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TOWARDS A CALCULUS FOR ADMISSIBILITY

By ANDRzEJ KOZEK!

Polish Academy of Sciences and University of Wroclaw

It is shown how the calculus can be used to characterize admissible
decision rules (Pareto optimal points, efficient points). Necessary and suffi-
cient conditions for admissibility are derived in terms of the first and the
second directional derivatives of convex risk functions. In particular, the
results obtained imply that if p is to be estimated in the binomial distribution
B(n, p), then an estimator is admissible for the quadratic loss function if and
only if it fulfills some analytic conditions.

1. Introduction. In Statistical Decision Theory, risk functions characterize the qual-
ity of decision rules. A risk function can be interpreted as a collection of criterion functions.
Similarly in economics, and in optimal control theory, the quality of procedures or actions
is judged based on values of several criterion functions. In any case we are concerned with
a function R of two arguments z € Z, and s € S. The set Z stands for the procedures at our
disposal, and S for the set of indices of the criterion functions.

If zo € Z, and there exists no z; € Z such that

(1.1) R(Z], S) = R(ZO, S)

holds for every s € S, with strict inequality for at least one s € S, then 2z is called
admissible (in statistics), or Pareto optimal or efficient (in economics).

In a more general formulation, R may be considered as a mapping from Z into a partially
ordered space. If S consists of one point only, then the calculus is useful in finding the
optimal z,. Hence a calculus has been developed for functions with values in partially
ordered spaces. Athans and Geering (1973), Aubin (1971), Kutateladze (1977), Neustadt
(1969), Smale (1973), Thibault (1980) and Zowe (1974) deal with this development; however
we refer the reader to Achilles et al., (1979) for a more complete list of references. This
approach has not received attention in mathematical statistics; we know of no paper
interconnecting decision or estimation theory with this “multicriterial calculus”. Unfortu-
nately, the existing theory is weighted down by various technical assumptions which make
it useless in the simplest nontrivial problems of statistics. On the other hand the “heuristic”
approach to admissibility in Brown (1979) suggests that a development of a calculus for
admissibility may be both useful and possible.

Here we do the first step in this direction. We derive analytic characterizations of
admissible decision rules when S is (1) finite, (2) compact, (3) an arbitrary space. If S is
compact, the characterization of admissible decision rules is given in terms of derivatives
of the first order; in the general case the use of second derivatives is necessary. This
exhibits a deep discrepancy when compared with S consisting of one point only, i.e. with
the case of real convex functions. These characterizations provide an analytic counterpart
to the well-known characterizations of admissibility by geometrical methods (separation
of convex sets), i.e. by the Bayesian approach of Wald (1950), Arrow et al. (1953), Farrell
(1968), LeCam (1974).

In Section 5 we show how the obtained results imply analytic conditions characterizing
admissible estimators of p in the binomial distribution B(n, p).
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For the sake of simplicity we consider the case where Z is a vector space, perhaps
infinite dimensional. We note here only that if Z is a convex subset of a vector space and
2o € Z, then the results stated in Sections 2 and 4 remain valid whereas in Section 3 the
cone K(20) = {z € Z: there exists A > 0 such that z, + Az € Z} consisting of all available
directions from 2, should be considered. If z, is an interior point of Z, then K(zo) is the
whole vector space.

2. Remarks on a calculus for convex transformations and for admis-
sibility. Let R stand for a convex transformation from a vector space Z into an ordered
vector space Y endowed with the positive convex cone C*. Define the subdifferential
3R (zo) of R at the point z, € Z as the collection of all linear transformations 7, :Z — Y
(continuous if Z and Y are topological spaces, a detail, however, of minor importance at
the moment) such that

R(2) = R(z0) + T;,(z — 20)"

holds for each z € Z. The elements of dR(z,) are called subgradients of R at the point 2.
In this section we assume that dR (z) # & for each z € Z. Moreover, we write R(z1) > R(zz)
or R(z;) = R(2;) accordingly as R(z;) — R(zz) € C*\{0} or R(z:) — R(2;) € C*. With this
notation, a point 2o € Z is called admissible if there is no z:€ Z such that R(z0) > R(z1).
If z, is not admissible, then it is called inadmissible.

PRroPOSITION 1. If 21 # 2o and if there exists T., € dR(z:) such that

2.1) T. (20 — 21) >0,
then R(z0) > R(z1) holds, i.e. zo is inadmissible.
ProoF. By the definition of the subdifferential we have
R(z0) — R(z1) = T: (20 — z1) >0
and hence R(z0) > R(z).0

Note that if in (2.1) we change “T’ (z0 — 21) > 0” to “T; (20 — 21) = 0”, then we get
R(20) = R(z;). But the last inequality does not imply the inadmissibility of zo. Now, let us
consider a proposition converse to Proposition 1.

PROPOSITION 2. Suppose z, = azy + (1 — a)z:, with a € (0, 1), and
2.2) R(20) > R(z,) > R(z1).
Then for each T. € 8R, , T (20 — 2.) > 0.

ProoF. By the definition of the subdifferential we have
R(z1) = R(z,) + T (21 — 2.)

and hence

44

0>R(z1) — R(z2) = T (21 — 2a) = — T, (20 — 2a).

l1—a
Thus, T (20 — 2,) > 0.0
Now we give an example where 2 is not admissible and the assumptions of Proposition

1 are not satisfied. In this case there does not exist « € (0, 1) such that R(z,) satisfies
Assumption (2.2) of Proposition 2.
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ExAMPLE 1. Assume that R:R' — /'(m), where ¢'(m) is the space of m-summable
sequences with weights m(i) = 1/i%, i =1, 2, .... Let ¢ (m) be endowed with the natural
ordering and R(2) = {ci(z),i =1, 2, --.}, where

1

c(z)=2z-1 if 227

ci(z)=—Q2i—-1)z+1, if zs%.

Clearly, R is convex. If zo = 0, z; = 1, then R(1) = R(z1) = (0,0, ---) < R(0) = R(z0)
=(1,1, .-+) and dR(z:) = {T:R' — /' (m), T(2) = (az, +1, +1, -..), a € [—1, 1]}. Thus,
for any T, € dR(z:) we have T (20 — z1) = (—a, —1, —1, ---) and hence T (20 — 21) &
C*\{0}. Moreover, if « € (0, 1), then R(z,) < R(zo) but R(z:) is not comparable with
R(z,) and T (20 — z,) & C*\{0}.

Example 1 can also be modified to the case where Y is a épace of continuous functions
on a compact extremally disconnected topological space.

ProposiTioON 3. IfY=R" C*={y=(y1, -+, ¥):%=0,i=1,2, .-, n}, and R(zo)
> R(2’), then there exist z; and « € (0, 1), such that (2.2) is valid.

Proor. Since R(z) = (R1(20),:++, Rn(20)) > (R1(2’), + - -, Ry (2")) = R(2’), there exists
i such that R;(20) > R;(2’). If f;(B) is given by
fi(B) = Ri(z" + B(20 — 2')),

then by the convexity of f; there exists 8; € (0,1) such that f; is increasing on [ 8;, 1]. For ¢’
# i the convexity of f implies that there exist 8- € (0, 1) such that f;- is nondecreasing on
[B:, 1]. Let Bo = max(Bi, -« -, Br), 21 = 2" + Bo(z0 — 2’). For every a € (0, 1) we get

R(2) > R(z.) > R(21). 0

Propositions 1-3 imply immediately the following necessary and sufficient conditions
for admissibility.

THEOREM 1. IfRisconvex,Y = R", C* = {(y1, -+, yn) :y: = 0}, then z is admissible
if and only if there are no z; € Z and T., € R (z:) such that (2.1) holds. O

The following simple proposition shows that another statement similar to the theorem
converse to Propositon 1 is valid.
ProposiTION 4.  If R(21) < R(20), then for each T from dR(z) we have

(23) Tz,,(zl - 20) <0.

Proor. By the definition of the subgradient T. € dR(z,) we get
0> R(21) — R(20) = T,(21 — 20). a

However the theorem converse to Proposition 4 is not valid, either. This is shown in
Example 2.

ExampLE 2. Let R:R' — R® If R? is endowed with the positive cone C* = {(1,
¥2) :31= 0, y2 = 0} and R(2) = ((z + 1), (z — 1)?), then R is convex, and R (2o) consists of
the only linear transformation from R' into R? given by T, (2) = (2z(z0 + 1), 22(20 — 1)).
Thus, if 20 = — 1and z > —1, then T, (z + 1) = (0, —4(z + 1)) € — C*\{0}. But 2o = ~1is
admissible, and there exists no z such that R(z) < R(—1). Similarly, if zo = 1 and z < 1,
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then T (z — 1) = (4(z — 1), 0) € — C"\{0}. But z, = 1 is admissible, and there exists no z
such that R(z) < R(1).

The subgradient 7., considered in Propositions 1-3 and in Theorem 1, is taken at a
point z different from z,. It would be desirable to have at our disposal both necessary and
sufficient conditions for admissiblity where, like is done in Proposition 4, just T is used.
But Example 2 shows that such a program is unrealizable without any additional assump-
tions. Therefore, both Proposition 4 and Example 2 should be compared with the results
of the next section.

It is natural to call z, locally admissible if there exists a neighbourhood U of z, such
that 2z, is admissible provided R is restricted to U. We shall need in the sequel the following
trivial but useful lemma.

LEMMA 1. If R is convex and R(z1) < R(z), then for every z, = az; + (1 — )z, a €
0,1
R(z,) < R(20)
holds. O

Thus, if R is convex and Z is a locally convex topological vector space, then z, is
admissible if and only if z, is locally admissible.

3. Admissibility, compact parameter space. Let Z be a vector space, S a set and
R a real function on Z X S. Denote

1
R'(z, h, s) =lim,_.o— (R(z + ah, s)— R(z, s))
o
whenever the limit on the right hand side of the equality exists.

THEOREM 2. If for each h € Z there exists s € S such that R(-, s) attains on the line
{2:2 = zy + ah} its unique infimum at zo, then z, is admissible.

ProOF. For each z, there exists s € S such that
R(z0 + (21 — 20), ) > R(z0, s)

holds. Thus, z, is admissible. 0

Notice that in Theorem 2 no assumptions on the regularity of R are required. However,
it is convenient to formulate a “regular” version of this Theorem which emphasizes some
properties of the directional derivatives.

We recall that a function r on a vector space Z is called quasi-convex (bowl-shape) if for
every a € R the set {z € Z:r(z) < a} is convex (perhaps empty).

THEOREM 2. Assume that for every h € Z and s € S the function R(zo + ah, s) is
differentiable with respect to a at a = 0. If for every h € Z there exists s € S such that
R(zy + ah, s) is a strictly convex function of a on a neighbourhood of 0 and R’(zo, h, s)
= 0, then z, is locally admissible. If, moreover, for every s € S R(-, s) is bowl-shape
(quasi-convex), then z, is admissible. [}

THEOREM 3. Suppose that the following conditions are fulfilled.

a) the risk function R(z, -) is continuous on a compact space S,
b) for each h € Z there exists € = e(h) such that R’(zo + ah, h, s) is continuous on («, s)
€ [—e, €] X S.
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If 20 is admissible, then for every h € Z the function R’(zo, h, -) is neither in the interior
of the positive cone of C(S), nor in the interior of the negative cone of C(S).

REMARK. Note that the conclusion of Theorem 3 says that for every A € Z,
R’(20, h, -) is neither positive on S, nor negative on S. Moreover, if S is connected, then
for every h € Z there exists s € S such that R’(z0, h, s) = 0. Clearly, in saying that a
function is positive on S, we mean that it is positive at each point of S.

Proor. If R'(zo, h, s) <0 on S, then, by the continuity of R’(zo + ah, h, s) with respect
to (a, S) € [0, €] X S and by the compactness of S there exists ¢’ € (0, €) such that

R'(z0 + ah, h,s) <0

for each a € (0, ¢’), and for each s € S. Hence, by the mean value theorem there exist &
= a(s), such that a(s) € (0, a) and .

(3.1) R(zo, s) = R(20 + ah, s)— aR’(20 + ah, s) > R(zo + ah, s)

holds, which contradicts the admissibility of zy. Similarly, if R’(zo, A, s) > 0 on S, then, by
the continuity of R’(zo + ah, h, s) on [—e, 0] X S, there exists ¢’ < ¢ such that for every
a € (—¢’, 0) we have R’(zo + ah, h, s) > 0 on S. Hence the inequalities in (3.1) hold, again
contradicting the admissibility of z,. Thus, if S is connected, there exists s € S such that
R'(z9, h,s) =0.0

From the proof of Theorem 3, the following corollary is immediate.

CoROLLARY 1. If the assumptions of Theorem 3 are satisfied, and R’(z0, h, s) is
negative for every s € S (positive for every s € S), then z, is inadmissible. [1

It is convenient to reformulate Theorem 38 assuming that Z is a locally convex vector
space and that R(-, s) is Gateaux differentiable. If Z’ is a dual space of Z, z€ Z and 2z’ €
Z', then we denote by (z, z’) the value of the functional z’ at z.

THEOREM 3'. Let Z be a locally convex topological vector space and Z’' the dual
space of Z. Assume that S is a compact space, that R : Z X S — R is Gateaux differentiable
for every s € S, and that the Gateaux differential R’'(z, s) is weakly continuous on S for
every z € Z. If zo is admissible, then for every h € Z the function (h, R’ (2o, -)) is neither
positive, nor negative on S. If, moreover, S is connected, then for every h € Z there exists
s € S such that

(3.2) (h, R'(20, s)) = 0.0

If the assumptions of Theorem 38’ are fulfilled, then R’(zo, -) is a map from S into Z’,
and R’(zo, S) is a star-weakly compact subset of Z’. In this case (3.2) admits geometrical
interpretation formulated in Theorem 4 below, known in statistics as the Bayesian
approach. The conclusion that if R(z, -) is continous on S (compact), then every admissible
rule is necessarily a Bayes rule is well known and can be found e.g. in Wald (1950). The
proof included here differs from that of Wald. If K C Z’, then by conv K we denote the
smallest convex set containing K, and by cl K the smallest closed set containing K.

LEmMMA 2. Let (Z, Z') be a pair of dual locally convex topological vector spaces.

a) If K is a compact subset of Z’, then 0 € cl conv K if and only if for every z € Z the
function (z, -) is neither positive, nor negative on K.

b) If K is a compact connected subset of Z', then 0 € cl conv K if and only if for every z
€ Z there exists z’' € K such that

(z,z2") =0.
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Proor. If 0 € cl conv K then, by Proposition 1.2 in Phelps (1966), there exists a
probability measure p on K such that for every z € Z

J (2, 2")p(dz") = 0.

Thus (2, z’) cannot be positive for every z’ € K, nor negative for every z’ € K. If K is
connected, then, by the continuity of (z, -) there exists 2’ € K such that (z, z’) = 0. On the
other hand, if 0 & cl conv K, then 0 and cl conv K can be strictly separated. Hence, there
exists z € Z and ¢ > 0 such that (2, z’) > e for each z’ € K. 0

THEOREM 4. If the assumptions of Theorem 3’ are fulfilled then for every admissible
2o there exists a probability measure u on S such that

(3.3) J R'(z0, s)p(ds) = 0
holds, where the integral is in the Pettis sense, i.e. 2z, is Bayes with respect to the prior
distribution p. If, moreover, Z = R", then u can be chosen concentrated on at most n + 1
points of S.

Proor. By Lemma 2 we get 0 € cl conv R’(zo, S). Thus, there exists a probability
measure p on S such that (3.2) holds (Phelps, 1966, Proposition 1.2). If Z = R", then the
last statement follows immediately from the Caratheodory theorem. O

4. Admissibility, arbitrary parameter space. In this section we assume that Z is
an arbitrary vector space and S is an arbitrary set. R is a function from Z X S into R' such
that R (., s) is convex on Z for every s € S. Given zo, z; € Z we denote

(4.1) Izz‘,,zI (a, S) = R(ZO + az, S),
/]

(4.2) R,z (@, 8) = — R ; (, 5),
[ ]
62

(4~3) R;:,,Zl (ay S) = -2 Iez”,zI (ay S).
A

If fi and f; are two real functions on S, then we write fi(s) = f»(s) whenever this
inequality is valid for every s and the strict inequality holds for at least one s € S.
The following theorem provides a characterization of inadmissible decision rules.

THEOREM 5. Let 20, z1 € Z and let R (-, s), R: . (-, s), andR . (-, s) given by
(4.1)-(4.3) be continuous on [0, €) for every s € S. Suppose that there exist K > 0 and &
> 0 such that for each a € [0, 8] and s € S

(4.4) B |R% . (0,s) — RZ . (a,s)| < K|R%, ., (0, s)|.

Then the following two statements imply each other:
(i) For some a >0

R(20, 5) = R(20 + az1, s)

holds; ~
(ii) There exists y > 0 such that
(4.5) R’,. (0, s) + YRZ,. (0, s) < 0.

. PROOF. Suppose R (2o, s) = R(zy + azi, s) holds. Then, by the Taylor expansion we
get

2
R.,.(c,s) = R. . (0,5) + aR’, - (0, s) + "‘; RZ. (& s),
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where a = a(s) and 0 < a < «. Therefore
R.. (0, s)+ g R%. (& s) <O.
Since R is convex, R7 . is nonnegative. Thus, for a fixed a < §
R (@ 5) 5 2| R2y 0, 5)]
holds. Take now y > 0 such that y | (2/a) + K| < 1. Then, by (4.4), we get
R%. (0, 8) + YRZ. (0, 8) < [ 1—y (% + K)]R;o,z, (0, 5) =< 0.

To prove the opposite implication suppose that for some y > 0
R;()vzl (O’ S) + YRz,,z] (0, S) 5 (VI

holds. R, ., is convex with respect to «, hence R . (0, s) = 0 for every s € S and hence
R’ . (0, s) <0. Moreover, we have

1
R, (0,8) =~| R, . (0,s)].
Y
Take a > 0 such that ((1/y) + K)(«/2) < 1. Then, by (4.4), we get for any 8 € (0, a)

R, (0, s) + g RZ. (B, s) =< [1 —g (1 + K)]R’ZM (0, s) < 0.
’ Y

Since

2
R(z0 + az1,8) = R(20, 5) + R% . (0, 5) +% RZ. (@ s)

for some a € (0, a), we conclude that
R(z0 + azi1, 8) < R(z, s).

Thus, zo + az; is better than z,. 0

COROLLARY 2. Given zy € Z, suppose that Condition (4.4) is satisfied for every z, € Z
and s € S. Then z, is admissible if and only if for every y > 0, inequality (4.5) has no
solution z,.0

Note that, for every quadratic loss function, condition (4.4) is trivially fulfilled for each
20, 21 € Z. Moreover, if R (-, s) is strictly convex for every s € S, then, in proving the
admissibility of 2o, we need to consider only those directions z; for which R . (0, s) is
negative for every s € S. Indeed, if R . (0, so) equals zero, then z; cannot be a direction
improving zo.

If S is not compact, then, contrary to the assertion of Corollary 1, the condition

R, .(0,s)<0 foreach s€S

does not imply that z; is a direction improving z,. For example, if X ~ N(f, 1) and
R(d(.), §) = Ey{d(X) — 6}? then Rk_x(0, ) = —2E,X(X — 8) = —2. However, the
estimators aX, 0 < a < 1, do not improve the estimator d(X) = X.

5. Admissibility of estimators of p in the binomial distribution B(n, p). In this
Section we give a simple application of the presented theory. We consider the estimation
of p in the binomial distribution B (n, p) assuming that the quadratic loss function is used.
We show how Theorems 2’ and 3’ imply a complete analytic description of the class of all
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admissible estimators of p. This completes the previous results on this subject and yields
the analytic counterpart for the Bayesian description in Johnson (1971). Clearly, both
approaches must be equivalent. At the end of this Section we include a simple proof of this
equivalence.

It is convenient to collect in Theorem 6 those immediate consequences of Theorems 2’
and 3’ that will be used in this section.

THEOREM 6. Let S be a compact connected space, Z = R* and R: R* X S — R™.
Assume that R(., s) is differentiable on R* for each s € S and that grad,R (z, s) is
continuous on R* x 8.

(a) Given zo € R*, if for every h € R* there exists s € S such that R(-, s) is strictly
convex, and

(5.1) (h, grad.R(z, s)) =0

holds, then z, is admissible.
(b) If zo is admissible, then for each h € R”* there exists s E S such that equality (5.1)
is valid. O

If we estimate p in the binomial distribution B (n, p) and squared error loss is used, then
the risk function is of the form

(5.2) R(z,p) = ¥iwo (z: — p)z('l?)p"(l -p)"7

where p € [0, 1], and z = (2o, 21, -+, 2,) represents an estimator. Suppose that z =
(20, 21, * + + , 2,) is admissible. Then, clearly, z; € [0, 1] for each i. By Theorem 6, part (b),
for every h = (ho, h1, - - , h,) € R™"! there exists p € [0, 1] such that

N0 hi(zi—p)p'(1—p)" =0
holds. Since z; = z,p + z;(1 — p), we get
S0 hi(zi = p)p'(L = p)"™* = hozo(1 = p)™*!
+ Y1 (Bi1(zj-1 — 1) + Az))p’(L = p)* ™' + hy(2, — Dp™*' = (g(p), Ah),
where
g(p)=((1=p)™*, oo, p L= p)**' oon DY),
A=A@z)=(a;),i=0,1,.--,n+1,j=0,1, .-+ ,n,a,; =2, @1, =2—1,a;=0

ifi&{j,j+1},j=0,1, ..., n. The parentheses (-, -) stand for the usual scalar product.
Let H= {Ah:h € R™*'}. Clearly, H can be considered as a subspace of R"*% If z; €
0,1,:=0,1, SRR then dim H = n + 1. Moreover, if b = (bo, b1, +-- , bn+1)’, where

bo=(1—2)1—21) -+ (1= 2,)
bi=2z(1—-2) - (1—2,)

(5.3)
bi=2z0z1 ¢+ 2i1(1—2)) -+- (1 — 25)

bnv1 = 2021 +++ Zn,

then b is perpendicular to H.
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Denote by cone g([0, 1]) the convex cone spanned on the set{ g(p):p €[0,1]}. Clearly,
cone g ([0, 1]) is closed in R"*2.

LEMMmA 3. If2,€(0,1),i=0,1, ---, n, then the following statements imply each
other.
(i) for every h € R™*! there exists p € (0, 1) such that

(g(p), Ah) =0,

(ii) b € cone g([0, 1]), where b is given by (5.3),
(iii) (b, d) = 0 whenever d = (do, dy, -+ , du+1)’, and $123 d,g:(p) is nonnegative on
o, 1].

Proor. (ii) = (i). Since
cone g([0, 1]) = U0\ conv g([0, 1},
where conv g ([0, 1]) stands for the convex hull spanned on the set g ([0, 1]), there exists a
positive number A and a probability measure m concentrated on [0, 1] such that

1
(5.4) b =}\j g(p)m(dp).
0

Let us note that m cannot be concentrated on {0, 1} for that would contradict the
assumption that z; € (0, 1) for each i. The vector b is perpendicular to H. Hence

(5.5) (b, Ah) = kj (g(p), Ah)m(dp) =0
o

holds for every h € R"*!. Now, observe that (g(p), Ah) is continuous on [0, 1] and its
integral equals zero. This implies the existence of p € (0, 1) such that (g(p), Ah) =0
holds.

(i) = (ii). Suppose that b & cone g ([0, 1]). Then b and cone g ([0, 1]) can be separated
by a hyperplane, i.e. there exists ¢ € R"*? such that

(5.6) (e,y) =0 for y €& cone g([0, 1))
and
(5.7) (c,b) > 0.

Since the components of g(p) and b are nonnegative and these vectors are different
from 0 € R"*? we infer from (5.6) that ¢ cannot be represented in the form ¢ = yb, where
y is a positive number. Take « € R' and h € R™** such that

¢ =ab + Ah.
Then (¢, b) = a(b, b); hence a > 0 and h 0. Furthermore, we infer from (5.6) that
0= a(g(p), b) + (g(p), Ah) = ae + (g(p), Ah),

where ¢ = inf{(g(p), b), p € [0, 1]} > 0. Thus, (g(p), Ah) < 0 holds for every p € [0, 1] in
contradiction with our assumption.

The equivalence of statements (ii) and (iii) is straightforward and well-known (see
Karlin and Studden, 1966, Chapter 3, Theorem 9.1; Krein and Nudelman, 1973, Chapter
3, Theorem 1.1). 0

THEOREM 7. Letz = (20,21, +++,2,),2:.€ (0,1),i=0,1, ..., n, and let b = (b, by,
+, bpi1)’ be given by (5.3).
(@ Ifn=2v—1and v€ (1,2, ... }, then z is admissible if and only if the quadratic
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forms
(5.8) Yij=0 birjaia; and Y45l bivjr1BiB;

are nonnegative definite.
() If n =2vand v € {1, 2, .- }, then z is admissible if and only if the quadratic
forms

(5.9) Yij=0 bivjrraia; and Yoo biiBiB;

are nonnegative definite.

PRroOF. Since the proofs of both parts of Theorem 7 are analogous, we shall prove
part (a), only.

Necessity. Let z be admissible. Then, by Lemma 3, (b, d) = 0 wheneverY ) digi(p) is
nonnegative on [0, 1]. From the Lukacs-Markov Theorem (see Krein and Nudelman, 1973,
Theorem 2.2, Chapter 3; Karlin and Studden, 1966, Chapter 4, Section 1) it follows that
every nonnegative polynomial of g;(p),i =0, 1, ..., n + 1, is of the form

W(p) = (Ti-0 axp*(1 = p)*™*}* + (1 - p)p(Ti=b Bep*(1 — p)*~*71)?
= Yij=0 8irs(P)aia + ¥ 7520 Zivjr1(D)BB,.
Thus, the two quadratic forms in (5.8) are nonnegative definite.
Sufficiency. If both forms in (5.8) are nonnegative definite, then, by Lemma 3, for every

h € R™*" there exists p € (0, 1) such that (g(p), Ah) = 0. Equivalently, for each h € R"**
there exists p € (0, 1) such that

(h, grad;R(z, p)) = 0.

Since R(-, p) is strictly convex on R**! for p € (0, 1), we infer from Theorem 6, part
(a), that z is admissible. 0

Now, we are going to derive a characterization of the entire class of admissible estimators
of p. We apply here in fact the method of sequences of priors and sample spaces used in
Hsuan (1979) and Brown (1981). First we note that if z = (2o, z1, - -+ , 2.) is admissible,
then by Theorem 11 of Karlin and Rubin (1956), z; < 2;+1,i=0, 1, -+ - , n — 1. In our case,
if z; > z;+1 holds for some i < n, then a direct calculation, as well as the use of Corollary 1,
shows that the estimator z’ = (2o, 21, -+ + , 2i—1, 2i + Ai, Zix1 + Riv1, Zivz, - -+ , 2n) is better
than z provided

(C+ DAl - z)

hiv1=— (n — i)zi

and A; is negative and near to zero. Moreover, it is known that if z = (0, --- , 0, z,, « - , 2,
1,...,1),and if z’ = (29, 27, +++, 25,) is not worse than z, then 2§ = 2| = ... =2/ =0
and z{+1 = .-+ = 2z, = 1 hold (cf. Johnson, 1971). It is also trivial and known (cf. Johnson,
1971) that the estimators of the form (0,0, ---, 2,1, --.,1),z,€ (0,1),i € {0,1,--.,n},
are admissible. Finally, we note that z = (0, --., 0, z,, +++, 25, 1, -+, 1), r<s, 2, €
(0,1) fori€ {r,r+1, --., s}, is admissible with respect to R given by (5.2) if and only if
Z = (2r, 2r+1, -+ + , 2;) is admissible with respect to the function

Rl (iy P) = Ets;(; (zr+i - P)szpl(l - p)s—r—i’

n

where b; = (cf. also Theorem 3.1 in Brown, 1981). From Theorem 6 and from the

r+i
proof of Theorem 7 it follows that the form of the positive coefficients b; has no influence
on the admissibility of z. Hence, using s — r instead of n, we can apply to z the
characterization of admissible estimators given in Theorem 7.
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THEOREM 8. An estimator z = (20, 21, +++ , 2,) is admissible under the quadratic
loss function for estimating p € [0, 1] in the binomial distribution B(n, p) if and only if
it is of one of the following forms

(@) z=(0,0,.--,0), or z=(0,0,...,0,1,+..,1), or z=(,1,.--,1), or

(b)z=@,-.--,0,2,1,---,1) and 2z;€(0,1),i€{0,1,.--,n},
or

c)z=(©,+-,0,2,--,2,1,¢c:,1),r<s,r,s€{0,1,---,n},2€(0,1) fori €
{r,r+1,...,s},andz = (3, 21, - - - , 2,—,) fulfills the characterization given in Theorem
7 with r — s instead of n, and 2; = z,+;,, 1 € {0, 1, --- , s —r}.0O

REMARK 1. A direct and simple calculation shows that Theorem 8 implies that if n =
1, then z = (2o, 21) is admissible if and only if 0 < 2o < z; < 1. Similarly, if n = 2, then z
= (20, 21, 22) is admissible if and only if 0 < 2, =< 2; < 2z, = 1. If n > 2, then there exist
nondecreasing and increasing sequences 2o, 21, - -+ , 2, such that z = (2o, z1, --- , 2,) are
not admissible. :

For example, if n = 3 and 0 < 2y < 21 < 22 < 23 < 1, then z = (2o, 21, 22, 23) is admissible
if and only if

22(21 — 20) (23 — 22)(1 — 21) = 20(1 — 23) (22 — 21)".

REMARK 2. In the search for the prior distribution with respect to which a given
admissible estimator is Bayes, one can follow the patterns given in Karlin and Studden
(1966, Chapter IV, Section 2). For example, it 'is possible to show that the “upper” and
“lower” prior distributions are concentrated on zeros of some determinants related to the
quadratic forms given by (5.8) and (5.9) and functions g;(p) (cf. also Remark 4 below).

REMARK 3. The set of admissible estimators of p is a closed subset of R™*! (cf.
Johnson, 1971, or Theorem 8). Hence, and from Ferguson (1967), Exercise 1.8.8, it follows
that if X ~ B(n, p), then every linear estimator AX + B which takes values in [0, 1] is
admissible.

REMARK 4. We show that the analytic conditions of Theorem 7 are equivalent to
Johnson’s Bayesian description. (C. Hipp and a referee independently noted, proved and
generously communicated this equivalence to the author. Their proofs differ slightly. Here
we include the somewhat simpler proof of C. Hipp.) Let z = (2o, 21, -+, 2,) with 2; € (0,
1) be admissible. Then it is Bayes for some prior on [0, 1] and

1
j pk+1(1 _p)n—km(dp)
0

Z2r =

; .
j p*(1 — p)**m(dp)

0
Since z, < 1, we have m (1) < 1. Notice that

1
j pk+1(1 _p)n—km(dp)
2k 0

-2z [ ’
k j pk(l _p)n—k+lm(dp)

0

andfork=0,1,.-.--,n

1
f pk+1(1 _p)n—km(dp)
20 21 23 0

1—-201—2z 1—2z

b;c+1 =

f (1 - p)"'m(dp)
0
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Let m = m’ + m”, where m’ and m” are orthogonal and m” is concentrated on {1} (we
admit m”(1) = 0, too). We put

1 1
dm; = (1 — p)*** dm’/f 1-p)**"'dm and dm,= dm”/j (1 - p)*** dm.
0 0

Then

1 k+1
b;¢+1 = L dml(P), k= Oy ]-y ce,n— 1?
b \1-p

and

1 n+1
P
bra = —_ dm + mo(1).
+1 J; <l—p) 1(p) ‘2( )

Finally, denote by mj the measure on [0, ) induced by the mapping p — p/(1 — p) and
m;. Thus, we have

b;z+l=j tk+1 dmi(t), k=0, 1) e, — 1)
0 )

and

bl = f T dmi(t) + me(1).
0

Now, by Theorem V.10.1 in Karlin and Studden (1966), we infer the necessity of
Conditions (5.8) and (5.9). Proceeding in the reverse direction, we obtain the desired
equivalence.
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