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IMPROVING UPON STANDARD ESTIMATORS IN DISCRETE
EXPONENTIAL FAMILIES WITH APPLICATIONS TO
POISSON AND NEGATIVE BINOMIAL CASES

By JiuNN TzoN HwaNG!

Cornell University

Assume that X, ..., X}, are independent random observations having
discrete exponential densities p,(6,)¢:(x.)8f,i =1, - - - , p respectively. A general
technique of improving upon the uniform minimum variance unbiased esti-
mator (UMVUE) of (6,, - - -, ,) is developed under possibly weighted squared
error loss functions. It is shown that improved estimators can be constructed
by solving a difference inequality.

Typical difference inequalities of a fairly general type are presented and
solved. When specialized to Poisson and Negative binomial cases, broad
classes of estimators are given that dominate the UMVUE. These results
unify many known results in this rapidly diverging field, and some of them are
new (especially those related to Negative Binomial distributions).

Improved estimators are also obtained for the problems in which some of
the observations are from Poisson families and some from Negative Binomial
families. For sum of squared errors loss, estimators which dominate the
UMVUE in the discrete exponential families are also given explicitly.

1. Introduction. In Stein (1973, 1981), an identity (proven by integration by parts)
was developed which has become a powerful tool in the problem of improving upon
standard estimators. To be precise, assume that X = (Xj, ..., X,) is a random vector
which has a density f(x|#) with respect to a measure p, and 8 = (6, ---, 6,) is the
unknown parameter that one tries to estimate based on X. Under the loss function
L(., ), the risk of the estimator §(X) = (61(X), .- -, 8,(X)) for 8 is defined as R (0, 8)

R(0,0) = f L(8, 5(x))f(x | 0) dp.(x) = EoL(6, 8(X))

where E, represents the expectation with respect to the density f(x| #). For a given
estimator 8°, the goal is to search for an estimator 8*(X), better than 8°(X), i.e., R (6, §*)
=< R(#, 8°) for all @ with strict inequality holding for some 8. Stein wrote 8*(X) as §°(X)
+ ®(X), ®(X) = (2:1(X), -+, ®,(X)), and used his identity to obtain the representation

(1.1) R(0,8*) — R(6,0°) = Es2 (®(X))

where 2 (®(X)) is an expression that does not involve §. Stein’s idea was then to find ®(x)
so that 2 (®(x)) < 0, which clearly implies that the expression in (1.1) is negative for all
0 and hence 8* dominates 8° (i.e., 8* is better than 8°). The expression 2(®(x)) usually
involves partial derivatives of ®; for continuous cases and partial differences of ®@; for
discrete cases. Brown (1979) also developed a general technique which relates the admis-
sibility problems to differential inequalities. See also Brown (1971, 1975) and Berger (1976,
a, b, c).
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In this paper, we develop a general technique for improving upon the uniform minimum
variance unbiased estimator (UMVUE) of # when the observations X;, 1 = i < p, are
independently obtained from discrete exponential families having densities

(1.2) f(x; I 0,) = pi(@:)t(x)07, x:=0,1, ...,
The loss functions considered are of the type
(1.3) Li(0, 8) = Y21 074(5: — 6,)°,

where m = (my, ---, m,) and m;s are known integers. When m = (m, ... , m), Ly, will be
denoted by L*%,. By solving a difference inequality 2 (®) < 0 of a general form (2.4),
improved estimators are constructed by paralleling Stein’s technique. Berger (1980) had
obtained solutions to a differential inequality analogous to (2.4) and derived improved
estimators over the standard one for continuous exponential families under L%,. See also
Hudson (1978). .

In discrete cases, improved estimators over the UMVUE have been found for some
specific distributions. For Poisson families, Clevenson and Zidek (1975) obtained the results
for L*;, Peng (1975) for L%, Tsui and Press (1978) for L*,, m a negative integer, and Tsui
(1978 b) for L, m;’s negative integers. For negative binomial distributions NB (r;, §;) with
density in (3.4), Hudson (1978) obtained an estimator dominating the UMVUE for p = 4
under L% when all the r/’s are equal.

All the above results for discrete cases, except in Clevenson and Zidek (1975), were
obtained by considering only a special difference inequality corresponding to the particular
problem. (Clevenson and Zidek used an even more special feature of the Poisson distri-
bution.)

Due to the generality of the difference inequality (2.4) considered in this paper, our
proposed technique works for the general discrete exponential families. Not only does our
technique generate many of the previous results when applied to their special cases, but
also solves new concrete problems. For negative binomial families, with arbitrary known
ris, our proposed estimators are shown to dominate the UMVUE under L, for p = 3.
Results are also given for the cases in which some of the observations are from Poisson
families and some from negative binomial families. Also application to truncated Poisson
distributions is direct, see section 4.2 (b). For arbitrary exponential families, we construct
estimators that dominate the UMVUE for p = 3 under L%. Note that all the previous
results for this situation, by Hudson (1978) and Tsui (1979c) are based on very restrictive
assumptions on Z;(x;).

2. The difference inequality and solution. Let X = (X;, .--,X};), X;,,1<i=<p, be
p independent random variables having density fi(x:| 6;) in (1.2) with #(x;) > 0 if and only
ifx;=0,1, -.- . Then for any real valued function ®(x) with Es | ®(X) | < o, the following
identity can be derived by using change of variables: If ®(x) = 0 for x; < —m, then

(2.1) E07®(X) = Eo{ (X — me)t(X; — m)/t(X))}.

The notation e; denotes the ith coordinate vector whose ith component is one and the rest
are zero. This identity, a generalization of those of Hudson (1974), and Tsui and Press
(1978), was proved in Hwang (1979).

Now, under the loss function L, as in (1.3), consider the problem of improving upon
8°(X) with ith component 8?(X) = t:(X; — 1)/t:(X;). It was shown in Roy and Mitra (1957)
that 8(X;) is the UMVUE of ;. Let §*(X) = §°(X) + ®(X) be a competitive estimator
with. finite risk for any 6. By using (2.1) it can be shown, as in Hwang (1979), that (1.1) is
true with

2 (®(x))
= Yy {[28:(xi — mi — 1) /ti(x) JA:Di(x — mie;) + [ti(x; — m)/t(x) @ (x — miey))}.
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Note that in the above and subsequent expressions, for any function F'(x), A; F (x) denotes
F(x) — F(x —e).
We therefore have the following lemma.
LEMMA 2.1. The estimator 8*(X) dominates §°(X) if
(2.3) 2 (@(x)) =0,
and form some X, with x;,=0i =1, ..., p, strict inequality holds in (2.3).0
In seeking for improved estimators, Lemma 2.1 will be used throughout this paper. The

key to the problem is therefore the nontrivial solutions to (2.3). In this paper, we consider
a slightly more general inequality,

(2.4) D (Y(x)) = T2 vi(x)Ai(x) + wix)Pi(x) <0,

where v, and w; are nonnnegative and there exists a; such that v,(x;) > 0 for x; = a.
Inequality (2.4) relates to the problem of improving upon UMVUE as well as some other
more general estimators; (see Hwang, 1979). All solutions to (2.4) will be of the forms

(2.5) Yi(x) = —e(x)hi(x:)/D, i=1,---,p,
where

(2.6) hi(x) = Tia, 1/vilk)

and

2.7 D = D(x) = }5-1 di(x;).

Exact form of d; would be specified in Theorem 2.1 and its corollaries. We will say c(x)
satisfies € (n, F(x), B) for some function F(x) and some numbers B8 and n, if both of the
following conditions hold:

(i) c(x) # 0 for some x and is nondecreasing in each coordinate,
(i) 0= c(x) =n(F(x) —B)",

where (a(x))* represents the positive part of a(x). Throughout this paper, define, for any
Sj, Z‘}La] sj = 0 if az < . In particular, from (2.6) A(x;) = 0 if x; < ;. Further, we define
#q(X), a = (a1, +++, ap) as the number of x;’s for which x; = a,, and define #%(x) = #.(x)
ifa = (a, -+, a). We are ready to state the main tool of this paper.

THEOREM 2.1. Assume, for i = 1, ..., p, that (i) di(-) is a nondecreasing and
nonnegative function, such that di(x;) > 0 if x; = «;, (ii) there exists a nonnegative integer
Bi such that for.any integer x;,

(28) vi(xi)h,(x, - 1)A; d;(x,') = ,Bi di(xi - 1);
and (iii) there exists a constant K such that
(2.9) P wix)hi(x;)/D < K < oo,

Then {, given componentwise in (2.5), is a solution to (2.4) provided that c(x) satisfies
condition € (1/K, #4(X), Bmax) Where Bmax = Maxi<i<p Bi. Furthermore

(2.10) D (x) = —c(X) (#u(X) — Bmax — Kc(x))"/D,

and strict inequality holds in (2.10) for those x from which hi(x; — 1)A; di(x,) > 0 for at
least two 1’s.

ProOF. See the Appendix.
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Condition (2.8) is not at all restrictive. Typically, the d; that satisfies (2.8) has the form
h#(x;). The crucial condition (2.9) is then equivalent to the existence of K and g; such that
(2.9) is satisfied for di(x;) = A% (x;). If no matter how large 8; and K are, (2.9) is never
satisfied, it is unlikely that Theorem 2.1 provides any solution. It is expected that all the
admissible rules would correspond to such a situation.

We note that in the above theorem, nontrivial solutions are given only when p > Buax.
This is in accord with the fact that in some cases improvement is possible only for high
dimension p, the well-known Stein’s phenomenon (Stein, 1956).

The constant B; will be chosen as small as possible for two reasons. First, nontrivial
solutions then exist for smaller p. Second, d;(-) will be smaller so that the improvement is
larger (cf. (2.10), (2.2) and (1.1)). Of course, condition (2.9) will be harder to satisfy for such
di(x:).

The following corollaries provide simple choices of d; which will generate estimators of
simple form and are more appealing.

COROLLARY 2.1.1. If B;=1is an integer and v; is a nondecreasing function, then
(2.11) di(x) = hi(x:) hi(x; + 1)+« hi(x; + B — 1)

satisfies conditions (i) and (ii) of Theorem 2.1.
Proor. By direct calculation and the fact

hixi+ Bi— 1) — hi(xi— 1) < v‘(gx) O

In applying Theorem 2.1 and Corollary 2.1.1 as well as the following corollaries, we
assume first that d;(x;) has the form A#(x;), which is similar to but smaller than (2.11). We
then choose B; as small as possible so that (2.9) is satisfied for some K. If v; is nondecreasing,
then d, in (2.11) will satisfy all the assumptions in Theorem 2.1, and will be used instead
of h#(x;). The idea is illustrated in the following example. The Poisson distribution with
mean 6 is denoted by Py(8). The loss L% is used in Example 2.1. below.

EXAMPLE 2.1. Assume that X;, 1 < i < p, are independent Py(6;) random variables.
Hence #;(x;) = (x;!)™' and the UMVUE of 6, is 8?(x;) = x;. After dividing by 2 on both
sides, (2.3) is equivalent to the inequality,

2(0x) =Y xA0:(x) + i)
2

To apply Theorem 2.1, take v;(x;) = x;, w;(x) = % and hence a; = 1, h;(x;) =31 1/k. Let
us first take d; as h%(x;). The smallest 8; so that (2.9) satisfies for such d; is clearly 2.
Theorem 2.1 and Corollary 2.1.1 therefore suggest taking d;(x;) = h;(x;) h:(x; + 1) and
imply that ¥; as in (2.5) and (2.7) is a solution for any nondecreasing function c¢(x), 0 < c¢(x)
< 2(#%(x) — 2)* and hence the estimator 8*(X) = 8°(X) + ¥(X) dominates 8° if c(x) # 0
and p = 3.

If c(x) is taken to be (#%(x) — 2)*, the estimator is quite similar to the improved
estimator proposed by Peng (1975). The only difference is that Peng used d;(x;) = A%(x,). O

(2.12) =0.

The following corollaries provide other choices of d;(x;). The proof of Corollary 2.1.2 is
a simple application of mean value Theorem and that of Corollary 2.1.3 is a direct
calculation. Both proofs are omitted.

COROLLARY 2.1.2. The function di(x;) = h¥(x;) satisfies condition (i) and (ii) of
Theorem 2.1, provided 0 < ;< 1. O

COROLLARY 2.1.3. If there exists a constant b; for which (vi(x;)) ™' < b; for all x, = a;



IMPROVING UPON STANDARD ESTIMATORS 861

+ 1, then d;(x;) = 2(x,) + bihi(x;) satisfies condition (i) and (ii) of Theorem 2.1 with
B:i=2.0

For B; > 2, results analogous to Corollary 2.1.3 can be established by using the Mean
Value Theorem.

3. Classes of improved estimators. In this section, we apply Theorem 2.1 and
Corollaries in Section 2 to solve the difference inequality (2.3) (with 2 in (2.2)) in a way
similar to Example 2. 1 Improved estimators for this most general situation are therefore
constructed.

To solve (2.2) and (2.3), it is equivalent to solve the following inequality

, [[txi—m-17], tixi—m)] . ] _
(31) Z,=1 {,}——*m—] A;‘Pz(X) + [_Zt,-(xi) ] ‘Pt (X)} =0

where y;(x) = ®;(x — m;e;). Let us take a; = (m; + 1)*, and )
ti(k)

3.2) hi(x;) = Zzéa,;m-

Let 7;; be the Kronecker constant, i.e., n; = 1if i = j and n,;; = 0 if i # j. We then have the
following theorem.

THEOREM 3.1. Suppose that d;(x;)’s are one of the forms given in the corollaries in
Section 2 and there exists K; such that t; (x; — mi) R (x:) /b (x:) < Kidi(x;) for all x;= 0. If
P =2 and p = Bmax, thén 8 ° + @ dominates 8° under Ly, where, for some positive numbers
2 PR ap, »

(3.3) D:(X) = —e(X + mie.) hi(X; + my)/ Y51 a;di(X, + manyj)
and c¢(X) satisfies condition € (2(max K,/a;)™", #4(X), Bmax)-

Proor. Since d;(x;) satisfies (2.8), so does a;d, (x;). By Theorem 2.1 and the corollaries
in Section 2, y;(x) = ®;(x — m;e,) is a solution to (3.1). Lemma 2.1 then completes the
proof. O

A natural criterion for selecting ¢(x) and a; is to minimize the upper bound in (2.10) for
each x so that the improvement of the proposed estimator over 8° might be maximized.
This leads to the choice that ¢(x) = (#,(X) — Bmax)* and a; = K.

According to Theorem 3.1, the choice of d; and A; (and hence B; and K;) is independent
of the other coordinates j % i. Furthermore, the rule (3.3) to combine these functions A;
and d, to get the improved estimators is the same no matter what estimation problems are
considered. Therefore to describe the improved estimators, all we need to do is to specify
the “elements” A, a, B, and K. We specialize our results to Poisson distributions and
Negative Binomial distributions in what follows.

The Negative Binomial distribution NB(r, #) considered has the density

(3.4) fx|®) =C(r+x—-1,r-1601-6)", x=0,1, --.

where C(ni, nz) = ni!/{(n: — ns)!n2!} and r is a known positive integer. The density is
clearly a special case of (1.2), with ¢£(x) = C(r + x — 1, r — 1). Tables 1 and 2 specify the
“elements” h, B, K, and the recommended d, which satisfy Theorem 3.1 for Poisson and
Negative Binomial distributions. Note in either case, the UMVUE is admissible for p = 1
under squared error loss; see Hodges and Lehman (1975) for the Poisson case, and
Blackwell and Girshick (1954, p. 307), for the other. However, for higher p, the improved
estimators over the UMVUE are obtained.

Improved estimators can be constructed for a variety of problems by applying Theorem
3.1 and Tables 1 and 2. As an illustration, assume that X;, X; and X; are independent
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TABLE 1
Specification of the functions d that satisfy Theorem 3.1 when X ~ Po(6) and
§(X) =X.
a B h(x) d(x) K
m=0 1 2 Yi-1 (1/k) h(x)h(x + 1) 1
m<0 0 1 (x+1)--(x —m)/(=m) h (x) 1/(=m)
TABLE 2

Specification of the functions d that satisfy Theorem 3./ when X ~ NB(r, 6)
and 8°(X)=X/(X+r—1)

a B h(x)
m=0 1 2 i, (F—1+Ek)/k
m=-1 0 2 x+1
m< -1 0 2 1 k+1) e (R—m=1)
OGR4y oo (k—m+r—2)
m>0 m+1 2 5 r—1+k—-m) ... r—1+%)
k'=m+l k—m)---k
d(x) K
m=0 hi(x) + (1 + r)h(x)/2 1
m=-1 h%(x) + h(x)
m< -1 h%(x) + h(x) Cr—-m-1,r—1)
m>0 2 (r+1).--(m+r+1) 1
h%(x) + T o) h(x)

random variables having the distributions Py(6:), NB(2, 6,), and NB(5, 65) respectively.
Consider the problem of improving the UMVUE 8°( X, X;, X3) = (X3, X2 /(X2 + 1), X3 /(X5
+ 4)) of @ under the loss function L,,, m = (0, —1, 2). Since m; = 0, from Table 1, a; = 1,
Bi = 2, hi(x1) = Y1 (1/k), di(x1) = hi(x1) hi(xy + 1), and K; = 1. From Table 2 and the
fact that ms = —1 and r, = 2, we have as = 0, B2 = 2, Aa(x2) = %2 + 1, da(x2) = h3(x2) +
ha(x2), and K, = 2. Finally, m3 = 2, r; = 5 and from Table 2, a; = 3, 83 = 2,

(k+2)(k+3)(k+4) 6.7
(k=2)(k—1Dk ~° 4!

and Ks = 1. Since p = 3 > 2 = Biax, 6° + ® dominates §° with ® being given componentwise
in (3.3), if ¢(x) and a; satisfy the assumptions in Theorem 3.1. The recommended choice
for (a1, as, as) is (1, 2, 1) and that for c(x) is (#.(x) — 2)*.

In constructing Table 1, d is chosen according to Corollary 2.1.1 for m = 0 and Corollary
2.1.2 for m < 0. In Table 2, Corollary 2.1.3 is the guide to choose d. For the Poisson
distribution and m > 0, we fail to construct the function d so that it satisfies (2.8) and (2.9)
no matter how large 8 we choose. In fact, it is conjectured in Hwang (1979) that 8°(x) =
x is admissible under L%,, m > 0 for any p.

For the case in which all the independent observations Xj, ..., X, have Poisson
distributions and the loss function is L, m, < 0 for all i, Tsui (1978b) obtained a class of
estimators that dominates 8°(X) = X. Part of his improved estimators can be derived from
Theorem 3.1 and Table 1 (with a; = —m;). Tsui’s results, however, allow a larger upper
bound on c(x) for the case in which not all m/’s are identical.

dy(xs) = B3x) +28 (),

hs(xs) = YiLs
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TABLE 3
Specification of 8* as in (3.5).

c(x) satisfies

*

Ly condition h(x) d(x) p
m=0 %@, #{(x),2) YE=1(1/k) h(x)h(x+1) p=3
m<0 %(-2m,p,1) (x+1)..-(x—m) h(x) p=2

TABLE 4
Specification of 8"® as in (3.6), p = 3.
Lk c(x) sa.t%sﬁes b,
condition
m=0 GC (2, #¥(x), 2) (1+7r:)/2
m=-1 (i, p, 2) 1 -
m< -1 % (n2, p, 2) 1
m>0 B (2, #%+1(X), 2) r+1) ... m+nr,+1)/(m+2)!

Theorem 3.1, Tables 1 and 2 show that Stein’s effect does not rely on the symmetry of
the problems. (i.e. the m/s are all equal and the X/'s have the same family of distributions.)
This phenomenon was first pointed out in Berger (1980) for the continuous case. Tsui
(1978b) also had an example in the Poisson case.

Of course, the most practical situations arise when the loss function is L%,, and the
independent observations come from one family of distributions. For these cases, we
summarize the improved estimators in Tables 3 and 4. The results follow mainly from
Theorem 3.1 and Tables 1 and 2. When a; =0,i =1, ..., p, (by Lemma 3.1 in Hwang,
1979) Theorem 3.1 is also true if ¥(2(max K;/a;)™", #4(X), Bmax) is replaced by #(2(max
K;/a;)™!, p, Bmax). The natural choice of a; for this symmetric case is a; = 1, 1 =i < p. With
this choice of a;, the estimator based on independent Poisson observations that dominates
8°X) = X under L*,is 8 = (8%, - -+, 8 %) where

c(x + me;) h(x; + m)
21 d(x; + mny)

3.5) 87 (x) =x:i —

The specification of ¢(x), h(x), d(x), and p are given in Table 3.

Under L%, the relation between present work and Peng’s result was discussed in
Example 2.1.

Under L*,, the improved estimators in Clevenson and Zidek (1975) are special forms
of 87 with ¢(x) depending on x only through Y %, x;. Note that Tsui’s improved estimators
(1978b), when restricting to L* , are the same as those in Clevenson and Zidek (1975) and
hence are, again, the special forms of 8”. Larger class of improved estimators are also
obtained in Tsui and Press (1978).

Under L*,, m < 0, part of the improved estimators obtained in Tsui and Press (1978)
are included in the class of 8§ ”’s, with c¢(x) depending on x only through ¥, % x:. They also
obtained other estimators which are not included here, having similar form as &°.

Table 4, similar to Table 3, is established for the case in which X; has NB(r;, 6:),i =1,
«++, p, p = 3. We take again a; = 1. The estimators that dominate §°(X), with 8?(x;) =
x:/(x; + r; — 1), are therefore of the form 8™ = (815, ..., §)®), where

c(x + me;)hi(x; + m)

3.6 81%(x) = 83(x) — '
(3.6) 00 = ) = S R + ) + Byl + mng)

The functions A;'s are the same as in Table 2 with r substituted by r; and hence are not
included in Table 4. Note we define n; = min 2/r; and n; = min 2/C(r; —m — 1, r; — 1).
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Hudson (1978) obtained an estimator which dominates 8° under the loss function L%
only for p = 4 and identical r/’s. Hudson’s improved estimator 8% has a correction term as
given componentwise in (3.6) with b; = m = 0 and ¢(x) = (#%(x) — 3)*, an estimator not
included in our class of improved estimators 8™, Our 8%, requiring b; = (1 + r:)/2, looks
more complicated, but is designed for more general cases (including the situation that p
= 3, r’s not all equal and m # 0.) Meanwhile, for m = 0, Table 4 allows us to choose c(x)
= (#%(x) — 2)* which, according to Hwang (1979) is more appropriate than Hudson’s
choice.

For the loss function L%, a very general result is established. The fact that f(x;|6:) as
in (1.2) is a discrete density function for some 6} > 0, implies that

t:(k)
for some M; and all positive integer k. This follows from the application of ratio test to the
series Yi—o L (k) (6} )% < . Therefore Corollary 2.1.3 is applicable, which, together with
Theorem 3.1, implies the following theorem. Let h(x;) be as in (3.2) with m; = 0 and
hence a; = 1.

(3.7) =M;

THEOREM 3.2. If p = 3, 8° is inadmissible under L%: Let c(x) satisfy condition
(2, #%(x), 2) and M; be such that (3.7) holds. Then 8°(X) is dominated by 8°(X) +
®*(X) where ®* = (®f, ..., ®}),

(3.8) ®F(x) = —c(x)Ad(x:)/ X1 {[h})(xj)]2 + M;hj(x)}. a

From Peng (1975), it is known that the dimension requirement p = 3 is the weakest
possible. In Hudson (1978), and Tsui (1979¢c), under fairly restrictive conditions (e.g. &; =
tand ¢(x)/t(x — 1) is increasing, etc.), the UMVUE was shown to be inadmissible. Earlier,
Brown (1966) had proved the inadmissibility of the best invariant estimator of a location
parameter under very general loss function if p = 3. However, the problem we address
here is not invariant in any natural sense.

In the case of simultaneously estimating the means of independent binomial populations,
Johnson (1971) has shown that Stein’s phenomenon (1956) (i.e., the surprising fact that
there exists an inadmissible estimator with each coordinate being componentwise admis-
sible), does not appear. The fact that the sample space has infinitely many points seems to
be crucial to the existence of Stein’s phenomenon.

4. Comments and generalizations.

4.1. Comments. One advantage in providing a whole class of estimators is that they
might include some admissible estimators. (A little modification of A (x) and d (x) might be
needed.) In two cases, admissible estimators are successfully found through a similar
procedure. First, in the estimation of the mean of a multivariate normal population, with
known covariance matrix, broad class of improved estimators that include the one in
James and Stein (1961) was obtained in Baranchick (1964). Later Strawderman (1971) and
Berger (1976b) generalized Baranchick’s (1964) class and succeeded in showing the admis-
sibility of some of their estimators. Second, under L*, and p = 2, admissible estimators
that dominate UMVUE were first obtained in Clevenson and Zidek (1975) which are the
improved estimators developed in Table 3 with appropriate choice of ¢(x). Our class of
improved estimators are broad in Baranchick’s (1964) spirit and might be useful in the
search of admissible improved estimators for other situations.

The improved estimator could estimate the parameter by negative number which is
outside the parameter space. We can (and should) replace the negative estimate by zero
which clearly makes the improved estimator even better.

It is difficult to calculate analytically the improvement in risk when the improved
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estimators are used. For Poisson families, numerical studies were performed in Tsui and
Press (1978), Tsui (1978a, 1979d), and Clevenson and Zidek (1975). In these cases,
significant reduction of risk is gained by using the improved estimators. Qur class of
improved estimators for Poisson families include those estimators (or similar ones),
presented by the authors mentioned above. Therefore, with recommended choice of ¢(x),
our estimators are expected to perform well in other different cases. Of course, further
numerical study is needed to confirm this especially for Negative Binomial families.

The estimators presented in this paper are all shrinking the UMVUE toward the origin
and therefore are expected to perform the best when the unknown parameters are close to
zero. For the case when the parameters are expected to be very large, the improved
estimators will be close to the UMVUE with high probability and little gain is expected.
In such a case an improved estimator which shrinks toward some nonzero point is desirable.
Some authors (Tsui, 1978a, 1979¢; Hudson and Tsui, 1981) have succeeded in this direction
for Poisson observations under loss function L%. For more general cases, improved
estimators shrinking toward some prefixed point (other than the origin) can be obtained
by modifying Theorem 2.1 and will be presented in a forthcoming paper.

4.2. Generalizations. There are many other possible generalizations of the results of
this research. Two of them are discussed here.

(a) All the results can be easily extended to the loss functions of the form Lp,(8,8) =
Y2 1 n:07 (6; — 8;)%, where n, - - -, n, are some positive constants. We refer to Tsui (1979a)
for the motivation of such a loss function. '

There are two ways to deal with loss function Lj;:

(1) Include these constants ny, - - -, n,, in the difference inequality and solve it. Clearly,
nontrivial solutions to the difference inequality can be obtained by using theorems in
Section 2, if and only if the difference inequality corresponding to the loss function L, can
be solved.

A theorem similar to Theorem 3.1 can thus be established for Ly,. In fact, if a;, B;, &,
h:, and d; are as specified in the assumptions of Theorem 3.1, then 8° + ® dominates 8°
under L}, provided that ®; is as in (3.3) with A; being replaced by A;/n;, and %(2(max k;/
@)™, #a(X), Bmax) by €(2[max ki/(a:n:)]", #a(X), Bmax)-

(2) Apply the results of Berger (1977), in which the problem is decomposed into p
subproblems under the loss functions ¥4, 87 (6; — a;)% j =1, - - -, p. Improved estimators
can be found for the original problems, once improved estimators are found under at least
one of the subproblems.

(b) All the distributions of Xj, - - -, X,, considered in this work were assumed to be as in
(1.2) with #;(x;) > 0if and only if x; =0, 1, - - - . For the case ¢;(x;) > 0 if and only if x; = a;,
a; + 1, - - -, for some integer a;, a simple transformation

Xi=X;—a
will make our results applicable to the equivalent estimation problem based on X1, ---,
X,. One particular example of interest is the truncated Poisson distributions.
APPENDIX

ProoF oF THEOREM 2.1. Assume that #,(X) > Bmax, since otherwise the theorem is
trivial. The monotonicity of ¢(x) with respect to each coordinate implies that

- hi(xi)]

D

Then, with D; = D(x — €;) and D’ = Y2, di(x: — 1),
V= hi(x:)) _ — Aihi(xi) + hi(x; — 1)A;D
¢ D - D DD;

Aitlz,-(x) = C(X)Ai[

(A1)
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and hence
(ag VA= > (“ #alx) + D LIV I)AiD)
c(x) i () P (3 — DA (x:)
= —D- <— #q.(x) + 2{;1 = ) ‘

In the last transition, the inequality is actually strict for those x for which c(x) # 0 and
two of the x/’s satisfying A4;(x; — 1) A;d;(x;) > 0. It follows, from (A.2) and (2.8), that

(A3) £ i) A0 = S (0 — ,(50).

By (2.9), it is clear that ¥ 2., w;(x)y#(x) < Kc%(x)/D, which, together with (A.3), implies
that

D) = S (Ko(x) + s = #0(x)).

Since by condition €(1/K, #.(X), Bmax),
C(X)(KC(X) + Bmax - #a(x)) == c(x)(#.,(x) - ,Bmax - KC(X))+ = 0)

the theorem is established. [
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