of the test discussed in
Section 3 which combines S, and S,. Finally, asterisks mark those entries for which the
corresponding weight function is optimal.

Table 2 gives an indication of the power of S, for testing the multivariate standard
normal against each of three alternatives. These include both location and scale departures
as well as a mixture of the standard normal with a shifted normal distribution. The
functions ws(x), we(x) and wy(x) (see Table 2) represent the respective optimal weight
functions for these alternatives. Again each case is based on 200 samples.
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There is a distinct absence of competitors with similar properties to those of the
multidimensional S, test. For testing the standard normal density, a simple procedure is
to compute the squared distances from each point to the origin. Since under the null
hypothesis these values follow a Chi squared distribution with m degrees of freedom,
ordinary one-dimensional Kolmogrov-Smirnov distance can be used. This test is denoted
by SR (squared radii) in Table 2.

The critical values used for the data in Table 2 are those of the asymptotic distributions
of S, and S, for m = 1, given in Schilling (1983), since these distributions fit the empirical
null distributions (m = 3, 5) somewhat more closely than did the asymptotic distributions
for m = oo,

The power performance of the S, test is rather disappointing, whereas the weighted
test does quite well when the weight function is designed for a deviation from the null
density at least roughly in the direction of the actual alternative. In one dimension the S,
test with optimal weight function performs comparably to Kohnogorov -Smirnov distance
and is superior to Chi square. The multidimensional version of S, having optimal weighting
outperforms the SR test for both shift and mixture alternatives, and does about as well as
the SR test for the scale alternative.

Examples in which E;{w(X) |A(X)} = 0 include f = fa(x), w = wi(x) and f = fs(x), w
= w,(x) in Table 1 and f = fo(x), w = ws(x) as well as f = fs(x), w = ws(x) or wr(x) in
Table 2. As expected there is no apparent detection of the alternative by the weighted test
in any of these cases; however, the entries of f = f3(x) or fi(x), w = w: (x) in Table 1 and
f = ful(x), w = ws(x) in Table 2 give a measure of how well the S, test does against
alternatives only crudely similar to that for which it has been designed. Thus in situations
where the experimenter has at least a vague idea of the probable form an alternative to his
hypothesized density may take, the S, test could provide a useful tool. He might also elect
to use a test combining S, and S,, as Tables 1 and 2 indicate that a fairly small price is
paid in terms of loss of power in return for the assurance of consistency against all fixed
alternatives.

Acknowledgment. The author is deeply indebted to Dr. Peter J. Bickel for his
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