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QUICK CONSISTENCY OF QUASI MAXIMUM LIKELIHOOD
ESTIMATORS

By THoMAS PFAFF

University of Kaiserslautern

A family of probability measures 2 on some measurable space (X, )
and a class of estimator sequences b,:x"— 2, n € N, containing maximum
likelihood estimators are considered. For P € £ it is proved that there are
numbers ¢ > 0, Ao > 0 fulfilling P" {n'/? d(P,, P) > h} < exp(—ch?®) forn € N,
h = ho, where d denotes the Hellinger distance of probability measures. Then
parameterized families 2 = {P(§):60 € O} are considered whereA((-), A)is a
separable and finite-dimensional metric space, and for sequences ,: X" — 0,
n € N, estimating the parameter similar inequalities are derived.

1. Introduction. Let £ denote a family of probability measures on some measurable
space (X, &). The problem is to estimate the “true” measure P € £ from n independent
observations xi, - -+, x, € X. Under conditions which are basically generalizations of the
conditions first discussed by Wald (1949) in proving strong consistency of maximum
likelihood estimators, we prove for some class of estimator sequences B,.X"> 2neN,
containing maximum likelihood estimators

(1.1) P{d(P,,P)>¢e)<e " for nEN,
which is then used for proving
(1.2) P{VndB,, P)>h}<e ™ for nEN, h=h.

(Here d denotes the Hellinger distance of probability measures; see Section 2.) These
results are presented in Section 3. The proof of (1.1) is rather simple, whereas the proof of
(1.2) is based on a fluctuation inequality for random functions (Lemma (7.4)). Relation
(1.2) is valid for separable and finite-dimensional spaces ( &, d). For parametric models &
= {P(0) : § € ©} with (0, A) being a finite-dimensional metric space we translate (1.1) and
(1.2) into the space of parameters (see the results in Sections 4 and 5).

For parametric models with open ® C R?, the basic theory for consistent maximum
likelihood estimation based on independent and identically distributed observations is due
to Wald (1949). This theory was developed in the papers of Landers (1968), Pfanzagl
(1969), Michel and Pfanzagl (1971), Landers (197 2).AWald (1949) verified strong consistency
for sequences of maximum likelihood estimators, 6,: X" — 0, n € N:

(1.3) P@O)" (limpey || 6, — 0] = 0} = 1.

Two stochastic inequalities for the concentration of the estimators about the true param-
eter @ are side-results in the papers of Michel and Pfanzagl (1971, Lemma 4 and Lemma 6)
and of Chibisov (1973, Lemma 1), namely,

(1.4) P©O) (|| 6. — 0| =&} < cyoon~? for n€EN,
(1.5) P©6)" {Vn| 6. — 0| = 2B(6)(log n)"?} < con™? for n€EN.

Note that (1.4) implies (1.3). Ibragimov and Khas’minskii (1973, Theorem 1 and Theorem
2) proved that with suitable A > 0
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(1.6) P@)" {n*|| 0, — 0| > h} <csoh™®, for nEN, h=H,y, b>0.

Relation (1.6) is equivalent to the fact that for arbitrary b > 0 lim supnenn® Eo[ || 6, — 0 °]
< o0; and (1.6) was used by Gusev (1976) and by Pfaff (1977) in order to gain asymptotic
expansions of moments of n"/%(f, — 9).

In the present paper we present improvements of (1.4) and (1.5) (see Theorem 5.1)
which hold true under very general assumptions. Michel and Pfanzagl (1971) and Chibisov
(1973) used assumptions concerning continuity and differentiability of densities and
concerning existence of moments of the derivatives; we avoid these conditions.

The result of Ibragimov and Khas’minskii (1973) was obtained for ® C R' under
restrictive conditions excluding e.g scale parameter families. Our result (Theorem 6.5)
covers multi-dimensional parameter spaces and it is well applicable to location and scale
families 2. )

Quick consistency of §, means that for some A > 0, n* || 6, — 8| stays bounded in
Pj-probability (see (1.5), (1.6)). For sufficiently regular families 2 = {P(d) :6 € ©} (with
densities satisfying some differentiability- and moment-conditions) the largest accessible
number A is % because the distributions of v(d, — 8) under P} are asymptotically normal;
see e.g. Michel and Pfanzagl (1971). Examples of nonregular families are known where %
=< A =< 1; see, e.g., the example given by Akahira and Takeuchi (1981, pages 27-51).
However, it seems to be common to both cases that N d(P(én), P(8)) stays bounded in
Pj-probability; c.f. LeCam’s (1973) introduction, also our Remark (5.5).

Therefore, our concept seems to be reasonable, namely, starting with proving (1.1) and
(1.2) for a very general non-parametric model 2 and then applying these results to
parametric models.

For Bayesian estimators Strasser (1981b, 1981c) recently obtained results which are
analogous to our Theorems 3.3, 3.10 and 5.1.

In the cited papers of Michel-Pfanzagl and Chibisov relations (1.4) and (1.5) were
proved to hold locally uniformly in 6. It is easy to see that the inequalities established in
the present paper also hold true locally uniformly under some suitable “uniform version”
of our conditions. We do not treat these possible generalizations in order to simplify our
presentation.

Following the concept of Landers (1972) and Strasser (1981a), we base our definition of
quasi maximum likelihood estimators on separable random functions being equivalent to
the likelihood functions (see Lemma 2.1 and Definition 2.2). This concept has a number of
advantages: measurable estimators always exist (see Remark 2.3). The proofs are simplified
because no measurability problems arise. Continuity conditions assuring separability of
the likelihood functions (c.f. Pfanzagl, 1969, Lemma 3.8) are avoided. Nevertheless our
theory is applicable to all important cases, where it is possible to choose versions of the
densities such that the likelihood funtions become separable (then maximum likelihood
estimators in our sense are maximum likelihood estimators in the usual sense).

Until we present our results in Sections 8, 4, 5 and 6, we give the basic notations and
definitions in Section 2; the proofs are collected in Section 7.

2. Preliminaries. Let N denote the natural numbers and R the real numbers. Let
v| o/ be a o-finite measure dominating the family 2| & For @ € 2, let hg be a density of
Q| A relative to v | o For n € N, let P* | &/", v" | & denote the n-fold independent product
of identical components P | </, respectively »| .

For P, @ € 2 the Hellinger distance d(P, @) and the affinity a(P, @) are defined as
follows:

dP,Q)’=1-a(P,Q) = % J’ (hg® — h¥*)* dv.
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The metric space (%, d) is assumed separable. The open balls in (£ d) are denoted by
B(P, r). Let % be the Borel-o-field on £

Forn € N and x = (x1, - -, x,) € X" the function A, ¢(x) = [[}-1 he(x;) is called the
likelihood function. The following Lemma 2.1 proves for every n € N the existence of a
separable random function being equivalent to the random function (%, ¢)gc». The notions
“random function,” “equivalence of random functions” and “separability of a random
function” are defined in Definition 7.3.

2.1. LEMMA. For any countable, dense subset S C 2 there exist functions f, ¢: X" —
[0, ®), n € N, @ € &, having the properties:
1) x> fue(x) is S "-measurable, for every n € N and every Q@ € 2.
(i) fr = hner"-a.e., for every n € N and every Q € 2.
(ili) For every n € N, every @ € 2 and every x € X" there exists a sequence (Qm)men C
S satisfying

limpey d(@n, @) =0 and limuen fnq, (%) = fre(x).
PROOF. See Strasser (1981a, page 1108).

We choose a countable dense subset S and a family (f,,¢).en,qc» satisfying i), (ii), (iii)
and keep them fixed throughout the paper.

2.2. DEFINITION. Let 0 < y = 1 and P € 2 A sequence of (%", %)-measurable
functions P, : X" — 2, n € N, is called sequence of quasi maximum likelihood estimators
for P, with coefficient v, relative to the family (fy,¢)ren,qe », if for every n € N and for P”-
a.e. x € X" we have

frB,(%) = v SUPges fr,o(x) Or Supges fro(x) = +o.

A sequence of quasi maximum likelihood estimators with coefficient 1 is called sequence
of maximum likelihood estimators. The name “quasi maximum likelihood estimator with
coefficient y” was qually used by Roussas (1965).

2.3. REMARK. For every y € (0, 1) there exists a sequence of quasi maximum likelihood
estimators with coefficient y; c.f. Strasser (1981a, page 1109).

2.4. DEFINITION. A subset M C T of a metric space (T, p) is called finite-dimensional
with dimension D > 0 if there is a constant C < o such that for every {, € M and every
pair 0 < r < R < o there is a finite collection of balls B,(t,, r) = {t € T:p(t, t,) <r},p =
1, - - -, m, covering the set B,(t,, R) N M, where t, € M and m < C(R/r)".

3. Convergence relative to the Hellinger distance. We formulate two conditions
which imply relation (1.1).

3.1. ConpITION. There exist a compact subset K C &, with P € K, and numbers n €
Nandp >1, g >1, with 1/p + 1/q = 1, satisfying

f (supgeo-&xfr5)fr/% dv" < 1.

3.2. ConDITION. For the compact set K in Condition 3.1 and for every @ € K there
exist a ball B(Qo, §) and numbers n € N and p > 1, ¢ > 1, with 1/p + 1/q = 1, satisfying

a )<t if # P,
j (supeen@o.o) frB) f/% dv { <o if 83 -P
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Under these conditions, which will be made more transparent by Lemma 3.5 and by
Remark 3.6 below, the following result is true.

3.3. LEMMA. Let P € 2 and assume that Conditions 3.1 and 3.2 are fulfilled for this
measure P. Then every sequence (P,)nen of quasi maximum likelihood estimators for P
has the properties:

For arbitrary € > 0 there exist numbers no € N and ¢ > 0 such that for every n = nq

(3.4) P"{d(P,, P) > ¢} <e™™ and P" {supgesfre = ©} = 0.

PRrRoOF. See Section 7.1.

3.5. LEMMA. Conditions 3.1 and 3.2 are valid for P € 2 if the family has the following
properties:
(i) (& d) is locally compact.
(i) For P-ae. x € X the map @ — hq(x) is upper semicontinuous.
(i) Thereis n € N such that for P"-a.e. x € X" and for every e > 0 exists a compact set
K C 2 satisfying

suergo_Kfn,Q(x) <e&

(This condition meanslimg ,p+ f»,(x) = 0 if 2* = 2 U {P*} denotes the compactification
of 2)

(iv) For every Q) € ¥ there exist a ball B(Q,, 8§) and numbersn € Nandp >1,q>1,
1/p + 1/q = 1, satisfying

U\ £1/
f (supPQeB (@0, [ o) frp dv" < o.

(v) There exist a compact set K C # and numbersn € Nandp >1,q>1,1/p + 1/q
= 1, satisfying

f (supge »-xf1/5) /% dv" < .

ProOF. See Section 7.2.

3.6. REMARKS.

1. In Lemma 3.5 (iv), (v) the integrals can be replaced by [ supef. o/f.r dP.

2. For compact (%, d) Condition 3.1 and the assumptions (i), (iii), (v) in Lemma 3.5
are obviously fulfilled. (Choose K = 2)

3. If any of the Conditions 3.1, 3.2 and 3.5 (iii), (iv), (v) holds with n = n, then it holds
for arbitrary n = no. (See the relations (7.1.3), (7.1.4) in the proof of Lemma 3.3.) However,
it may happen that the conditions are not valid for small numbers n. Let e.g. 2 be the
family of m-variate normal distributions, then (iii) and (v) are valid for n = m + 1 and they
are violated for n < m + 1. See also the remark by Kiefer and Wolfowitz (1956).

Two additional conditions are needed for Theorem 3.10 which yields relation (1.2):

3.7. ConDITION. For some suitable 8§’ > 0 the ball B(P, §’) is finite-dimensional with
dimension D > 0.

3.8. ConDITION. There are numbers §” > 0, s = 2, C < « fulfilling s > D (D is the
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dimension in Condition 3.7) and [ |log kg | dP < C for every @ € B(P, ") and
(3.9 flfb, —to,|°dP = Cd(Q, Q)°
for every pair @, @: € B(P, §”) where
to = log he — J' log\hQ dP for Q€ 2

The idea of using a local dimensionality condition like Condition 3.7 in order to prove
consistency of estimates is due to LeCam (1973); this idea was also applied by Strasser

(1981c¢).
It should be noted that Condition 3.8 implies that every @ € B(P, §”) dominates the

measure P.

3.10. THEOREM. Let P € 2 and assume that P satisfies Conditions 3.1, 3.2, 3.7 and
3.8, and let (P,)nen be a sequence of quasi maximum likelihood estimators for P. Then
the properties (i) and (ii) come true:

(i) There are constants a > 0 and & > 0 such that

(3.11) P*(n'2 d(P,, P) > alog(1/e)/*} <e

holds for every n € N and every ¢ € (0, &].
(ii) There are constants ho > 0, ¢ > 0 such that

(3.12) P*(n'?d(P,,P) >h) <e™"

for every n € N and every h = ho.
(i) The assertions (i) and (ii) imply each other and, moreover, they imply that for
arbitrary s > 0 there are constants a > 0, C; < o such that for every n € N

(3.13) .
P*{n'? d(P,, P) > a(s log n)'?} = Csn™".

PROOF. See Section 7.6.

4. Verification of the conditions for parametrized families. Let (®, A) denote
a separable and locally compact metric space and let ® 37— P(1) € Pbea bijective map.
In this case 2 is called parametrized family and r is called parameter of the measure P().

The balls in the metric A[d] are denoted by Ba(, e)[B(P, €)1, %[ #] denotes the Borel
field on B[ 2].

We establish four assumptions on the family 2; the third and fourth assumptions refer

to some 6, € O:

4.1. ConpITION. For every 6 € © there are numbers ¢;(f) > 0, c2(8) > 0, a(d) > 0,
8:(0) > 0 satisfying
a1(0) A (o, 1)@ = d(P(0), P(7)) < c2(0) A(o,7)*®
for o, T € Ba(6, 8:(8)).
4.2. ConDITION. For every 6 € O there is a compact subset K(f) C © and a number
1(8) > 0 such that
d(P(7), P(§)) =n(@) forevery t€ O — K(0).
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4.3. CONDITION. There are numbers 8 > 0, Dy > 0 such that Ba(, 8:) is finite-
dimensional with dimension D,.

4.4. CoNDITION. There are numbers §; > 0, s = 2, C < « fulfilling s > Dy/a(f) and
I |1og hp(y | dP(6o) < C for T € Ba(bo, 83) and

J | oty = lowny |* AP(8) = CA(a, 7)*00*

for o, € Ba(fo, 83), where a(fy), Do are the numbers occuring in Conditions 4.1, 4.3 and
where ¢, was defined in Condition 3.8.

4.5. LEMMA. Assume that Conditions 4.1-4.4 are satisfied for 8, € ©. Then Conditions
3.7 and 3.8 are fulfilled for P(6,), the dimension D in Condition 3.7 is equal to Do/a(6,),
the number s in Condition 3.8 is equal to the number s in Condition 4.4. Moreover, the
map T — P(7) is a homeomorphism.

PROOF. See Section 7.7.

4.6. REMARK. Since (0, A) is separable and since the map 7 — P(7) is a homeomorph-
ism, (2, d) is also separable. Let S, be a countable dense subset of ®. Then, according to
Lemma 2.1, for S = {P(r) : T €S,} there exist separable versions (f,,¢)qe of the likelihood
functions (h.,¢)ge». This means that for every n € N, € O, x € X" exists a sequence
(0)men C So fulfilling lim,enA (6, 6) = 0 and limpmen fo,pe,,) (%) = fo,pe)(2).

Since the parametrization is a homeomorphism it is quite simple to express the
Conditions 3.1 and 3.2 and the Assumptions (i)-(v) of Lemma 3.5 using the metric A. This
will be left to the reader.

For notational convenience, we shall write f;. ., A..., A., 4 in place of f, pt:), An,pr)s PP(r)
P(r)

4.7. DEFINITION. Letd,:X" - ©, n € N, be a sequence of (2", %,)-measurable maps,
let y € (0, 1] and let 6 € ©. (6x)nen is called sequence of quasi maximum likelihood
estimators for 6y iff (P(6.)).cn is a sequence of quasi maximum likelihood estimators for
P(6,).

From Lemma 4.5 and Remark 4.6 we conclude:

4.8. COROLLARY. Let 0y € ©. Assume that Conditions 3.1 and 3.2 are fulfilled for
P(6y), assume that Conditions 4.1, 4.2, 4.3, 4.4 are satisfied for 6, and let (6,)ncn be a
sequence of quasi maximum likelihood estimators for 6. Then the assertions of Lemma
3.3 and of Theorem 3.10 are valid for P = P(6,) and for P, = P(4,).

We give two important examples where Conditions 4.1 and 4.4 can easily be verified:

4.9. ExaMpPLE. (Families fulfilling Cramér-Wald conditions). Let ® be an open subset
of R* and let A(r, ) : = || 7 — 8| where || || denotes the Euclidean norm. A family 2 =
{P(0):0 € 6} of mutually absolutely continuous measures is called satisfying Cramér-
Wald conditions, if the functions § — log Ay (x) admit continuous derivatives of a sufficiently
high order, if these derivatives fulfill certain moment conditions and if the Fisher infor-
mation matrix I(#) is positive definite for every §. Under such conditions, it is possible to
prove with the aid of Taylor expansion techniques (see, e.g., Ibragimov and Khas’'minskii,
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1972, page 452, Lemma 2.2 and Lemma 2.3, page 455, Lemma 2.5) that
d(P(0), P(1))* = %(o — ) "-I(7)- (6 — 7) + O([lo — 7| 2)

where the convergence is uniformly for 7 in some ball Ba(d, §). This implies Condition 4.1
with a(d) = 1. Condition 4.4 may be derived from the inequality

|log A, — log A.|° dP(6)

(4.10)
=< |lo = 7||2 Suposes: f | (3/38)10g By 416 () |*P(6) (d).

4.11. ExamMpLE. (Exponential families). A family 2 = {P() : § € @}, with open © C
R*, is called exponential family if the densities 4y admit a representation

ho(x) = c(@)exp (Tho, 0V,

where g = (g®, - .-, g‘k’)T:X—>_ R* is «/-measurable.
Assume that the functions g’ have locally bounded moments of order three and that
the covariance matrix Covy(g) is positive definite for every § € ©. Then

d(P(0), P(1))? = %(o — 7)T-Cov.(g)-(6 — 7) + O(]| o — 7||3)

holds uniformly for 7 in some ball B, (6, §) and, therefore, Condition 4.1 is satisfied with
a(@) = 1. Condition 4.4 may be concluded from

1/s\ s
(4.12) f |4 — 4| dP@O) < | o~ fllf;(z Yha [ f g de)] ) .

Clearly, the Examples 4.9 and 4.11 satisfy Condition 4.3, with Do = % and with arbitrary
82 > 0, and they satisfy conditions (i), (ii) in Lemma 3.5. Thus, the assertions of Theorems
3.3 and 3.10 come true if, additionally, Condition 4.2 and Lemma 3.5 (iii)-(v) are satisfied.
Since 6 — hy(x) is continuous for every x we may choose f,, = A, ..

5. Convergence of estimators for parameters. In this section we transform
relations (3.4), (3.11), and (3.13) into inequalities for quasi maximum likelihood estimators
for parameters.

5.1. THEOREM. Let 6, € © and let (é,,),,eN be a sequence of quasi maximum likelihood
estimators for 0,. Assume that Conditions 3.1 and 3.2 are valid for P(6), and let
Conditions 4.1, 4.2, 4.3, 4.4 be fulfilled for 8,. Then for every ¢ > 0 there are numbers no
€ N and ¢ > 0 such that

(5.2) P(00)" {8, 60) > e} <e™™"

for n = ny. Moreover, there are numbers no € N, ¢ > 0, ho > 0 fulfilling

(5.3) P(8o)" {n"**A(@,, 6) > h} < exp(—cn) + exp(—ch®®)

for n = no, h = ho. Furthermore, for arbitrary s > 0 there are a > 0, C; < o such that
(5.4) P(80)" {n/*A(@,, 6,) > a(s log n)/*®} < c,n™*

forn € N.

Proor. See Section 7.8.

5.5. REMARK. For “regular”’ families 2 we have a(6y) = 1; see our Examples 4.9, 4.11
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and 6.6. However, there exist non-regular families where relations, similar to (5.3), hold
with a(6y) < 1: Akahira and Takeuchi (1981, pages 27-51) consider the location family on
R* generated by the density

Cuv-(x — @)+ (b — x)" g (x),

where 0 <u =v,a < b, g(x) >0 for a <x < b and g(x) = 0 else. g is assumed to be
sufficiently smooth. For v < 2 they prove the existence of an estimator-sequence (7, )nen
fulfilling

(5.6) P(8o)" {n'"A(%w, 60) > h} =< exp(—h")

for sufficiently large n and A, say n = no, h = ho (see Akahira and Takeuchi, 1981, pages
37-38). The (7.)nen are not maximum likelihood estimators. It is easy to see that there are
numbers C; > 0, C; > 0, §, > 0 such that

(5.7) C.18° = d(P(0), P + 8)) < C8" )
for 0 < 8§ < 8. Inequalities (5.6) and (5.7) imply
(5.8) P(80)" {¥'n d(P(3,), P(6)) > k} < exp(—h?)

for n = no, h'= hy. If a sequence (é,.),,eN of maximum likelihood estimators would satisfy
(5.8), then relation (5.7) would imply

P(65)" (n/*A(b,, 66) > h} < exp(—h™")

for n = no, A = ho. This agrees with their result (Theorem 2.5.1) that (7.).env has the
maximal order of convergence 1/u. It should be noted that for this family the behaviour of
(62)nen cannot be derived directly from Theorem 5.1 because our Condition 4.4 is not
satisfied. Therefore, a separate proof would be needed for estimating P(6o)" { vn d(P(é,,),
P(6o)) > h}.

6. Parametrized families with strong global properties. In the present section
we give conditions which imply bounds Ch~° for the probabilities in (5.3). This result
cannot be derived from (3.4) and (3.13); a specific proof and specific conditions are needed.
Conditions 6.1, 6.3, 6.4 are strong global properties of the family 2, Conditions 6.1 and 6.4
are global extensions of the local Conditions 3.7 and 3.8. The Conditions 6.1-6.4 refer to
some 6, € 6.

6.1. ConDITIONS. O is finite-dimensional with dimension D; > 0.

6.2. CoNDITION. There are §; > 0 and n, € N such that

P(00)"‘ {SupfeBA(ﬂo,&)fn,,'r = °°} =0.

6.3. ConDITION. There are numbers ¢; > 0, r > 0, §5 > 0 such that
csA(r, 6o)" =< a(P(7), P(6,))"
for 7 € © — Ba(bo, 85).

6.4. ConDITION. There is s = 2, with s > D:/a(6,) for the constants D; in Condition
6.1 and a(f) in Condition 4.1, and there are numbers ¢ > 0, u > 0, C; < ®, C; < % and
there are functions § — k() < 0, 8 € ©, § - ¢(f) > 0, § € O, such that for every 0 € O:
(i) SupfeBA(G,w(B))f |10g h‘ri dP(8) < o,

i) [|4, — 4,1° dP(6o) = k(8)A(r1, T2)°, for 71, T2 € Ba(6, 9(6)),
(iii) «(8) = Cra(P(8), P(6:))~"
(iv) 1/9(0) = C2a(P(6), P(6o))".
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6.5. THEOREM. Let 0, € © and let (6,).en denote a sequence of quasi maximum
likelihood estimators for 6,. Assume that the Conditions 4.1, 4.2 hold true with a(6,) < 1,
and assume that Conditions 6.1, 6.2, 6.3, 6.4 are fulfilled for 6,.

Under these assumptions for arbitrary b > 0 there exist ho > 0, C < « and no € N such
that

P(6)" {n"/*®A(@,, 6o) > h} < Ch™®

for n = no, h = he.
PROOF. See Section 7.9.

The assumptions of our Theorem 6.5 hold for location and scale parameter models
fulfilling a few conditions:

6.6. ExAMPLE. (Families with location and scale parameters). Let 2 be a probability
density relative to the Lebesgue measure A™ on R™. We assume that 4 is bounded on R™,
that A(x) > O for every x, and that 4 is twice continuously differentiable. Define /(x) = log
h(x), and let £, £%) be the partial derivatives of 4 and let x© be the coordinates of x. Let
M, denote the symmetric and positive definite m X m-matrices and define

0= {0= (aa, Ao)Z'aaE Rm, Aa (S .///m}

Let || || be the Euclidean norm on R™ and || |4 the spectral norm on .#,, and let I €
Mm denote the unit matrix.
For 6 = (as, As) € O let P(6) be the probability measure with Lebesgue density

ho(x) = (det Ag) 'A(AF' (x — as)), x E R™

In this way, we have defined a parametrized family 2 = {P(0) : § € ®}. We assume that
this parametrization is injective.
© may be conceived as an open subset of R™™*3/2 by arranging the vector a, and the
upper triangle of Ay to a column in a unique manner.
We impose the following conditions on the density A:
(i) supsepnh(x) < .
(i) For some v>0, [ || x || ¢A(x)A™(dx) < co.
(iii) For every 8 € © the Fisher information matrix I(#) is positive definite.
(iv) There is s > m(m + 3)/2 such that

f [ £9(x) | "D p(x)A™(dx) < oo,

f | £0 () | PO R ()N (dx) < oo,

fori,j=1,.--,m.
(v)  There are § > 0, C < » such that for every 8 = (as, A¢) € © with || as||. <  and
|| As — I||sp < & we have

J | £9(x) | he(x)A™(dx) = C for i=1,...,m.

i) [ 169%x) |PR(A™(dx) < o, [ |9 @)x® |PR(x)A™(dx) < o, [ |£Dx)xPx® |PR()A™
(dx) <oo,fori, j, kb, l,=1, ---,m.

Under these assumptions, Conditions 4.1-4.4 and 6.1-6.4 are satisfied for every 6, € ©.
The number a(f) in Condition 4.1 is equal to 1.
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PrOOF. See Section 7.10.
7. Proofs.

7.1. ProoF oF LEMMA 3.3. Let K be the compact set in Condition 3.1. It will be
sufficient to show that the probabilities

P" {supges-(fw.@/fw,p) >y} and P"{supgex-pw@os(fr.e/frp) > v}

are bounded by e " for every sufficiently large n’, for every @ € K — B(P, ¢) and for
some suitable § > 0 which may depend on @,; Cf. Wald’s (1949) proof of Theorem 2.
Let n denote that number in Condition 3.1 and define

&« = SUpges—Kfn+g, K=0,c,n—1
Note that the properties (i)-(iii) of f, ¢ which are stated in Lemima 2.1 imply P" — a.e.
(711) supQEga_Kf,,',Q = suer(g;_K)nshn',Q.

For n’ = n there is a unique representation n’ = m n + k, m, kK € N, k < n, and we obtain
from (7.1.1) for P* —a.e. x € X”

(7.1.2)  supges—kfrv,o(X) < {[[156 8o (Xun+1, *** » Xr1n) &k Kim—tint1, * =+ » Xn).
Furthermore, for P"** — a.e. x € X"** we have
(7.1.3) Be+1(X) ™ = [I2F! supgew-mns {([IF huo(x:)} /hio(x))

which implies

(714) Jr (gK+1/ﬁl+K+l,P)(n+K)/p(n+K+l) dPu+x+l
Sf (gK/fn‘*‘K,P)l/PdP’H-Ky K=0’ e ’n_zr

and, therefore, we conclude from Condition 3.1 that
(7.1.5) alk) = fg,l/" e pdrt <1, k=0,.--,n—1,

with suitable chosen numbers p > 1,9 > 1, 1/p + 1/q = 1. Using (7.1.2) and (7.1.5) we get
the inequalities

(7.1.6) P™ {supgesr—kfw,@>7v frp} < Pnl{x eX": (l—IZ::()2 80(Xunt1, * s Xu+1)n))

& (Xm—tn+1, *+ 5 Xw) fre,p(X) ' > 7}

1
= y_l/pa(O) mla(k) < y~MP exp{gr: log a(O)n’}

for sufficiently large n’.

For every @ € K — B(P, ¢) we conclude from Condition (3.2) that there is a ball B(Q,
8) such that (7.1.6) holds with 2 — K replaced by B(Q, §).

Furthermore, Condition 3.1 and (7.1.3) imply that supgew-xfv,0 < © P* — a.e., for n
=n’. Similarly, it follows from Condition 3.2 that for every sufficiently large n’, supgexfn.@
< o P™ — a.e. These properties yield P {supgesfyo = ©} =0. 0O

7.2. PROOF OF LEMMA 3.5. W.1.g. the numbers 7 in assumptions (iii) and (v) are equal.
This can be seen from relations (7.1.3) and (7.1.4). Since (& d) is separable and locally
compact there is a sequence K,, C & m € N, of compact sets having the properties: P €
K., K, 1 2 and K, is contained in the interior of K,,+:. Then for the functions g, =
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Supge -k, f,@ assumption (iii) implies P" — a.e. g» | 0 and from assumption (v) and from
the monotone convergence theorem we conclude [ g,7f+/% dv™ | 0. Thus there is a number
m € N satisfying [ gi* f/% dv" < 1 and Condition 3.1 is proved.

For every @ € K,, — {P} we define a sequence g, = supgen(q,.1/xfre, £ € N. Then (ii)
implies gx | fnq,P" — ae. and (iv) implies [ g¥” /% dv" | [ i{go £ dv* < 1. Thus
Condition 3.2 is proved. 0O

Two lemmas will be needed in the proof of Theorem 3.10. First, we prove a fluctuation
inequality for separable random functions. Before formulating this lemma we give a few
definitions:

7.3. DEFINITION. Let (2, %, P) be a probability space and let (T, p) be a metric space.,
A collection of #-measurable functions &;:Q2 — R, t € T, is called random function on (£,
%, P) with parameter set T. The random function (). is*called separable if there exists
a countable subset Ty C T such that for every ¢t € T there is a sequence (£n)men C T¢
satisfying limmen o (b, t) = 0 and limmen &, (w) = & (w) for every w € Q. The set T is called
separant of the random function. Clearly, every separant is a dense subset of T. Two
random functions (£:):er and (x:):cr are called equivalent if & = x, P — a.e. for every t € T.

7.4. LEMMA. (Fluctuation inequality). Let (T, p) be a metric space and assume that
to € T and e > 0 are such that the ball B, (to, €) is finite-dimensional with dimension D
> 0 (cf. Definition 2.5). Assume that (¢,):et is a separable random function on (2, €, P)
satisfying

(7.4.1) j | &, (w) = &, (w) |°P(dw) < L p(ts, t2)*

for every t1, t: € B,(to, €), where k > D, s > 0 and L < » are suitable constants. Then
there is a constant K < o such that

(7.4.2) P{w € Q:supy, s,eBpity0 | £6(w) — En(w) | > 8} = K Le*s~.

K depends only on k, s, D and on the constant C occurring in Definition 2.4; it is
independent from ¢, 8 and L.

Lemma 7.4 is an improvement of a result of Rao (1975, page 358, Theorem 3.2). We do
not apply Rao’s theorem directly, since Rao’s assumptions would require that the random
function has continuous paths and that (7.4.1) is satisfied for £ > 4 D (in place of 2 > D).
Forerunners of Lemma (7.4) are the results of Neveu (1965, Proposition IIIL. 5.3.) and of
Gihman and Skorohod (1974, page 91, Lemma 1, and page 192, the remark below Theorem
6) which refer to parameter sets T being real intervals, and the result of Pfaff (1977, page
145, Lemma 6.1) where the parameter set T is the unit cube in the %2-dimensional Euclidean
space.

ProorF oF LEMMA 7.4. We give only a sketch because the proof is similar to the proofs
of Rao (1975) and Pfaff (1977).

We define the integer number r (¢) by 27@~! < ¢ < 27"®, Employing the dimensionality
condition, for n = n(e) we choose B, (t,,1, 27"), + ++ , B, (tn,mm, 27") covering B = B, (o, ¢€)
such that U, = {tn1, -+ » tammw } S B, m(n) < C 2" ¢, U,y = {to} and m(n(e)) = 1. The
set U = Upzn Un is dense in B and from relation (7.4.1) we conclude that the random
function (£&):ep is uniformly P-continuous. Hence there exists an equivalent random
function (x;):es which is separable with separant U (see Strasser, 1981a, page 22, Definition
3.1 and Theorem 3.2). Relation (7.4.1) is equally satisfied for (x:):cs and it will be sufficient
to prove relation (7.4.2) for x instead of £ Proceeding similarly as Rao (1975) and Pfaff
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(1977) we obtain
P{w € Q: supy,rev|xe(w) — xr(w)] > 83
< Yrzno 2ectnn P{w € €1 x0." (0) — x:(w) |
> 2 §(2"0 jgnt1)t=d/2s(] _ 9= (k=D\/2s)~1y
<K Lg,67°,
where p,: Un+1 — U, are maps satisfying p (¢, p» (¢)) < 27" for every t € U, and for every

n=n(). 0O

The next lemma contains well known preoerties of the Hellinger distance and of the
affinity of probability measures.

7.5. LEMMA. Let P, @ be probability meusures on (2, €) being dominated by o-finite
plé.

@) d(P, Q) =—;-f [hz?/2 —h’Pdp=1-0a(P,Q) and

a(P, @) = J h;’/2 hé?/Z dp = f hgz h;l/z dP,

where hp and hg are densities of P| %, respectively Q| %, relative to p|¥%. d(P, @) and
a(P, @) are independent from the choice of p.
(ii) Forn € N we have a{P", Q") = a(P, Q)" and

1—d(P", Q@")?=<exp{— nd(P, Q).
Proor. See LeCam (1973, Section 1 and proof of Lemma 1 in Section 2).

7.6. PROOF OF THEOREM 3.10. W.1g. §=8"=8".Letn € Nand2=<h=n"?6- 1.
We have
(7.6.1) P*n2d(P,, P) > h} < P{d(P,,P) =6 —n™"%
+ NI prp 4 j < n?d(P,, P) <h +j + 1).

The first probability on the right hand side can be estimated using Lemma 3.3. For
estimating the remaining probabilities it will be sufficient, in the view of Wald’s (1949)
proof, to show that with suitable chosen constants ¢ > 0, C > 0

(762) Pn{SlpoeG()\,n)(fn,Q/fn,p) > l/zy} =C e‘”"z
holds for every n € N and every A € [2, n'/?§ — 1], where
GO\ n) = (QEP:A=n"2d(P, Q) <A + 1}.

Choose 8 with 0 < 8 < 1/D, and define ¢ = n"% """ Since G(A, n) C B(P, §) N B(P,
n"3(A + 1)), G(A, n) can be covered by balls B(Q:,e/2), « -+ , B(Qm, ¢/2) With @1, -+ - , @n
€EB(P,80)and m = Cn AP Wilg forp=1,.--,mB(Q,, ¢/2) N G(\, n) # J and
there is P, € B(Q,, ¢/2) N G(A, n) satisfying

f log hp.dP + (1/2n) log 2 > SupgeB@u,2nc(.n f log hg dP.

This choice of P, is possible since (3.8) implies that the supremum is finite. Note that the
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sets B, = B(P,,¢e) N B(P,8) p=1, ---, m, cover G(A, n). One easily verifies
1
(7.63) P"(supeeconfua/fur >3V} = Lies PMFLL/FLE> (/47

+ 2,7‘:1 Pn{SuerBan[fn,Q - fn,Pﬂ] > (1/2) log 2},

where 4,,¢(x) = log f.¢(X) — n [ log hg dP.
Applying Lemma (7.5) we obtain

(764)  PY{f\R/13> (/9" = 4/v)/*a(P}, P") < (4/y)e-nd PP’ < (4/y) e

n,Pu/ ! npP
The random function (£,,¢)een,» is uniformly P"-continuous by Condition 3.8. This
implies that there is an equivalent random function ({g)gen(,s Which is separable with
separant B(P, 8) N S (cf. Strasser, 1981a, Theorem 3.2). We apply Lemma 7.4 to the
random function ({g)gen(r,s, to the metric space (T, p) = (B(P, 8), d) and to the ball B,.
Condition 3.8 and the inequality for absolute moments of order s for sums of i.i.d. variables
(see Dharmadhikari and Jogdeo, 1969, page 1507, Theorem 2) yield

f | $q, — $q,|° dP™ = J | @, — tng,|° dP™ < Cn*” d(Q:, @)
for every pair @,, @ € B(P, §). Thus relation (7.4.1) is valid for the random function
($o)qenr5» and we get the result
P"{supg, q.e,nsl tne, — tna,| > (#)log 2}
= P™{supg, g.cn,| o, — $o,| > (%)log 2} = Cn*%¢®.
Combining this relation and (7.6.3) and (7.6.4) and using the bound for m we obtain (7.6.2).
This result, Lemma 3.3 and (7.6.1) prove that
P"(n'2 d(P,, P) > h} < 3% C e 1" 4 g7 < Cye™a¥ 4 g7on

for every n = ny and every A = 2. Easy computations show that this relation yields the
assertion (ii) of Theorem 38.10. Assertion (iii) can easily be verified. [

7.7. PROOF OF LEMMA 4.5. Since the parametrization is injective we have d(P(o),
P(71)) > 0 for ¢ # 7. Furthermore, Condition 4.1 implies continuity of the maps ¢ — P(0)
and ¢ — d(P(0), P(7)), for every fixed 7 € ©. These properties and Condition 4.2 imply
that for every 8 > 0 and every 8 € © there is a number 1 > 0 satisfying

(7.7.1) d(P(o), P(§)) =n for o€ © — Ba(h, 9).

For every 7 € © and every sequence(r,),en C ©® we conclude from Condition 4.1 and
(7.7.1) that lim,en d (P(7.), P(7)) = 0 implies lim,ey A(7,, 7) = 0. Thus the map 7 — P(7)
is a homeomorphism of the topologies generated by the metrics d and A.

Conditions 4.1-4.3 imply that there is § > 0 such that B(P (), 8) is finite-dimensional
with dimension D/a(6,). This means that Condition 3.7 is fulfilled for the measure P(6).
Furthermore, Condition (4.4) implies the validity of Conditon 3.8 for P(6,). O

7.8. PRoOOF OF THEOREM 5.1. The validity of relations (3.4) and (3.13) follows from
Corollary 4.8. From (3.4), Condition 4.1, (7.7.1) we obtain for arbitrary ¢ > 0 and for a =
a(bo), & = 8(f), c = c1(6o)

P(06)"{A(0r, o) > €} =< P(0o)"{A(0n, o) = 8} + P(6o)"{A(0, 6o) > & N\ A(0n, 6o) <8}
= P(6o)"{d(P(0r), P(60)) = n} + P(60)"{d(P(6y), P(6o)) > ce*}

=2e "
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This proves (5.2).
Furthermore, inequality (3.13) yields for sufficiently large n and A

P(6o)"{n"*A(0,, 6o) > h} < P(6)"{A(0x, 6o) = 8}
+ P(00)"{n"**A(6n, o) > h A A(on, 0o) <&}
= P(6o)"{d(P(0z), P(60)) = n}
+ P(8){n'? d(P(on), P(6)) > ch*}
< e " + exp(—ch™).
This proves (5.3), and substituting # = ¢~/*(s log n)'/? we obtain the last assertion (5.4|):|.

7.9. PROOF OF THEOREM 6.5. Conditions 6.1 and 6.4 imply, Conditons 4.3 and 4.4 and,
therefore, we conclude from the proof of Lemma 4.5 (see Section 7.7) that Conditions 3.7
and 3.8 are fulfilled. Under these conditions the proof of Theorem 3.10 (see Section 7.6)
yields, for F, = {sup.ce fr- = %} and for suitable numbers 8, > 0, co > 0,

(79.1)  P(80)"({h < n”* d(P(f,), P(60)) < n'/’6} — F»)
< exp{—coh®} forn € N, h = hy.
Choose 8 > 0 such that 6 < 8;(6) and 8 < 8, and c2(66)8°® =< &, where c2(6o), a(6o),

8.(6y), 84 are the constants in Condition 4.1, respectively in Condition 6.2. W.Lg. the
constant 85 in Condition 6.3 is less than 8. There is n > 0 such that

(7.9.2) d(P(1), P(8h)) =n for A(r, 6) =8

(see (7.9.1.)] R A
Let a = a(6y), Po = P(6), P, = P(6,). Applying Conditions 4.1, 6.3 and (7.9.1) we get

P3({n**A(B,, 66) > h} — F.)

(7.9.3) < P3({n'*a(P,, P))™" > c}"h A A(Gn, 00) = 8) — F,)

+ P({c1(60)h* < n'? d(P,, Py) < n'%8,} — F,)
= %0 Pi{SUp,c(cyrhajn fr/frte > v/2} + exp(—coh?)

for n € N, h = ho, where
G\, n) = {r € O:A =n"?a(P(r), Po)) "= A+ 1A A(1, 6) = 8}.

For any given b > 0 we choose b’ = ru fulfilling (s — D)b’ = b + rt + D for the numbers
r, s, ¢, u, D in Conditions 6.1, 6.3, 6.4 (note that s > D/a(6y) = D since a(fy) < 1), and
define e = ¢(\, n) = C3'n"Y>(\ + 1)~%, where C; is the constant in Condition 6.4.

From Condition 6.3 we conclude G(\, n) C Ba(, c5/'n"'/2 (A + 1)). Hence, there are
balls Ba(7,, €/2), p = 1, -+, m, covering G(A, n) where 7, € G(A, n) and where m =
Kin™P?\P¢™D for some suitable constant K;. Proceeding similarly as in the proof of
Theorem 3.10 (see the inequalities (7.6.3)) we obtain for suitable chosen o, € Ba(7,, &) N

G@A, n) ;
P{sup.cconm for/frto > v/2} = Kz Yji=1 a(P(o,)", P5)
(7.9.4) + Yit1 P8{sup.ep, o, thr — tno| > (#)log 2}
< m(KA" + Kan*2(n~%\)"%") < KA 7%
In (7.9.4) the last-but-one inequality follows from
a(P(0,)", P%) = exp{— n log(1/a(P(s,), Ps))} < KsA™"
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for n = no and for 8” = b + (b’ + 1)D (note that (7.9.2) yields d(P(s,), Po) =5 and a(P(a,),
Py)™' =1/(1 — 9?)) and from an application of Lemma 7.4 to the metric space (©, A) and
to the ball Ba(a,, £). Note that Condition 6.4 implies ¢(0,) = 1 for n € N, A > 0, and that
Condition 6.4 yields the validity of assumption (7.4.1), namely,

f | e = tnr|® dP§ < Ksn**c(0,)A(0, 7)° = K7n*?(n"2e\)"

for o, T € Ba(o,, ¢€); cf. the proof of Theorem 3.10. The last inequality in (7.9.4) follows from
the bound for m and from the definitions of ¢, &’, b”.

At least, we prove P§(F,) = 0 for n = n,. If this is true then the assertion of the theorem
follows from (7.9.3) and (7.9.4). Proceeding similarly as before we get for y > 1

P"’l{supfee—BA(ﬂm&)(f"ﬂ/fn,ﬂo) >y} =Pi Ui {Supq—eG(cg/'sﬂ;n)(fnn/fn,ao) > v}
=Ks(y7* + (log ) )8 ° for n=n,.
Let y — o and keep n fixed. Hence for n = n,

Sup,ee_BA(gms)fn,, iS finite P(’)‘ — a.e.

This property and Condition 6.2 imply for n = max(no, n;)P§(F,) = 0 because § was
chosen less then 84. 0

7.10. ProoF FOR EXAMPLE 6.6. In place of a complete proof we give only some hints.
In Example 4.9 we have shown that Condition 4.1 is valid. (The present example is a
specialization of Example 4.9). Conditions 4.2, 4.4 are implicated in Conditions 6.3, 6.4.
The dimension D in Condition 4.3 and Condition 6.1 is equal to m(m + 3)/2. Condition 6.2
is obviously true.

The main problem is the verification of Conditions 6.3 and 6.4. For this purpose we use
the auxiliary function

Y(0) = max(1 + [las|le, 1 + Ao, 1/As),

0 = (ag, Ag) € O, where Ay, Ay are the largest and the smallest eigenvalue of Ay. A clever
estimation shows that with some suitable constant C < «

(7.10.1) a(P(r), P(0)) = Cy(6)™"*

for 6, € O, where v is the constant in condition (ii). Relation (7.10.1) implies Condition
6.3. The moments in Condition 6.4 (i), (ii) are estimated with the aid of (4.10). Assumption
(iv) is used to estimate the right hand side in (4.10). We choose ¢(f) = cAy with some
suitable constant ¢ > 0; then (6.4) (ii) is satisfied with «(6) < Cy(8)® for suitable C < oo,
b > 0. Thus Condition 6.4 (iii), (iv) follow from (7.10.1). 0
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