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RANDOM DESIGNS FOR ESTIMATING INTEGRALS OF
STOCHASTIC PROCESSES*

By CAROL SCHOENFELDER AND STAMATIS CAMBANIS
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The integral of a second-order stochastic process Z over a d-dimensional
domain is estimated by a weighted linear combination of observations of Z in
a random design. The design sample points are possibly dependent random
variables and are independent of the process Z, which may be nonstationary.
Necessary and sufficient conditions are obtained for the mean squared error
of a random design estimator to converge to zero as the sample size increases
towards infinity. Simple random, stratified and systematic sampling designs
are considered; an optimal simple random design is obtained for fixed sample
size; and the mean squared errors of the estimators from these designs are
compared. It is shown, for example, that for any simple random design there
is always a better stratified design.

1. Introduction. We consider the problem of estimating the weighted average of a
second-order stochastic process {Z(t):t € A}, A C R? The process is assumed to be
continuous in quadratic mean with covariance Ry (s, t), mean m(t), and second moment
function R (s, t) = Ro(s, t) + m(s)m(t) such that 0 < [4 R(¢, t) dt < . We wish to estimate

1.1) I=f Z(t)o(t) dt,
A

where it is assumed that E(I?) is non-zero and finite. Then a linear estimate of I, using
weights and observations at random sample points, is given by

(12) Z,= ,11 S+ en(Xin)Z(XKin),

where the sample points {X;, }; are (possibly dependent) random variables taking values in
A and independent of Z. The accuracy of the approximation is measured by the mean
squared error (mse) e = E(Z, — I)>. Other measures such as E| Z, — I| are of interest but
will not be investigated here.

The sequence of weights ¢, and designs {X;,}: should be chosen so that as the sample
size n tends to infinity the mse e2 should tend to zero. Necessary and sufficient conditions
for this are derived in Section 2 under fairly general assumptions. Next we find the weights
and designs that minimize the mse for fixed sample size n under the simple random
sampling scheme (Section 3) and we discuss stratified and systematic sampling schemes
(Sections 4 and 5). In Section 6 these sampling schemes are compared for fixed sample size
n. The problem of finding the weights and designs that minimize the mse for stratified and
systematic sampling asymptotically, rather than for fixed sample size, is treated in
Schoenfelder (1978).

In the available literature it is assumed that each sample point X, is uniformly
distributed over its range, A is bounded, ¢ =1/| A |, ¢, = 1, and Z is wide-sense stationary.
Zubrzycki (1958) obtains expressions for the mse under simple random, stratified and
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systematic sampling schemes and compares their relative sizes under certain assumptions
on the correlation function of Z; Tubilla (1975) obtains asymptotic expressions for the mse
under assumptions on the quadratic mean differentiability of Z. Random designs have
been studied by many others, including Cochran (1946) and Quenouille (1949), who take
A to consist of a finite number of points, and have found application in areas such as
krieging (Zubrzycki, 1958; David, 1978), forestry land surveys (Williams, 1956), and quality
control (Jowett, 1952).

Here we do not take Z to be stationary, the sample points to be uniformly distributed
and the weights to be constant. Instead, we allow the sample points to be nonuniformly
distributed and Z, to assume the slightly more general form (1.2). Then we use the
variability of Z in the estimation of I and obtain better estimators, when Z is not stationary,
than those generally used. Under certain conditions, we show that when Z is stationary,
the choice of weight and design generally used is best.

It should be noted that for any random design there always exists a better nonrandom
design (in the mse sense). Optimal nonrandom designs are often difficult to obtain (Sacks
and Ylvisaker, 1970). Optimal random designs are seen to be easy to obtain in certain cases
(Propositions 3.1, 4.1, Examples 4.2, 4.3, 5.1). Further, for certain nonrandom designs that
are reasonable but not optimal, it is possible to find better random designs (Examples 3.3,
6.3).

2. The general case. In this section, under certain mild assumptions, we find
necessary and sufficient conditions for the mean square error e to converge to zero as
n— o,

Let Gi, be the distribution of X;, and J;;, the joint distribution of X, and Xj», i,j =1,
«++, n. Then the mse can be written

el =E[E{(Z,— I)?| Xin, +++ Xun}] = J f R(s, t)ca (s)cn (t) o (ds, dt)
A JA

2.1)
-2 j f R(s, t)p(s)ca(t) ds dGx(t) +f f R(s, t)¢ (s} (t) ds dt
4 Ja A Ja

where
G.=n"'Yl1 G and J,=n" Y Y1 Jim

are distributions over A and A X A, respectively, and J,, is symmetric in its arguments
with marginal G,. The averaged marginal distribution G, measures the intensity of
sampling, and the averaged bivariate distribution <J, measures, in part, the dependence of
the design on itself. When the sample points are pairwise independent,

(2.2) Jn(s, t) = Gn(5)Gn (2) +% {G, (min(s, )) —% Y1 Gin (5)Gin (8)},

where min(s, £) = (min(si, ¢1), - - -, min(sa, £4)) for s, t € R%. When the design is nonrandom
(and hence independent of itself as well as having independent sample points), nG,(B)
counts the number of sample points in the set B and

(2.3) Jn(s, t) = Gn(s)Gr(2).
In fact, as proved in Section 7, the converse is also true.

PROPOSITION 2.1. Ju(s, t) = Gn(s)Gn(t) on A X A if and only if the design is
nonrandom.

For simplicity, we concentrate on the important case where the second moment function
R of Z is strictly positive definite in the sense that if p is a signed measure on A such that
fa RYA(t, )d| | (t) < and fa [a R(s, t) dp(s) du(t) = 0, then p = 0.
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We show in Theorem 2.3 that when G, = G, J,=>J, and ¢, — c in a prescribed manner,
then the necessary and sufficient conditions for e2 — 0 as n — « are

(2.4) c(t) dG(t) =¢(t) dt on A,
(2.5) J(s,t) = G(s)G(¢) on A X A.

The natural consistency condition (2.4) is a result of the approximation of the integral
(1.1) by the sum (1.2). Condition (2.5) describes an asymptotic average pairwise indepen-
dence property for the design. It holds for designs whose sample points are pairwise
independent; included here are simple random and stratified sampling schemes but not
systematic sampling. For nonrandom designs, such an average pairwise independence
property holds in addition for each sample size n (Proposition 2.1).

The following lemma, whose proof is given in Section 7, is used in proving Theorem 2.3.

LEMMA 2.2. Let J be a distribution function on A X A with marginal G, and ¢ a
Borel function on A, satisfying

(2.6) j R(t, t)c2(t) dG(t) < oo,
A

2.7) f J f(8)f(t)J(ds, dt) = 0
A JA
for all f € %[dG]. Then

f j R(s, t)e(s)c(t)J (ds, dt) — 2f f R(s, t)¢p (s)c(t) ds dG(t)
A JA A JA
(2.8) +f [ R(s, t)o(s)p(¢) ds dt

A JA

= j rd@(r) + f J R(s, t){c(s) dG(s) — ¢ (s) ds}{c(t) dG(t) —¢ (¢) dt},
0,1] A JA

(

where Q) is nonnegative, of bounded variation, and nondecreasing in r. If, moreover, R is
strictly positive definite and c is nonzero a.e. [dG), then [ rdQ(r) = 0 if and only if
J(s, t) = G(s)G(t) on A X A.

When applied to /., G., and ¢, Lemma 2.2 provides a decomposition of e? into two
nonnegative terms, of which the first, [ rd@.(r), vanishes iff the design is nonrandom (cf.
Proposition 2.1), and the second vanishes only if the design is random. For simple random,
stratified, and systematic sampling designs, Zubrzycki (1958) and Tubilla (1975), in effect,
assume

(2.9) cn(t) dGn(t) = ¢ (t) dt on A,
and thus the mse is given solely by the first term [ rd@., (r). Observe that (2.9) implies that

Zy is an unbiased estimator of I for any realization of the process Z; i.e., E{Z,|Z(-)} = L.

THEOREM 2.3. The mse e% — 0 if and only if (2.4) and (2.5) hold, under the following
assumptions: R is strictly positive definite; ¢ is nonzero a.e. [Leb] on A; J, converges
weakly to some distribution J on A X A with marginal G,

G{teA: t,> tst.ca(t,) Act)})=0

for some Borel function c; and (2.6) holds.
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Proor. It follows from the assumptions (cf. Billingsley, 1968, page 34) that

e =1lim, ,.eZ= f f R(s, t)c(s)c(t)J (ds, dt) — ZJ f R(s, t)¢ (s)c(t) ds dG(t)
AJA A JA

+ f f R(s, t)p(s)¢(t) ds dt.
A Ja

By first considering continuous and bounded f, it can be easily seen that (2.7) holds.
Thus by Lemma 2.2, e? is given by the RHS of (2.8), the sum of two nonnegative terms.
Since R is strictly positive definite, the second of these terms is zero iff c¢(s) dG(s)
= ¢(s) ds, which implies c is nonzero a.e. [dG] since ¢ is nonzero a.e. [Leb]. Then, again by
Lemma 2.2, the first of these two terms is zero iff (2.5) holds. 0

In Theorem 2.3, when R is not strictly positive definite, then (2.4) and (2.5) are sufficient
for e2 — 0 but not necessary.

As was noted, nonrandom designs and designs whose sample points are pairwise
independent satisfy condition (2.5). Using (2.3) and (2.2), respectively, we can write e2 as
the sum of two nonnegative terms, of which the first is zero and O(1/n), respectively, and
the second equals the second term on the RHS of (2.8) with ¢,, G, replacing ¢, G. Thus,
without use of Lemma 2.2, we have that for nonrandom designs and for designs with
pairwise independent sample points (assuming G, = G and ¢, G and R are as in Theorem
2.3) e2 — 0 iff (2.4) holds.

3. Simple random sampling. In Zubrzycki (1958) and Tubilla (1975), simple random
sampling (srs) is defined such that the sample points {X;.} are independent and identically
distributed (iid) with uniform distribution on 4, i.e. dG.(t) = dt/| A |; also ¢ is constant, c,
=| A| ¢, and thus (2.9) holds. Here we generalize the definition of srs by allowing {X..} to
be iid G where G does not depend on n, and we choose ¢, = ¢ satisfying (2.9) for general
¢. Under these assumptions the mse for srs is given by

(3.1) el, = 1 {J R(¢, t)c2(¢) dG(¢t) — J f R(s, t)p (s)o (t) ds dt} .
nlla aJa

Using a standard variational argument, we have the following.
ProPoOSITION 3.1. The mse e, is minimized if and only if the sampling distribution
G has density proportional to
3.2) R'2(t, )| $(2) | on A.
Under this optimal srs design

2
e‘:’,n=%[{f RYVA(, t)|¢(t)|dt} - J' J R(s, t)p (s)¢ (t)ds dt]
A A JA
- a

7 =@ gn S0{(Xin)
" n AT R (X, Xin)

where a = [4 RY*(t, t)| ¢(t) | dt, and sgn(t) = 1 for t = 0, sgn(t) = —1 for t < 0.

Z(Xin),

Notice that the sampling density of the optimal srs design does not depend on the
sample size. Also, the best design as well as the estimator Z, depend only on the values of
R on the diagonal. The complete structure of R enters only in the value of the mse.

EXAMPLE 3.2. Stationary process with a trend. Let A be bounded and Z have mean
m(t) and covariance Ro(s, £) = C(¢ — s) where C is continuous and ¢* = C(0). Then the
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best srs design is given by
g(t) = {m*(t) + 0*}'*|6 (1) /Q,
where @ = [a4 {m%(?) + 0®}"?| ¢(t) | dt, yielding

sgn(¢ (Xin))
{mz(Xin) + 02} 1/2

2
ne?,n=Q2—< f mo) - f f C(t — s)p(s)p (¢) ds dt.
A A JA

If ¢ = | A| ™ and m(¢) is constant (no trend), the sampling density of the best srs design is
the uniform density over A, yielding the usual estimator (c, = 1) with mse as obtained by
Zubrzycki (1958).

Z,= g Xi-1 Z(Xin)

EXaMPLE 8.3. d-dimensional Brownian motion. Assume that A = (0, 1]¢, ¢= 1, and
that Z has mean zero and covariance Ry (s, t) = IT min(s;, ¢;). Define II(t) = I ¢;. The best
srs design has sampling density

g(t) = (%) II*(t),

L. 7 _ ond Lon Z(Xin)
yielding Zn = (%) AT (X,
a significant departure from the usual design and estimator. We have ne?, ¢~% ~ .111 for
d =1, = .086 for d = 2, = .051 for d = 3. It may also be seen that neZ, o> has a maximum
at d = 1 and is strictly decreasing in d to zero. The rate of convergence of e2, to zero as n
— o is O(n™"), while the rate of convergence of the mse to zero for a nonrandom product
design for stochastic processes of this type is O (n~%?) (Ylvisaker, 1975). This points out
the nonoptimality of product designs. The results of Ylvisaker (1975) and especially Wahba
(1978) indicate, however, that a superposition of nonrandom product designs may give a
better rate.

In concluding this section, we note that the performance of the “optimal” srs design is
robust with respect to insufficient knowledge of the second moment function R. Let
e?,(S|R) be the mse when the design is chosen via (3.2) as if S were the second moment
function when R is the true second moment function of Z. Then

e?,n(SlR)=%U S, t)|¢(t)|dtf—%i)l¢(s)lds—f f R(s, t) (s} (2) dsdt}
A A A JA

S2(s, s

nel, = {(%)?¢ — (%5)%}o?,

and it can be shown that when S is appropriately close to R,
d(S,R|R) = n|el.(S|R) — e}, (R|R) |
is close to zero. For details see Schoenfelder (1978).

4. Stratified sampling. Stratified sampling (sts) consists of independently choosing

a simple random sample of size n;(=1) from each A;,, i =1, - - -, m(m < n, 2 n; = n) where

{Ain} =1 is a partition of A. Thus in sts the sample points X (j =1, --+,n;,i=1, ---, m,

~3 n; = n) are chosen independently of each other so that X has distribution Gin

concentrated on A;, and so that ¢, and G, = 3 (n;/n)G» satisfy (2.9); Zubrzycki (1958)

and Tubilla (1975) take n; = 1 with G;» the uniform distribution over A;, and ¢, and ¢
constant. The mse for sts is given by

1 $%(2) }
4.1 2 =y, {= 3 dt — R(s, dsdt},
4.1) estn = ), l{niLmR(t t)gim<t) ¢ LWJ;M (s, ) () () ds

which reduces to (3.1) when m = 1. We have the following optimality result which is an
immediate consequence of Proposition 3.1.
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ProPOSITION 4.1.  For fixed partition {Ain}:0f A, €2, is minimized when the sampling
distributions Gin have densities gin proportional to RV2(t, t)| ¢ (t) | on Ain. Under this
design, with Qn = [4_ R"?(t, t)| ¢(t) | dt, we have

e, =YY" 1{Q”" f J R(s, t)¢ (s)o (t) ds dt}

Qim sgn{¢ (Xjin)}

Zn= Y= Vi ZKin) pimg x5
jiny <Ajin

EXAMPLE 4.2. Stationary process with a trend. Under the assumptions of Example
3.2, the mse under sts is minimized for fixed partition when the sampling density is

gin(t) =é— {m*t) + 62}?|6(t)| onApm, .i=1,---,m

where Qi = [a, {m?*(t) + 0°}"*| ¢(t) | dt, yielding

sgn{¢ (Xin)}
21"1 21— {m2(X}i")+02}1/2

ek, =Y [nl Q. — j J {C(t — 5) + m(s)m(t)}¢ (s)¢ (¢) ds dt] .
¢ Aim Azm

Z (Ainn )

When the mean m (¢) is constant (no trend), ¢ = 1, A = [0, 1], each A;, is an interval, and
n; = 1 for all i, the mse can be rewritten

el,=Y% {|Aml2 i n<}‘|A‘"')}dF(x)

where F is the spectral distribution corresponding to R. This is minimized when | Ai,| =
1/n for all i, the choice in the literature.

EXAMPLE 4.3. Wiener process. Let R(s, t) = min(s, £), A = [0, 1], and ¢ = 1, and
assume each A;, is an interval and n; = 1 for all i. Then e, is minimized when g, is
proportional to /2 on A, for each i, and A, = [%i—1,n, Xin} Where Xor = 0, X, = 1, and for
i=1.---,n—1,

X 1 2 1 x; 2 X oz
irtr _(Z 4 cosl;), Gi=>cos{3(=2) —4 uinta .
Xin 2 3 Xin Xin

When n = 10, the endpoints x;, are approximately .000, .116, .217, .316, .414, .512, .610, .708,
.805, .903, 1.000.

5. Systematic sampling. Systematic sampling (sys) consists of choosing a simple
random sample from the first stratum and then choosing the samples on each remaining
stratum by applying some specified transformation on the sample from the first stratum.
For ease of notation we consider only the case where a sample of size one is taken from
each stratum specifically, consider a partition {A:»}; of A and a set of transformations
Tyjn: Ajn—> Ain, 1 — 1 and onto, such that T'jn = Tin Tijn for all i, j, k. The sample point X,
has distribution Gi. concentrated on A;, and the remaining sample points are defined by
X;n = TinXin with X;, having distribution Gi, on A;n, i =2, - -+ , n, and with ¢, and G, =
S Gin/n satisfying (2.9). (In the literature Gi, is the uniform distribution on A, the
transformations are translations, and ¢, and ¢ are constant.) The mse for sys is given by

]. n
(6.1)  ebn=—3l13in f R(t, Tjnt)p(t) ¢((T’ 5 f f R(s, t)$ (s)¢ (¢) ds dt.
A n Jin

n
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It does not appear that in general this expression can be minimized. However, minimi-
zation may be feasible in certain very special cases, as the following example illustrates.

ExAMPLE 5.1. Assume that R is stationary and nonnegative on A = [0, 1), ¢ = 1, c.g,
= 1, A,’n = [ti—l, ti), and that Tijnt = (t - tj_l)(A,/Aj) + ti is a translation from Aj,, to Ain
where A; = ¢, — t;—1. Then

R(Tyjn, u)
el =Y Y — 4[,_, 2 () ————du ij(s,t)dsdt

1 4 1/2 2 1,1
=y Y [J { 1 AR (Tynu, u)} du] - J f R(s, t) ds dt,
6y o Jo

with equality if and only if g, () is proportional to {37-1 A;R (Tynu, u)}? on A;,. In
particular, if we let A; = 1/n for all i (the choice in the literature), the mse is minimized
over all consistent g, when g, = 1, the choice in the literature.

6. Comparisons. In this section we establish the intuitively clear result that, in
general, sts is better than srs in the mse sense; i.e., e,, < eZ,. We then give conditions
under which e?, is larger (smaller) than e2,, and note that when Z is stationary, these
conditions reduce to those given in Zubrzycki (1958). Finally we consider the relationship
between sys and srs when e2,, < e2,,.

PROPOSITION 6.1. For every n-point srs design which satisfies (2.4) and (2.6) there
exists a better n-point sts design in the sense that e2,, < e2,.

ProoF. We show this for a sts design with n = m(n; = 1). Let G be the sampling
distribution for srs and g its density on A N (¢ # 0). For simplicity, assume ¢ # 0 a.e.
Consider a sts design such that foreachi=1, ..., n, G(4:,) = 1/n and X;, has distribution
concentrated on A;, with density proportional to g and such that c, (t) dG,.(¢t) = ¢(¢) dt on
A. Then

1
efn = e = 5= Thim1 f f R(s, )9 ()6 () (La,, — La,)(5)(La, — Lu,)(¢) ds dt= 0. O
A JA

Similarly it can be shown that for every n-point sts design with some n; > 1 there exists
a better sts design with all n; = 1, obtained by subdividing any elements of the partition
for which n; > 1. Thus, with no loss of generality, we assume n; = 1 in Proposition 5.1 and
will continue to make this assumption.

PROPOSITION 6.2. Consider a sts design in which n = m, n; = 1 and the ith sample
point has distribution G;, on A;,, i =1, -+, n, and a sys design in which the ith sample
point again has distribution Gi, on Ain, i =1, - -+ , n, and the transformations {T;.} are
consistent with this choice. Let ¢, be the same for both designs. For s, t € Ai, let

kjin(s’ t) = R(Sy q}int)cn(q}int),
M, = f kiin (L, t) dGin(t) — f f Rjin (s, t) dGin (s) dGin (2).
A

n

() If My, = 0 for all i # j, then estn = esyn
(ii) If Mji, <O for all i # j, then e%,, < €%, .



RANDOM DESIGNS 533

PROOF. As a result of these assumptions
n*(etyn — ein) = E{3ij R Xin, TjinXin)Cn (Xin)Cn (TjinXin) — R (Xin, Xijn)cn (Xin)en (Xin)},

where each X, has distribution G;.. For each i, let Y;, be a random variable independent
of and identically distributed with X;,. Then since X, = TinXin a.s., TjinYin has the same
distribution as Xj,, yielding

n(e,n — e4n) = Yinj E {RBjin Xin, Xin) — Rjin Xin, Yin)} = Yinj Mjin,
which completes the proof. : 0

When R is stationary, ¢ = 1/| A | for A bounded, g, = 1 on A and the T}, are translations
by 7jin, then

M;in = R (7jin) — |Ain|—2f j R(t — s) ds dt,
Al" Ajn .

and Proposition 6.2 reduces to a result due to Zubrzycki (1958).
We would like to obtain sufficient conditions that are easier to verify than M, = 0
(= 0). Observe that if for each i # j, kji, satisfies the inequality

(6.1) k(s,s) +k(t,t)—k(s,t) —k(t,s)=0 (r=0)

a.e. dGi, X dG;, on A, X A;n, we obtain, upon integration with respect to dGi» X dGin, Mjin
= 0 (or = 0). Thus (6.1) is a sufficient condition. It has the intuitive appeal that it can be
written as

E[{Y(s) — Y)Y (Tjins) — Y(Tjint)}]= 0 (or=0),

where Y (s) = Z(s)c,(s), and so requires that the increments of the processes Y and Yo T};,,
over the same interval of A;,, should be positively (or negatively) correlated a.e. [dG:,] for
all i # j. When d = 1, ¢, = 1/|A| for bounded A, and the Tj; are order preserving,
the increments of the two processes are positively correlated if R (s, ) = min(s, ¢) or
exp(—p|s — ¢|) and negatively correlated if R (s, t) = exp{—p(s — ¢)*} for p < 1/(8| A |?).
The error comparisons whend =2, ¢, = 1/|A|, and R(s, t) = exp(—p|s — ¢|) have been
established by Zubrzycki (1958). Comparisons based on the asymptotic size of the mse’s
are explored in Schoenfelder (1978).

Ife?, . <e%,, thenel, ,<e%,<e’, Ifel ,=e%,, then, in general, the order between
the mse’s in srs and sys is not fixed. It is shown in Schoenfelder (1978) that for large n,
under certain mild assumptions, e, , < eZ,. On the other hand, as is seen in the following
example, we may have e2, < e?, , for certain fixed n.

ExAMPLE 6.3. Let¢p=1,A4A=(0,1],and Z(¢) = Y(¢) + a sin(2v 7 t + 0) where 0 < 6
< 2w, a =0, and Y is a stochastic process having mean 0 and covariance E{Y (s)Y (¢)} =
exp(—p|s — t|) where 0 < p < . For srs, let g = ¢ = 1. For sts, let g, = ¢, = 1 and Ain, =
(@—1)/n,i/n]. Forsys,let g, =c, =1, Ain=(({ — 1)/n,i/n]and Tyt =t + (j — i)/n
when ¢t € A;,. Consider a midpoint sampling scheme (mps) (cf. Tubilla, 1974) in which, in
the notation of Section 2, ¢, = 1 and X;, = (2i — 1)/(2n) for all i. Then if » is a multiple of
n, the sample size,

2 2
eZn =% (1 +%) - Clp,n), el =% {1 +% = C(p, 1)} ,
2

egy,n = B(P, n) + % - C(P, l)y e?np,n = B(py n) + a2 Sin2 0— 2D(P, n) + C(P, 1))

where
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1 .
B(p, n) =?Z§‘=1 Y1 exp(—%ll —Jl) )

2

c<p,n>=—{1 1
o

—-za- e"’/")} , Doyn) =22 (1—-e") sech(i) .
n p p np 2n

It is easily seen that e, < e?, if n > 1. Since B(p, n) > C(p, 1) it follows that eZ, < e2,,
if a® > 2{1 — C(p, 1)}/(n — 1), which is satisfied if a®> > 2/(n — 1). Further, e%,, < e%,,. if
and only if
a*(.5 — sin®f) < 2 a- e“’)(sech(—’-)—) - %'3) ,
np 2n o
which is satisfied if a®(.5 — sin®§) < — 1/(6n?%). Thus if the process Y is such that » is a

multiple of n, and a and @ satisfy a®> > 2(n — 1), a®(.5 — sin’d) < —1/(6n?), then we have for
this fixed n that

2 2
€st,n < erz',n < e.sz:y,n < emp,n-
7. Proofs of results.

Proor oF ProposITION 2.1. The “only if” part is clear. For the “if” part, assume
Jn(s, t) = G, (s)Gr(t). Then for any Borel set B C A,

7, P(Xyn € B) < n’J,(B, B) = i’G2(B) = (Y1 P(X € B)Y%,

and thus Y P(Xi, € B) = 0, or else = 1. Let D be the set of atoms of G,. Partitioning A
— D into n + 1 sets A; such that G.(4;) = 1/(n + 1) for all j, we have

n
2;;1 P()(m EA_]) = nGn(Aj) Sn +1 <1

for all j. Thus G, (A;) = 0 for all j and G, is purely discrete.

Finally we show that particular points cannot appear in some realizations of the
design and not in others, or with differing multiplicities, giving a random design. Indeed
n’J,({a}, {a}) = [n G.{a}]? implies Z;;P(Xi» = a, Xjn = @) = (Z.PXin = a)}?, ie,
E (314 (Xin)}? = [E{Zi1() (Xin)} T It follows that Z;1(4) (Xin) = constant a.s., and thus,
with probability one, the number of sample points which coincide with a is a fixed integer
(in [1, n] when a € D, equal to 0 otherwise). Thus the design is nonrandom. 0

ProoF oF LEMMA 2.2. To prove Lemma 2.2 we need the following lemmas which use
a decomposition for bivariate distributions due to Chesson (1976). Chesson considers
bivariate distributions for random elements, but here we consider only vector-valued
random variables. Let X and Y be random variables taking values in R and defined on
some probability space (R, =, P). Denote the joint distribution function of X and Y by JJ,
their marginal distribution functions by F and G, and by #and % the o-fields generated by
X and Y, respectively. Define

#={(fX),g(Y)):fE€ % (R’, #°, dF), g € % (R’ #°, dG)).
Chesson notes that #’is a real Hilbert space under the inner product

< (h(X), &(Y)), (£(X), &(Y)) > =% E{f(X)£(X) + & (Y)&(Y)}.

Then using the bounded self-adjoint operator B in # defined by
B(f(X),g(Y)) = (E{g(Y)|X}, E{fX)|Y})

and its spectral decomposition, he proves the following result, which we restate as follows
for vector-valued random variables.
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THEOREM 7.1. (Chesson, 1976). There exists a unique family of subspaces M, of #,
0 <r =1, such that

G) Oyoplly =My,0=<r'<1, and My = {0}.

(i) If {(£&.(X), % (Y))}uere is an orthonormal basis for #,, then { £, }uer) and {u}uere)
are orthonormal families of functions on the spaces % (R?, %#°, dF) and L.(R? %°, dG)
respectively.

(iii) For (f(X), g(Y)) € #and {(£.(X), 1.(Y))}uerr as in (i),

E{f(X)g(Y)} =f rdQ(r),

0,1]

where the right-continuous function @ of bounded variation is given by

Q(r) = Yuer {f f(x) & (x) dF(x)}{f g(ymu(y) dG(y)} .

(v) If (fX), g(Y)) € MO M., 0 < a < B =1, and Ef*(X) = 1 = Eg*(Y), then a <
E{fX)g(Y)} =B

This theorem suggests the following result which is used in obtaining a representation
for [ [ R(s, t)c(s)c(t)J(ds, dt) in the proof of Lemma 2.2.

LeEMMA 7.2. For any function h € % (dF X dG) such that

(7.1) h(x,y) = X5-1 aifi(x) & (y) in Z(dF X dG)
where
(7.2) 2= @] < o,

{f:} is an orthonormal set in % (dF), {g:} is an orthonormal set in % (dG), and
{(&, M) }uer), F, and G as in Theorem 1.1,

(7.3) Er(X,Y) =J rQ(dr; h)

©0,1]

where for fixed h, @ is right continuous and of bounded variation and is given by

(7.4) Q(r; h) = Yuere f j h(x, y)&u (x)nu (y) dF (x) dG(y).

Proor. By Chesson’s Theorem, since f; € % (dF), g; € %4 (dG),

E{fi(X)g(Y)} =f rQ(dr; f.&)

0,1]

where

Q(r; fig) = Yuerw E{(fi£)X)}IE {(gm.)(Y)}.
Let
(7.5) Qru(r; h) = Y1j=1 a;;Q(r; fig)).

An application of Fubini’s Theorem easily justified by (7.2) gives

E{(h(X,Y)} =3Y5-1 a,E{f(X)g(Y)} =limn_,mj rQ.(dr; h).

0,1]
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We shall show that (i) for each r, @.(r; h) = Q(r; h) as n — o where @ (r; h) is given by
(7.4); (ii) the total variation V(Q,) = M < o for all n; and (iii) @ (r; &) is right continuous.
Observe that (i) and (ii) imply that @(-; &) is of bounded variation and (7.3) holds.

(i) Let Zhave the same distribution, G, as Y but be independent of X. By orthonormality
and the Schwarz Inequality

(7.6) Yueror | E{(f£)X)(gm)(2)} | = [E{f}(X)} - E{g}(Y)}]"* =1
and
E{|(f£&)X)(gm)(2Z)|} = 1.
Thus as desired \
limy e @n(r; h) = Xij=1 Yuern a;E{(fi£u)(X)(gmu.)(Z)}
= Yuerey E{h(X, Z) &, (X)mu(2)}.
(ii) Denoting by V the total variation, we have from (7.5)
V(@n) = Xij=1|ai| V(Q(:; fig).

From Chesson (1976), @ (r; fg) may be written as the difference of two increasing functions
of r, as follows (where P (0, r] is the orthogonal projection from s onto .#;):

Q(r; fg) = (P(0, r1(f(X), g(Y)), (f(X), g(Y)))
— (PO, r](f(X), — g(Y)), (f(X), — g(Y)))
giving for the total variation
V(Q(-; fg)) = (P(0, 1](f(X), g(Y)), (f(X), &(Y)))
+ (PO, 1](f(X), — g(Y)), (f(X), — g(Y)), (f(X), — g(Y))) =< Ef*(X) + Eg’ (Y).
Thus
V(@) =23 j-1 | aij| = 2 XTj=1 ] ayj| < co.
(iii) From (7.5) and (7.6)
|Qn(r; ) — Qu(r; )| = Xljmns1 | aijl.

Thus @, is uniformly Cauchy, and since it converges pointwise to @, it converges uniformly
to @. We have also by (7.5) that @, (r; k) is right continuous since, by Chesson’s Theorem,
Q(r; fg) is right continuous. The uniform convergence of @, to @ then implies that @ is
right continuous. 0

Observe that (1, 1) is an eigenvector of B with corresponding eigenvalue 1 and hence
(1, 1) € ;. Thus the orthonormal basis {(£., 7.)}uerq) for 41 may be chosen as {(1, 1)}
U {( &, M) }uesq for some set S(1). Also by part (i) of Chesson’s Theorem, N,>o .#, = {0}
and thus @ (0+) = 0. In the proof of Lemma 2.2 we let S(r) = T'(r),0<r<1.

LEMMA 7.3. Assume that the bivariate distribution of X and Y is symmetric and such
that E{f(X)f(Y)} = 0 for all f, with Ef*(X) < ». Then every element (f(X), g(Y)) of
My, 0<r=1,issuch that f= g as. [dF].

ProoF. Define the operator C: #— s#by
C(f(X), g(Y)) = (g(X), f(Y)).

Under the assumption of symmetry, C is well-defined on s#°and is an isomorphism. It may
easily be seen that C commutes with B and thus with P(0, r], 0 < r =< 1. Assume (f(X),



RANDOM DESIGNS 537

g(Y)) € .. Then
(g(X), f(Y)) = CP(0, r}(f(X), g(Y)) = P(0, r](g(X), f(Y))

implies (g (X), f(Y)) € A,. Since 4, is a subspace ((f — g)(X), (g — H(Y)) € .. Part (iv)
of Chesson’s Theorem then implies E {(f — g)(X)(g — [)(Y)} = 0, with equality iff f= g
a.s. [dF]. By hypothesis E {(f — g)(X)(f — g)(Y)} = 0, and thus f = g a.s. [dF]. 0

LEMMA 7.4. Ifthe bivariate distribution of X and Y satisfies the hypothesis of Lemma
7.3 and if h is such that

h(x,y) = Y1 aifi(x)fi(y) in % (dF X dF)

where a; =0,i=1,2, --., Y% a; < », and { f;} is an orthonormal set in % (dF), then
Q(r; h) of Lemma 7.2 is nondecreasing in r.

Proor. If {(£.(X), £&.(Y))}uer is an orthonormal basis for .#, (cf. Lemma 7.3), we
have that @ of Lemma 7.2 is given by

2
Q(r; h) =¥ a; ZueT(r){f fi(x) u(x) dF(x)}} .

Define 4 = {f:(fX), f(Y)) € 4}, 0 = r < 1. It may be easily seen that if
{&.(X), £ (Y)}uerr is a complete orthonormal set (CONS) in 4, then {&.}uer is a
CONS in ;. Denoting by f;- the projection of f; onto .47, we have

Qr; h) =3 ail fir|I?

where || f|| is the norm of fin % (dF). From part (i) of Chesson’s Theorem, N>, A7 = A
which implies || fi-| > || fir |, 0 = r’ < r =< 1, and, since the a; are nonnegative, that @ (r; &)
is nondecreasing in r. 0

Now we are in a position to prove Lemma 2.2.

ProoF (oF LEMMA 2.2). Denote the LHS of (2.8) by e® That e” has the desired form
is shown as follows, using the above results.

Step 1. We first show that R (s, ¢)c(s)c(¢) = K (s, t), say, is of the form (7.1) with (7.2)
holding.

Since R continuous implies % (R), the reproducing kernel Hilbert space of R, is
separable, it can be easily shown that # (K) is separable. Since K is Borel measurable and
A (K) is separable, the second order process with mean 0 and covariance K has a
measurable modification (Cambanis, 1975). Also, (2.6) implies that K is the kernel of an
integral operator K in %[dG]. It then follows from Theorems 1 and 3 and the proof of
Theorem 1 in Cambanis (1973), which may easily be extended to real-valued measurable
stochastic processes defined on a Borel set in R?, that for all s, ¢ € A,

(7.7) K(s, t) = Yi-1 Mear(s)ar(t) + r(s, t),

where {A:} and {a:} are the (positive) eigenvalues and the corresponding eigenfunctions
of K; that Y %1 A» < o; and that the covariance function r(s, t) satisfies r(¢, t) = 0 a.e.
[dG]. Thus r(s, t) = 0 a.e. [dG X dG], and (7.7) holds with the series converging in %[dG
X dQG], i.e., K is of the form (7.1) with (7.2) holding.

Step 2. Using Lemmas 7.2 and 7.3 we can then write

f f R (s, t)e(s)e(t)J (ds, dt) =J rd@(r) +f f R (s, t)c(s)c(t) dG(s) dG(¢),
A4J4 0,1] aJa
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where
Q(r)=2ues(r)f j R(s, t)(céu)(s)(c&)(t) dG(s) dG(2);
aJa

{é.}uesr forms an orthonormal set in %[dG] for each r; and the sets .#, with basis
{(&; &)uesm, 0 < r =<1, and My = {0} satisfy Ny, oty = My, 0 < r’ < 1. Also Q is of
bounded variation and nondecreasing, and @ (0+) = 0. Thus (2.8) holds.

Assume R is strictly positive definite and c is nonzero a.e. [dG]. Then [ rd@(r) = 0 iff
Q =0;iff (c£,)(s) dG(s) =0onAforallu € S(r),0<r=1;iff §, = 0a.e. [dG], for all u
€ 8S(r),0<r=1;and hence iff J (s, t) = G(s)G(t) on A X A. O
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