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DE FINETTI'S THEOREM FOR SYMMETRIC LOCATION FAMILIES

By DAviD FREEDMAN! AND PERSI DIACONIS?

University of California, Berkeley and Stanford University

Necessary and sufficient conditions are obtained for an exchangeable
sequence of random variables to be a mixture of symmetric location families.

1. Introduction. This paper characterizes mixtures of symmetric location families.
More specifically, let X = (X;, Xz, - - -) be an exchangeable sequence of real-valued random
variables. By de Finetti’s theorem, X is a mixture of independent and identically distributed
random variables. When does the representation take the special form of a mixture of
distributions symmetric about a location parameter 6, where 8 varies too?

More technically, let & be the set of distribution functions symmetric about 0. The
object is to characterize processes X such that

1.1 PXi=x, -, Xo=x)= f f 1% F(x, — @)u(dF, d6).
v Jr

Here, p is a probability on & X R, and the equation is to hold for all n and x1, - -, xx.
To state the theorem, let

Xz + -0+ Xins1).

Then X will be called location symmetric if for every m, the distribution of X; — T}, is
symmetric. Informally, T, is an estimate of #; the difference between X; and the estimate
is to be symmetric. Further, X will be called conditionally location symmetric if for every
n, given X, ..., X,, the process X,+1, X,+2, ---, is location symmetric. The following
theorem will be proven in Section 2.

THEOREM 1. Let X = (X;, X,, ---) be a sequence of random variables. Then (1.1)
holds if and only if X is exchangeable and conditionally location symmetric.

Mizxed distributions like (1.1) arise in Bayesian estimation of the location @ of a
symmetric distribution of unspecified form. This is one Bayesian approach to robustness.
For example, Box and Tiao (1962) consider F in a finite dimensional family of symmetric
“power” distributions with parameters to control the scale and kurtosis. Fraser (1972)
chooses the family of #-distributions with variable scale and degrees of freedom. Hogg
(1972) considers. the search for adaptive robust estimates from a Bayesian viewpoint.
Dempster (1975) gives an extensive review of Bayesian approaches to robustness. A recent
discussion is in Ramsay and Novick (1981). We have computed the posterior for a Dirichlet
prior on F in Diaconis and Freedman (1981).

Section 2 also gives some other characterizations involving symmetry about an invariant
consistent estimator of §; Theorem 1 is different, in that the average is inconsistent for
long-tailed error distributions.

Section 3 gives counterexamples. In particular, exchangeability and location symmetry
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do not imply (1.1): conditional location symmetry is needed. Section 4 considers indepen-
dence of @ and F.

2. Characterizing symmetric location families. The “only if” part of Theorem 1
is almost obvious. The proof of the “if” part is accomplished by Lemmas 1 and 2.

LEMMA 1. Let X = (X1, Xs, - --) be exchangeable and conditionally location symmet-
ric. Then X is a mixture of location symmetric sequences of independent, identically
distributed random variables.

Proor. The hypotheses imply that almost surely

PXy—Tn=x|Xjs1, -+, Xjrr) = PXy — T = —x| Xjs1, + -+, Xjva)

for m = jand k = 1. Let £ — o and then j — o to see that almost surely, given the tail
o-field, X is still location symmetric. On the other hand, a version of de Finetti’s theorem
asserts that almost surely, given the tail o-field, X, X5, - - -, are independent and identically
distributed. To push this argument through, a regular conditional distribution given the
tail o-field is needed, as in Diaconis and Freedman (1980, Appendix). [

LEMMA 2. Let Xi, X;, ---, be a location symmetric sequence of independent and
identically distributed random variables. Then for some real number 0, the distribution
of X; — 0 is symmetric about 0.

Proor. Let ¢ be the characteristic function of X;. Choose ¢ > 0 so small that ¢(¢) #
0 for | t| < e. For such ¢, there is a unique real valued continuous function A (¢) such that

A(0) =0and

(2.1) o (2) = e (t)|.

In particular, ¢ — log| ¢ (¢) | + A (¢) is a branch of log ¢ (¢). Of course, A (—¢) = —A(¢) and
log| ¢(—t) | =log| ¢ (¢) |. Location symmetry and independence imply that for any ¢ and m,

(2.2) ¢ (@)™ (=t/m) = $(—t)p™(t/m).
Hence, if | ¢| < ¢, for our branch of the log,
log ¢ (t) + m log ¢(—t/m) = log ¢ (—t) + m log ¢ (t/m).

Substitute the definition of log ¢ in terms of A, and rearrange:

A(t) = mA<i) .
m

Let s = t/m, and put m = 2 or 3: if | s| = % ¢ then
A(2s) =2A(s) and A(3s) = 3A(s).
By induction, if j and % are signed integers with 2/8* < 1 and 0 < u < % ¢ then
A (273%u) = 2/3%A (u).

Rational numbers of the form 2/3* are dense in [0, 1] and A is continuous. Therefore, there
is a real number @ such that

A(t) =0t for0<t=<

Wl m

Likewise,
At) =0t for —gs t=<0.
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Since A (—t) = — A(?), it follows that §’ = 6. That is, A is linear on [—¢/3, ¢/3]. By (2.1),
(2.3) o) =e™|$(t)| for|t| sg.

To complete the proof, let ¢ be any real number. Choose m so large that | ¢/m | < ¢/3. By
(2.2), and (2.3) with +¢/m in place of ¢
mf t
()
m

()

Set y(t) = ¢ (t)e™*, the characteristic function of X; — 8. The factor | ¢™(¢/m) | cancels in

(2.4), because ¢(t/m) # 0. So ¥ is real, and the distribution X; — 6 is symmetric about 0.
|

(2.4) o(t)e ™ =¢(—t)et?”

Other forms of the theorem will now be indicated. To begin with, T, can be defined as
(X1 + --- + X,)/m rather than (X5 + - - - X,,+1)/m; the argument is about the same. Also
the mean can be replaced by other statistics, like the median or a trimmed mean. More
generally, consider a sequence of measurable functions f, from R" to R. Say these are
location statistics provided

(2.5) frxitc ot ) =falxs, «-o, ) + €

(26) fn(—xly ey —xn) = I—fn(xly ey xn)

and consistent provided f, (X1, - -+, X,) converges a.e. to a constant, for any sequence X;,
X;, ---, of independent, identically distributed random variables. If the latter have a

distribution symmetric about 0, the limit must be 0 by (2.6); if the latter have a distribution
symmetric about 6, the limit must be 4 by (2.5).

Let f= (fi, fo, - - -) be a sequence of location statistics and X = (X;, Xz, - - -) a sequence
of random variables. Then X is f-symmetric provided the distribution of X; — £, (X3, - - -,
X:») is symmetric about 0, for all m. And X is conditionally f-symmetric provided that for
every n, given Xi, ---, X, the sequence X,+1, X,+2, - -+, is f~symmetric.

THEOREM 2. Let f= (fi, f2, --+) be a consistent sequence of location statistics, and
X = (X1, Xs, ---) a sequence of random variables. Then (1.1) holds if and only if X is
exchangeable and conditionally f-symmetric.

PrOOF. Again, the “only if” part is easy. For the “if” part, as before, given the tail
o-field the X-process is an f-symmetric sequence of independent, identically distributed
sequences of random variables. (This uses only the equivariance of f.) Since fis consistent,
X, must be symmetric about 6, the limit of £, (X1, .-, X,).0

3. Examples.

ExaMpPLE 1. There is an exchangeable process X which is location symmetric, but not
conditionally location symmetric. The representation (1.1) does not apply. Thus, condi-
tional location symmetry must be assumed in Theorem 1.

Construction. Let Z = (Z:1, Z,, ---) be a sequence of independent random variables,
with a common distribution unsymmetric about 0. Let X = Z or —Z with probability %.
Location symmetry is almost obvious. The uniqueness part of de Finetti’s theorem shows
that X cannot be a mixture of symmetric variables: (1.1) fails. [0

Our first try at formulating Theorem 1 involved the following notion: X is string
symmetric if the distribution of a;X; + .-+ + a»X., is symmetric about 0 for each m = 1
and each string a;, - - -, @, of real numbers with a; + - .- + a,, = 0. And X is conditionally
string symmetric if for each n, given Xj, ..., X, the sequence X,.+1, Xp+2, - -, is string
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symmetric. We found that (1.1) holds if and only if X is exchangeable and conditionally
string symmnietric.

On its face, location symmetry is a weaker condition than string symmetry: for each m,
only one linear combination is involved, viz.

1 1
a1=]_’ A =———, e, Qp = — .
m-—1

Of course, Lemma 2 shows that for sequences of independent and identically distributed
random variables, the two conditions are equivalent.

We wondered whether it was enough to assume string symmetry for some fixed m, e.g.,
m = 3. The answer is no, as Example 2 shows. The following Lemma is needed. It gives an
example of a characteristic function that is real in a neighborhood of zero, but not real
everywhere. For a related construction, see Shepp, Slepian and Weiner (1980).

LEmMMA 3. For any A > 1 there is a random varia})le with mean 0, moments of
arbitrarily high order, and a characteristic function which is real on [0, 1], vanishes on
[1,AJU[A + 1, »), and is purely imaginary on [A, A + 1].

Proor. The random variable will have a probability density of the form
f=clfi+8f:)

where the functions fi and f; are to be constructed, f; = 0 and f; is real; § > 0 will be chosen
so small that f; + 8fz = 0; then ¢ can be chosen so the tptal mass is one. Let * stand for
Fourier transform. Then the characteristic function ¢ = fis

6 =c(fi + of2).
Matters will be arranged so that fl is real and vanishes off [—1, 1]; while fg is purely
imaginary, and vanishes off [-A — 1, —AJU[A, A + 1].
To construct fi, let
sin x

h(x) =

Of course, the uniform density on [—1, 1] has Fourier transform A (¢). Now let
H(x) = h(x/2%)%.

Then H (¢) is the characteristic function of

1
V=§(U1+ coe 4+ Up),

the U’s being independent and uniform on [—1, 1]. In particular, the probability density g
of V is a quite smooth function supported on [—1, 1]. By taking an inverse Fourier
transform, one sees that H = 27g is a nonnegative real function vanishing off [—1, 1].
Finally, let

filx) =H(x+ 1) + H(x — 1).
For use later, verify the existence of a positive ¢ with
(3.1) |x|% fitx) =e for all x with | x| = 1.

The argument uses the periodicity of the sine function, and the irrationality of 7; details
are omitted. Clearly,

fl(t) = 2H(t) cos t

vanishes off [—1, 1] as well.
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To construct f2, let Y(t) be a C. purely imaginary function of the real argument ¢,
vanishing except when A < |t| < A + 1, and satyisfying y(—¢t) = — ¥(¢). Let /> be the
inverse Fourier transform of y. Then f; is real because { is odd, and integrating by parts j
times shows in the usual way that

sup:| x|’| o(x) | <0  foranyj=1

From this and (3.1), the existence of & follows. Plainly, there are 2% — 2 moments. [

ExaMPLE 2. For each m =2 and N = 1, there is a sequence X1, X, - - -, of independent
identically distributed random variables such that:

i) X; has mean 0 and finite Nth moment
ii) X is not symmetric
iii) if @1 + - -+ + @am = 0, then the distribution of a:X; + -+ anXn is symmetric about
0.

ProoF. Use Lemma 3, with A > 2m. Let X1, X, - - -, have the characteristic function
¢ constructed there. What must be shown is that 2 ¢; = 0 entails

(3.2) [TF1 ¢ @) = [17=1 ¢ (=2).

The equality is trivial unless | #;| < 1 or A < |¢;| <A + 1 for all j, so assume this to be the
case. If | /| < 1, then ¢ (¢;) = ¢(—t)); so it is enough to show that

[Les ¢ () = [Lies o (=)

where S is the set of j’s with A < | #;| <A + 1. Now ¢(—t) = —¢(¢) for j € S and it remains
only to show that the cardinality of S is even.

Let o be the number of j’s with A < ¢; < A + 1, and K the number with —4A —1<¢ <
—A; so the cardinality of S is J + K. But J = K. For example, if J > K then

Yjesti>JA—-KA+1)=A-K=A—m,
but j € S entails | £;| < 1 by assumption so that
| Tigs 4| <m.
Finally, A > 2m, so
Yiti>A—-2m>0.

This contradiction completes the proof. [

The characteristic function constructed in Lemma 3 is also of interest in providing a
counterexample to Theorem (5.31) of Kagan, Linnik and Rao (1973). Part (ii) of their
theorem involves independent, identically distributed random variables having zero mean
and finite variance, and states that X; is symmetric if and only if E (X; + X | X: —Xo) =
0. As argued by Kagan, Linnik and Rao, the conditional expectation is zero if and only if
the characteristic function ¢ of X; satisfies ¢ (¢£) {¢(—t)}'= ¢ (—t)¢’(t). It is easy to see that
the characteristic function constructed in lemma (3.2) satisfies this equation: if |¢]| < 1,
then ¢ (¢) = ¢(—t);if A <|t| <A + 1, then ¢(¢) = —¢(—t); for other values of ¢, both sides
vanish. By construction, the random variable corresponding to ¢ is not symmetric.

4. Independence. It is customary to take § and F independent in (1.1). We do not
know a neat condition on finite collections of the X; for this to hold. In thinking about this
problem we were led to ask if there was a function of X;, ..., X, whose distribution
depends only on F, not on §. This turns out to be impossible, even if the shape of F' is
known up to a scale parameter. The following proposition is closely related to results of
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Dantzig (1940) and Stein (1945) on fixed width confidence sets for a normal location
parameter.

N

PROPOSITION 4.1. Let X be a random vector in R* which has an absolutely
continuous distribution with density f. Let Yo, = 0 + oX. If g is a measurable function
from R* into the measurable space (%, b) such that the distribution of g(Ys,) only
depends on 0, then g is constant a.e.

Proor. Itisenough to show that for every measurable set A, if P(§ + 0X € A) depends
only on 6, then this probability is constant. Now

|P(6 + oX € A) — P(oX € A) | < supa

4 e

The right side of the inequality becomes arbitrarily small as o tends to infinity, because
translations are continuous in L'. 0

P<§+XEA)—P(XEA)‘

dx.
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