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MONOTONE REGRESSION ESTIMATES FOR GROUPED
OBSERVATIONS!
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University of Missouri - Rolla

The maximum likelihood estimator of a nondecreasing regression function
with normally distributed errors has been considered in the literature. Its
asymptotic distribution at a point is related to a solution of the heat equation,
and its rate of convergence to the underlying regression function is of order
n~'/3. This estimator can be modified by grouping adjacent observations and
then “isotonizing” the corresponding means. It is shown that the resulting
estimator has an asymptotic normal distribution for certain group sizes and
its rate of convergence is of order n~*°. The results of a simulation study for
small sample sizes are presented and grouping procedures are discussed.

1. Introduction. Suppose that for each ¢ in the bounded interval (a, b) there is a
probability distribution D (¢) with mean m (¢) and that we wish to estimate the regression
function m (¢) on (a, b). In many situations it would be reasonable to assume that m (¢) is
nondecreasing, so estimates which are also nondecreasing would be considered. In this
note we restrict attention to regression functions which are nondecreasing on (a, ). (It
will be clear what changes should be made in the following if m (¢) is not nonincreasing.)
Brunk (1955) studied the least squares estimates subject to this monotonicity restriction.
If D(t) is #(m(t), %), then these estimates are also the maximum likelihood estimates. We
consider modifications obtained by grouping adjacent observations, using the algorithm
proposed by Brunk to obtain a nondecreasing estimate from the group means and then
interpolating. The schemes considered for grouping and interpolating may be of interest in
nonparametric estimation of regression functions.

Suppose that X;, X;, - - -, X, are the means of independent random samples taken at
ti,t, o, trwithk>1landa <t <t < .-+ <t < b. Suppose that the sample at ¢; is of
size n,, and set n = Y%, n;. There are several methods for computing the estimate proposed
by Brunk. We now describe the minimum lower sets algorithm. (Barlow et al., 1972, give
a detailed discussion of these estimators which includes several of the computation
algorithms.) Choose i(1) to be the largest positive integer { which minimizes the pooled
sample mean Y '.; n; X;/¥ % n;, and then choose i(2) to be the largest integer i > i(1)
which minimizes

Thei+1 7, X, /T =i 1.

Continuing this process, we obtain 0 = i(0) < i(1) < i(2) < ... < i(h) = k and the
estimates are

”_l(ti) = z;:gt?(r—lHl n, Xj/z;(-r}(r—lHl n;

fori=i(r—1+1,...,i(r)andr=1,2, ..., h. The m(t;), which are nondecreasing in
i, are referred to as the isotonized estimates and any nondecreasing function which is
defined on (a, b) and has value m (¢;) at ¢; for i = 1, 2, -. ., k could be thought of as an
estimate of m(-). Let m be such a function.
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Leta=ay< a; < --- <a,=>b be a partition of (a, b), let b; denote the midpoint of
(@1, @;) for i = 1, 2, ---, p, let Y¥; be the pooled sample mean for those samples
corresponding to ¢, with a,_; < t; < a;, that is

Vi = Yo oa 75 X/ Tarpaahi

where Y4 denotes the summation over those js for which ¢; € A, and let m; =Y,_.a3 1,
We assume that the partition has been chosen so that m; > 0 and we think of ¥; as
associated with the midpoint b; for i = 1, 2, ..., p. Applying the minimum lower sets
algorithm to Yy, Y, - - -, Y, with sample sizes m;, ms, - - - , m,, one obtains nondecreasing
estimates m*(b), m*(b2), - -+, m*(b,). In Section 2 we discuss an interpolation scheme
which extends the estimate m* to (a, b) and controls the large sample bias. For ¢ € (b -1,
b;) we set m* () = am*(b;-1) + (1 — a)m™*(b;) with « given by (5).

The m.le., 73, pools observations only if there is a reversal, that is if X; > X+.1. However,
the estimate considered here, m *, pools all observations which are taken in a given interval
of the partition and then pools further if there are reversals among the resulting pooled
sample means. Since m* typically involves more pooling than rm, it has a smaller variance
but a larger bias and these two effects must be balanced.

Assuming that m’(t) > 0, Brunk (1970) showed that the asymptotic distribution of
i (t) has density which is related to a solution of the heat equation and that the rate of
convergence of 77 (t,) to m () is of order n™/%, Parsons (1979), Leurgans (1979) and Wright
(1981) have studied the asymptotic distribution of m (£,) when m’ (%) = 0. In the next
section, we show that for properly chosen partitions m * (£,) had an approximate normal
distribution for large n and the rate of convergence is of order n~%°. So not only does
m*(t) converge to m(t) more rapidly than does ri(f), it also has a large sample
distribution that is easier to work with. Neither the density nor the percentage points have
been obtained for the large sample distribution of m (f).

Section 3 contains the results of a Monte Carlo study of the mean square errors of m
(-) and m* (-). Based on the asymptotic results of Section 2 and the Monte Carlo study,
a recommendation is made concerning the number of intervals in a regular partition and
the behavior of the resulting estimator is discussed.

2. Asymptotic results. If either estimator is to be consistent for a broad class of
underlying regression functions, then the observation points must become dense in (a, b).
So we allow k; t;and X for j=1,2, ---, k; p;and a;, b;and Y, fori =1,2, .--, p to
depend on n, but for notational convenience we will not show this dependence.

We consider the behavior of the regression estimates at a fixed point ¢, € (a, b) for
large n. We assume that

(1) m(t) =mt) + (¢ — to)m/ () + % (t — )’m” (&) {1 + 0(1)}

as t— toand m’(t) > 0. Let F, be the empirical distribution function corresponding to the
observation points, that is

F.(t) = Y(j=hy=eyn;/n,

and let F be a distribution function which has a density f in a neighborhood of ¢.
Throughout this discussion, we consider a fixed, positive § and assume that

sup; | F,(t) = F(t)| =o(n""™®?), f(&)>0 and
(2
f@®) =fl) + ¢ —t)f ()1 +0(1)) ast— .

If the observation points are the realization of an i.i.d. sequence of random variables whose
common distribution F has density f which satisfies the conditions of (2), then (2) holds
with probability one because of the law of the iterated logarithm for empirical distribution
functions. Denoting the observations at ¢, by X ;.for /=1, 2, - .., n;, we assume that the



280 F. T. WRIGHT

€errors,
(3) {Xle_m(tl)f= 1) 2, "',nj)j=1)2) "')k}’

are i.i.d. with common variance ¢ € (0, ).

We now place restrictions on the sequence of partitions. For sufficiently large n, ¢ is in
(bj-1, b,] for some j, but of course, j depends on n. We assume that there is a positive
constant C for which

(4) max/.j_l,j|n3(a/— a/_l) - Cl—') 0 as n— o,

Because some of the results that follow may be of interest in nonparametric regression
estimation, we first consider the effects of grouping and interpolation on the estimation of
the regression function. Then we discuss the isotonization of the estimate. Define mq(to)
=a¥; 1+ (1 —a)Y;with

5) a=(a;—aj1)b;—t)/{(aj— a;1)(b;j— t) + (a1 — aj)(to— b;—1)m ;/mj_1}.

As we shall see, this choice of a causes the ratio of the large sample bias to the large
sample standard deviation to converge to zero. It should be noted thatif a;, — a1 = a1
— aj—2 and m; = mj_;, then this a is the one that would be used in simple linear
interpolation. The following result is proved in the Appendix.

LEMMA 1. If the observation points, the observations, the partitions, and the regres-
sion function satisfy assumptions (1, 2, 3 and 4) with 0 < § < %, then

aE(Y; 1)+ (1 — a)E(Y;) —m(t) = 0m®) + o(n1972),

In the proof of Lemma 2, it is shown that under the assumptions of Lemma 1, m; and
mj_; are both of the form Cf(¢)n'°(1 + o(1)}. Hence, {* m7X + (1 — a)’m;}72 <
0(n*~®7%) and so if assumptions (1, 2, 3 and 4) are satisfied and % < 8§ < %,

[o2{®mjh + (1 — a)’m 7} ]2 (mo (to) — m(to)}

has a standard normal limiting distribution. Examining the proofs of Lemmas 1 and 2, we
see that this result is still valid if m’(¢) is not positive.

If the underlying regression function, m, is nondecreasing, then one might find the
estimate m, unacceptable since it may be decreasing over some subintervals of (a, b). So
we turn our attention to the estimator m* (t) = am™*(b,-1) + (1 — a)m™* (b,) with a given
by (5). However, the following lemma, which is proved in the Appendix, shows that,
asymptotically, m* (b,—;) and m* (b ;) behave essentially like ¥;_; and Y ;, respectively.

LEMMA 2. If the assumptions (1, 2, 3 and 4) are satisfied with 0 < § < %, then

P{m*(bj.1)# Y 1orm*(b;)#Y;} >0 as n— o,

It is interesting to note that Lemma 2 shows that for large n, m* (¢,) essentially pools all
the observations from an interval of length Cn™® with 8 < %4. (Later, we will see that § = %
is asymptotically optimal). However, Brunk (1970) has shown that for large n, m (¢) pools
observations from a smaller interval of length Crn™/2 and then only if it is necessary to
obtain a nondecreasing estimate.

In establishing the asymptotic distribution of m*(¢,) we may redefine m* (b,-;) and
m*(b;) on a set A, provided P(A,) — 0. So under assumptions (1, 2, 3 and 4) with % < §
< %, m*(t) and my(f) have the same large sample distributions. This gives the
following result.

THEOREM 3. If assumptions (1, 2, 3 and 4) are satisfied with 5 < 6 < %, then
[ {a’mih + (1 — a)’m Y] 2 (m* () — m(t)}

has a standard normal limiting distribution.
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This result is related to the asymptotic distribution theory developed for the basic
estimator of the failure rate function in Barlow and Van Zwet (1971). However, the
interpolation scheme used here allows us to consider arbitrary £, and not just the midpoints,
b;. As in their work, we could obtain a normal limit for § < %, but the centering constants
become much more complicated, involving derivatives of m at ¢,. Such results would seem
to be of limited practical significance in this setting. Furthermore, as in the work of Barlow
and Van Zwet, the choice of 8 that gives the smallest asymptotic mean square error is §
= Y; this is the choice of § for which the asymptotic variance and the asymptotic bias
squared are of the same order. It should be noted that while 7 (t) converges to m () at
the rate of n™'3, the rate of m* is n™%° if § = %. The determination of the constant C is
discussed in the next section.

Under the assumption that m” exists, Stone (1980) has shown that the rate n7%° is the
best possible for a nonparametric regression estimator. On the other hand, the large sample
results for 77 (t,) established by Brunk (1970) are based on the assumption that m’ exists
and in this case, Stone’s Theorem shows that n™'/? is the best possible rate for a
nonparametric regression estimator.

It is clear that the asymptotic distribution of the estimator m* at a finite collection of
distinct points could be obtained using the techniques employed here. In fact, these
estimates would be asymptotically independent.

3. Small sample properties. Since the sampling distributions of 7z and m * are quite
complex, simulation techniques were employed to compare the two estimators for small
sample sizes. (The results of earlier simulation studies of 7 and related estimators are
contained in Cryer et al. (1972) and Wright (1978).) Regression functions m (t) = 4¢, 4t R
4¢2,2(2t — 1)°, 2(2¢ — 1)V/° and 2 sin (¢t — %) were considered on the interval [0, 1]. With
k = 24 and 50, equally spaced observation poitts, t; = (i — 1)/(k — 1) fori=1,2, --- , &,
were chosen. With the regression function m fixed, independent, normally distributed
random variables with mean m (¢;) and standard deviation % were simulated for i = 1, 2,
..., k. Based on these % observations, the maximum likelihood estimator 7 was computed
using the minimum lower sets algorithm. Next the observations’ points were grouped into
p groups with the number in each group as nearly constant as possible. Then for various
choices of p, the modified estimate m* was computed. Based on 1000 iterations, the mean
squared error (m.s.e.) of both estimators at each observation point was approximated and
then these m.s.e.’s at the points ¢; were summed to approximate the total m.s.e. for both of
the estimators. This procedure was carried out for the six regression functions and for &
= 24 and 50.

The results of this Monte Carlo study are summarized in Tables 1 and 2. For each
regression function and both choices of % the total m.s.e. of 77 (-) was estimated six times.
In these twelve cases the largest discrepancy among the six estimates was .06 and so this
gives an indication of the size of the possible sampling errors in these estimated m.s.e.’s. It
is interesting to note that for the first four functions given in both Tables 1 and 2, the total

TABLE 1
Total mean squared errors of m and m* for k = 24 equispaced t values on [0, 1]

Function Estimator
m(t) m m*
4¢ 2.18 84 1.06 1.20 1.34 1.60 1.87
4Vt 2.09 1.63 1.58 1.53 1.64 1.75 2.02
4¢? 2.17 1.30 1.22 1.21 1.31 1.56 1.86
2 sin 7(t — %) 94 48 57 .65 .63 .75 .88
2(2t — 1)° 1.89 4.99 3.77 2.84 2.54 2.13 2.30

2(2t — 1) 1.89 10.22 3.06 4.87 2.30 2.01 1.91
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TABLE 2
Total mean squared errors of m and m* for k = 50 equispaced t values on [0, 1]

Function Estimator
m(t) m m*
p=4 p=5 p=6 p=8 p=10 p=16
4t 2.86 .95 1.15 1.28 1.59 1.82 2.06
4Vt 2.70 1.72 1.70 1.66 1.74 1.93 1.99
4¢* 2.82 1.20 1.24 1.26 1.47 1.76 1.98
2 sin 7 (¢ — %) 1.14 .54 .61 .61 .68 17 .83
2(2t — 1)° 241 5.82 4.09 3.06 2.06 2.07 1.67
2(2t — 1)'/5 2.49 5.42 8.78 3.69 3.02 2.64 2.32
TABLE 3

Pointwise mean squared errors of m and m* for k = 24 equispaced t values on [0, 1]

Function
m(t) = 4t m(t) = 4t> m(t) = 22t — 1)° m(t) = 22t — 1)*/°
Estimator
t m m*p=3 m m*,p=5. m m*,p=38 m m*, p =12
.000 173 .083 149 122 209 .230 161 .165
.043 .103 .067 074 .078 170 .160 .077 .086
.087 .083 .053 .057 .051 125 .187 .054 .048
.130 .080 041 .052 .037 .098 .147 047 .045
174 .081 .032 .053 .031 .072 .081 .046 .035
217 .084 .025 .053 .031 .056 .062 .047 .040
.261 079 .020 .059 037 044 046 .048 .036
.304 079 .017 .060 .046 .038 .038 .051 .040
.348 .079 .017 .061 .036 031 .031 .061 044
391 .082 .018 .067 .034 .030 .026 074 .053
435 077 022 074 .039 .027 .027 .099 071
478 .083 .029 .082 .053 027 .025 173 289
522 .084 .029 .086 .052 026 .025 .183 284
.565 .086 .023 .086 .037 .028 027 .106 074
.609 .085 .019 .094 .030 .030 .026 .074 .057
.652 .085 .017 .096 032 .034 031 .064 .048
.696 .076 017 101 .045 .041 .039 .051 044
739 .078 .020 .103 034 .049 .047 .047 .037
.783 .078 .025 .109 .030 .059 .062 .045 041
.826 087 . .032 114 .035 073 .083 .047 .036
.870 .084 041 111 047 .094 154 .049 045
913 .080 .052 121 .064 134 197 .054 .048
957 101 .066 131 .088 167 164 .076 .084
1.000 174 .081 .200 119 237 216 164 157

m.s.e. for m* was less than that of m for every choice of p considered. But, of course, the
optimal choice of p depends on the function considered. For the remaining two functions,
2(2t — 1)° and 2(2¢ — 1)'/5, the choice of p is especially critical since for small p, m * behaves
much worse than m in these cases. For the function 2(2¢ — 1)° and small p, it is at the
points near 0 and 1 that m* has larger m.s.e. than m and this is due to the bias of the
estimator. For the function 2(2¢t — 1)/° and such p, it is at the points near % that m*
behaves so poorly, and again this is due to bias. Clearly, a procedure for choosing p is

needed.
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To indicate how these estimators behave locally, the pointwise m.s.e.’s of m and m*
(with the optimal choices of p from Table 1) are given in Table 3 for £ = 24 and several
choices of m. As one can see, the estimator m typically does not perform as well at the
extreme observation points. This was observed by Cryer et al. (1972) and was found to be
due primarily to bias. This was generally true here for m* also, but in some cases the
effects were not as drastic.

We suppose'that the intervals in the partition are all of the same length Cn™%{(1 + o
(1)}. We have already seen that the large sample analysis suggests that § should be chosen
to be %, provided (1, 2, 3 and 4) hold. So with this choice of §, we consider choosing C so
that m* performs reasonably well over the entire interval (a, ). However, the optimal
choice (in terms of m.s.e.) for C does depend on the point being considered. As a first step
we consider the choice of C which minimizes the large sample m.s.e. of m * (¢;) assuming ¢,
= b;. Now with 8 = %, a = 0 and n large, the variance of m* (t,) is approximately n=*°¢%/
(Cf(to)) and the bias squared is approximately

n~V(C/12) (m (to)f' (o) /f (o) + m” (t)/2) T

see the derivation of expression (13) in the Appendix. So the resulting expression for the
asymptotic m.s.e. is minimized by

3602 &
Cc= )
[ {m’ () (to)/f(to) + m” (k) /2 (to) }

We assume that the distribution governing the observation points, ¢;, is known so that f(,)
and f” (¢) are known. Using a preliminary estimate such as 7, one could estimate ¢, m’ and
m” and then use C’ = (66/A)¥° where § is the estimate of ¢ and A is the average of the
estimated value of

|m’ @)f (&)/f(t) + m” (&) /2| VF(?).

However, as we shall see, C’ and § = % generally yield a smaller p than is optimal for the
sample sizes and functions considered here. So we recommend C* = (66/M)%® where M is
the maximum estimated value rather than the average.

If the distribution F is uniform on [0, 1], as in the simulation study discussed here, then
the formula for C becomes C = (120/ |m” (t;) |)¥® and one might use C* = (126/M)*”,
where M is the largest estimated value of |m” (¢) |. To give some idea of how C and hence
C* varies with the underlying regression function, the value of p was computed for each of
the six functions considered here with &£ = 24 and 50. The true values of 6 and max |m” (¢) |
were used except for the functions m(¢) =4+v¢ and m(¢) = 2(2t — 1)/. For these two
functions, which do not have a finite second derivative,

maxj|m(tj) - 2m(t,~_1) + m(tj_2)|/(tj— tj_1)2

was used rather than max |m” (¢) |.

For the function m (¢) = 4¢, m” (t) = 0 indicating a choice for p as small as possible, and
p = 2 is optimal in this case. For this function and the smallest p’s given in Tables 1 and
2 the pooling reduces the m.s.e. of 1 by more than 60%. For the function m (¢) = 4, p =
2 for both & = 24 and 50. However, it is unlikely that one would want to use so few groups
but again for the smallest p’s considered in Tables 1 and 2, the reductions in m.s.e. due to
pooling are approximately 40% and 60%. For the function m (¢) = 2 sinn(¢t — %), p = 3(4) for
k = 24 (50) and these are the optimal choices of p given in Tables 1 and 2. In these two
cases, the m.s.e. of m* is about % of that of 7. For the function m (¢) = N , p = 8 (16) for
k = 24 (50) and the reductions in m.s.e. are 16% and 26%. While those were by no means
the optimal choices of p, the resulting estimator still behaved significantly better than m.
For m(t) = 2(2t — 1)/°, p = 15 (29) for & = 24 (50). While these are larger values of p than
those studied, we do note that for the largest values of p in Tables 1 and 2, m* behaved as
well or better than 7. For the function m (¢) = 2(2t — 1)°, p = 7 (8) for k£ = 24 (50). This
case with &2 = 24 is the only one of those considered in which i has a significantly smaller
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m.s.e. than m* with the choice of C under discussion. The m.s.e. of m* would seem to be
approximately 20% larger. However, with 2 = 50, the m.s.e. of m* is about 15% smaller
than that of m. For this function and % = 24 (50), the value of p corresponding to the C
based on the average of |[m” (¢) |, rather than max |m” (¢), is 4 (5). For this p, m* has a
considerably larger m.s.e. and in fact, the m.s.e. of m* is 100% (70%) larger than that of m.
For this reason we have chosen the C based on the maximum.

Studying the pointwise m.s.e. in the few cases above for which m * did not dramatically
outperform 1, it can be seen that the reason is bias. In regions in which m is “extremely”
convex or concave, grouping and interpolating linearly introduces considerable bias. If the
researcher anticipated such regions the partition could be refined there.

One of the referees suggested choosing the partition adaptively. This approach, which
certainly seems to merit investigation, might provide a nice solution to the problem of
choosing C and even provide nonregular partitions to reduce bias in those regions where
m* performs poorly.

APPENDIX
We give the proof of Lemma 2 before that of Lemma 1.
PrOOF OF LEMMA 2. The proof of that P{m*(b,_1) # Y ,—} — 0 and that P{m*(b,)

# Y,;} — 0 are similar and we only give the latter. We first show P{m*(b;) # Y} is
bounded above by the sum of

(6) P{max,.;A(4,j—1) > Y,}
and
7) P{mll’l/>1A(]+ 1,/) < Yj},

where A(4, ¢') =Y, m, YV/Z’J;( m,. To see this, one uses the representation (cf. Barlow
et al., 1972, page 19)

m*(b;) = max;=,<;min j=r=pA (¢, ¢)

and takes complements. If max~; A(4,j— 1) < Y, and min»; A(j + 1, ¢) = Y, then for
any /< j, A(¢, ¢') = A(¢, ) for each ¢’ = j. Furthermore, for any /=< j, A(¢4,j) < Y, which
implies that m* (b;) = Y. The proofs that (6) and (7) converge to zero are alike and so we
give the one for (6). Expression (6) is bounded above by the sum of

(8) P{max,;A (¢, ] — 1) > m(aj-1)}
and
9 P{m(aj-1) > Yj}.

Since m is nondecreasing, (8) is bounded above by
(10) P{max,;A.(4,j — 1) > m(a1) — E(¥,-1)}
where A.(¢, ') =Y, m{Y, — E(Y,)}/Y%, m, and (9) is bounded above by
(11) P{Y,- E(Y;) <m(a;1) — E(Y))}.
Before obtaining estimates for E (Y ;—;) and E (Y ;) we need to estimate m;_, and m ;. Now
m;=n{F,(a;) — F.(a;-)} = n{F(a;) — F(aj-1)} + o(n**"?)
= Cfltoyn {1+ 0(1) + O(n~ /%)) = C f(to)n'°{1 + 0(1)}
since § < %. Similarly, it can be shown that m ;_; = C f(to)n' {1 + 0 (1)}.
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Now we obtain estimates for E(Y ;) — m(a,-;) and m(a -1) — E(Y ;_1). By assumption,

m(t) = m(t) + (t — )m’ (L) + % (¢ — t)’m” (&) {1 + 0 (1)}

and
() =f(to) + (¢ — &)f (L){1 + o(1)}.
So
E(Y)) —m(t)
= (n/m;) {m(t) —m(t)} dF(t) +J {m(t) —mt)}d{F.(t) — F(t)}]
(q)_ya)] (aj_ya)]

and, integrating by parts, the latter integral is bounded above by
(12) O{(a; — aj_1) sup,| F.(t) — F(t)|} =‘o (n=0+972),
The first integral can be written as the sum of

flt)m’ () {(a; — t0)* — (aj-1 — ©)*}/2 = f(to)m’ () (a; — a;-1) (b, — &)
and

{f (to)m’ (o) + flto)m” (8)/2}37{(a; — t6)° + (to — @j-1)’} {1 + 0(1)).

Hence, E(Y;) — m(t;) can be written
(13) (n/m)f(t)m’ (bo)(a; — @j-1)(b; — to) + O(n™®) + o(n”"70/),
and similarly

(14)  E(Y,-1) — m(t) = (n/m,_1)f(to)m’ (to)(aj—1 — aj—2) (b1 — to)
+ O ®) + o(n~17972),

Since
m(t) — m(a;-1) = (b — a;-)m’ (b) + O((bo — a;-1)?),
we have that
E(Y;) —m(aj-1) =m’ (t)(b; — aj-1) + o(n™®) = 27:Cm/ (t)n°{1 + 0 (1))
and
m(a—1) — E(Y 1) =m' (k) (aj-1 — bj—1) + o(n™®) = 271Cm’ (to)n°{1 + 0(1)}.

Applying Chebychev’s inequality, expression (11) is bounded by O (n**""), which con-
verges to zero provided 8 < 1. To treat expression (10), fix n, let Y ,,; =12 .--,m; and
J=1,2, --., p denote the observations which are averaged to obtain Y, let

Zi = Yj—l,i - E(Y '—l,i) fOI' l = 1) 27 e, Mg,
ij_l+i = Yj—Z,i - E(Yj—Z,i) for i = 1, 2) cee Mgy cee,

Zn,

T

1My gt mo+i = Yl,i - E(Yl,i) fOI' l = 1’ 2, e, My

and set S;= Y7 Z,. So (10) is bounded above by

PlMaxy,_ <sm, itmst...om € 'Se>27Cm’ (to)n™°{1 + 0(1)}]

and applying the Hajek-Rényi inequality (cf. Bauer, 1972), we see that this probability is
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bounded by
On®(m 2y + N o1 £79) = O (0”07

which converges to zero if § < %.

Proor oF LEMMA 1. Using the expressions given in (13) and (14), we see that

aE(Y 1) + (1 - a)E(Y)) —m(t) = On™®) + o(n™"707),
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