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LEAST SQUARES ESTIMATES IN STOCHASTIC REGRESSION
MODELS WITH APPLICATIONS TO IDENTIFICATION AND
CONTROL OF DYNAMIC SYSTEMS

By TzeE LEuNG Lar' aNnp CHING ZONG WED

Columbia University and University of Maryland

Strong consistency and asymptotic normality of least squares estimates
in stochastic regression models are established under certain weak assump-
tions on the stochastic regressors and errors. We discuss applications of these
results to interval estimation of the regression parameters and to recursive
on-line identification and control schemes for linear dynamic systems.

N

1. Introduction. Consider the multiple regression model
(1.1) yn=,31xn1+ cee +,8p1xnp+8n, n=12...

where the ¢, are unobservable random errors, B, - - - , B, are unknown parameters, and y,
is the observed response corresponding to the design levels x,1, +--, Xnp. Let X, =
(xnl, ey, xnp)l and let X, = (xij)lsisn,ISJSP’ Y. = (yl, LY yn),- Then

(1.2) by = (b1, «++ , brp)' = (X2 X,) "X, Y,

denotes the least squares estimate of 8 = (B, ---, B,)’ based on the observations xi, yi,
+++, Xu, ¥n, assuming that X, X is nonsingular. Throughout the sequel we shall assume
that {¢,} is a martingale difference sequence with respect to an increasing sequence of
o-fields {%.}; i.e, & is %-measurable and E (¢,| #-1) = 0 for every n. An important
example is the case where the ¢, are independent random variables with zero means.

While the statistical properties of the least squares estimate b, are relatively well
understood in the case where the design levels x;; are non-random constants, there is a
much less definitive theory for the case where the x, are sequentially determined random
vectors. Examples of stochastic regressors X, arise in time series models, dynamic input-
output systems, adaptive stochastic approximation schemes, stochastic control and other
applications. In Section 3 below, we consider some of these applications.

An important feature in these applications is that the design vector x, at stage n
depends on the previous observations X, y1, ««+, Xn-1, Yn-1; 1.€., X, IS F_1-measurable.
This in turn implies that {}! x:&;, %, n = 1} is a martingale transform since {e,} is a
martingale difference sequence with respect to {# }. Noting that XX, = ¥ x;x and that

(1.3) b, =8+ Cf x;xi) 7' 1 xe5,

the statistical properties of the least squares estimate b, are related to the martingale
transform Y7 X;¢; and the random matrix Y7 x;x/. When E (¢2| %.-1) = ¢® and E (x/X,) <
o for all n, the random matrix ¢® .7 x;x/ is simply the conditional covariance of the
martingale transform Y1 x;¢;, i.e.,

Y1 E {(xie)) (xi&))' | it} = 0” T xiX1.
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Inrecent years there has been considerable interest in the question of strong consistency
of the least squares estimate b, in stochastic regression models, both in the statistical and
in the engineering literature (cf. Anderson and Taylor, 1979; Christopeit and Helmes, 1980;
Drygas, 1976; Lai and Robbins, 1979, 1981; Ljung, 1976, 1977; and Moore, 1978). In
engineering applications, the least squares estimate b, is often used in its recursive form
of the Kalman filter type, viz.,

(143) bn+1 = bn + {(yn+1 - X;z+1bn)/(1 + X/n+lvnxn+l)}vnxn+l,
(1.4b) Vi1 =V, — ann+1x/n+lvn/(]- + X1 ann+1),

for the recursive on-line identification of dynamic systems; cf. Goodwin and Payne (1977),
and Ljung (1977). The matrix V, in the above recursion is equal to (X X,)*. This recursive
representation of b, provides a simple algorithm for successively updating the least squares
estimate, and the problem of convergence of the recursive scheme to the true parameter
B is equivalent to the strong consistency problem for b,,.

In adaptive control systems, the sequentially updated least squares estimate b, is often
used to decide on the input at the next stage. The underlying idea here is that in many
stochastic control problems, the optimal controller has a simple recursive form when the
parameter B of the system is known; cf. Astrom (1970), Box and Jenkins (1970), and
Goodwin and Payne (1977). Replacing B by the least squares estimate b, in the optimal
controller at each stage n, one may hope that the performance of such an adaptive
controller approaches that of the optimal controller assuming known B if b, should
converge to B8 with probability 1. Thus, the strong consistency of b, is of basic interest in
these applications, as will be illustrated in Section 3 below.

For the case where the design levels x;; are nonrandom constants, the strong consistency
of b, was recently established by Lai, Robbins and Wei (1978, 1979) under the minimal
assumption

(1.5) X:X,)'—0

on the design constants x,; when the errors e, form a martingale difference sequence such
that sup, E(ei|Z-1) < o as. In particular, if &, e, --- are iid. with zero mean and
variance ¢® > 0, then (1.5) is both necessary and sufficient for the strong consistency of b,
in the fixed design case (i.e., where the x;; are non-random constants).

Throughout the sequel we shall let Ama.x(2) denote the maximum eigenvalue of X, X,
and Amin(n) denote the minimum eigenvalue of X;X,. The condition (1.5) is equivalent to
Amin(r) — o0. While this condition will be shown in Section 2 to be not sufficient for the
strong consistency of b, when x, are sequentially determined random vectors, the following
theorem establishes the strong consistency of b, in stochastic regression models under the
slightly stronger assumption that Anin(r) tends to infinity faster than log Amax(72).

THEOREM 1. Suppose that in the regression model (1.1), {e.} is a martingale differ-
ence sequence with respect to an increasing sequence of o-fields {#,} such that
(1.6) supn E (&, |*| #-1) < as. for some o > 2.

Moreover, assume that the design levels x.i, -+, xn, at stage n are %, ,-measurable
random variables such that

(1.7) Amin(n) > o as. and log Anax(n) = 0Anmin(n)) a.s.
Then the least squares estimate b, converges a.s. to B; in fact,
(1.8) max;| b,y — B;] = O({(1og Amax(7)) [Amin(n)}'?)  a.s.

The condition (1.7) on the stochastic regressors is in some sense the weakest possible.
In Section 2 we give an example in which the design levels x,:- - -, x,,, are %,_-measurable
such that log Amax () /Amin(n) converges a.s. to a finite nonzero limit but b, fails to be
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strongly consistent. Recently, assuming that Amin(2) — o a.s., Anderson and Taylor (1979)
established the strong consistency of b, under the condition Amax(n) = O Amin((n)) as.,
while Christopeit and Helmes (1980) weakened the Anderson-Taylor condition to (Amax(r2)) "
= O (Amin(n)) a.s. for some r > %. Theorem 1 therefore provides a substantial improvement
of their results, and its proof, which will be given in Section 2, involves ideas very different

from theirs.
In Section 3 we apply Theorem 1 to some problems in the literature on the identification

and control of linear dynamic systems. Another related application of the strong consis-
tency of least squares estimates in stochastic regression models can be found in the recent
work of Lai and Robbins (1979, 1981) on adaptive stochastic approximation schemes.
Questions of asymptotic normality of least squares estimates in stochastic regression
models are discussed in Section 4, where we also consider related problems concerning

confidence regions for S.

2. A quadratic form and the proof of Theorem 1. Throughout the sequel, let || x ||
denote the Euclidean norm of a k-dimensional vector x = (x1, - -, %)’, i.e., | x> = 2F x L.
Viewing a & X k matrix A as a linear operator, we define || A || = supj-1]| Ax . Thus, | A||?
is equal to the maximum eigenvalue of A’A; cf. Rao (1973, page 62). As will be shown
below, Theorem 1 follows easily from

LEMMA 1. Let {¢,} be a martingale difference sequence with respect to an increasing
sequence of o-fields { %} such that

2.1) sup, E (2| Fu-1) < as.
Let xp1, «+ -, Xnp be F—1-measurable random variables for every n. Let €, = (e1, - -, ),

X, = (%ij)1=i=n, 1j=p, and define N = inf{n : X, X, is nonsingular}; inf ¢ = . Assume that
N < » as., and for n = N, define

(2.2) @ = €. X,(X;.X,) ' X}en.

Let Amax(n) denote the maximum eigenvalue of X X,. Then Amax(n) is nondecreasing in

n.
(i) On {lim,—x Amax(n) < @} @, = O(1) ass.
(ii) On {lims—w Amax(n) = o} we have for every § >0

(2.3) Q. = 0((10g Amax(n))' %) as.

(iii) If the assumption (2.1) is replaced by the stronger assumption (1.6), then on
{limy_,« Amax(n) = 0} the conclusion (2.3) can be strengthened to

(2.4) Q. = O(log Amax(n)) a.s.

ReMARK. The quadratic form @, in &, - - -, & with coefficients given by the positive
definite symmetric matrix X, (X,X,)'X}, as defined in (2.2) has the following geometric
interpretation. Let &, denote the projection of e, into the linear space spanned by the
column vectors of X,. Then

(2.5) Qn =&l
The proof of Lemma 1 depends on a recursive representation of @, (see (2.16) later) and

on the following lemma on martingale transforms and quadratic forms.

LEMMA 2. (i) Let B be a p X p matrix and w be a p X 1 vector. If A = B + ww’ is
nonsingular, then
wA'w=(|A|—-|B|)/|A].
(ii) Let w1, Wa, - - - be p X 1 vectors and let A, = Y7 w;w/. Let A} denote the maximum
eigenvalue of A,,. Assume that Ay is nonsingular for some N. Then A5 is nondecreasing
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and A, is nonsingular for all n = N. Moreover, if lim,_,. A} < , then Y5_-n Wi Ax'W;
< . On the other hand, if lim,_. \} = «, then

(2.6) S v wiAi'w, = O(log \Y).

(iii) Let {¢.} be a martingale difference sequence with respect to an increasing
sequence of o-fields { %} such that sup, E (¢%| %.,—1) < ® a.s. Let u, be an %,_,-measurable
random variable for every n. Then

(2.7) T w;e; converges a.s. on {¥T u? < oo},

(2.8) (7 wies)/ {(Q ) [log(Tr ui)]"} — 0 as. on {IF uf = o}
for every 1 > %, and consequently with probability 1

(2.9) Ttuwei=o0(Ttui) + 0(1).

Moreover,

(2.10) 37 |ui| e < as. on {37 |wi| < o},

(2.11) (X7 |uwi|e?)/ (X% |wi])* — 0 as. on {¥F | u:| =} for everyp > 1.

If (1.6) also holds, then (2.11) can be strengthened into
(2.12)  lim Supn—e (X7 | wi]ef)/ (X1 |w.]) < 0 a.s. on {sups|un| < o, ¥ |un| = }.

Proor. (i) follows from the determinantal relation
IB|=|A-ww'|=]|A|(1-wA'w).
To prove (ii), let A, denote the minimum eigenvalue of A,. Since A, — A,—1 = W, W} is
nonnegative definite, A} = A}¥_;, A\, = \,_1, and A, is nonsingular for n = N. By (i),
(2.13) SE-NWEAR WL =i~ (|Ar| — | As-1])/| Ar]-
If lim, ., A¥ = oo, thenforn= N, | A, | = AK,_I Ax¥ — oo, and it follows from (2.13) that
Yion WrAZ'Wr, = O(log| A,|) = O(log A).
On the other hand, if lim, . A} < oo, then it follows from (2.13) that
Yi-N WA Wr =AY Yi-n (| Ar| = |Ar-1]) < 0.

In (i), {¥T wiei, %, n = 1} is a martingale transform although it need not be a
martingale since E(u,e,) may be undefined. However, by choosing sufficiently large
constants @, such that P[|u,| > a.] = n~? we obtain that P[u, = u} for all large n] = 1,
where u¥ = u, Ijju =a,1. Moreover, E|u}e,| < o and so Y u}*e; is a martingale. In view of
this truncation argument, (2.7) and (2.8) follow from the local convergence theorem and
the strong law for martingales (Chow, 1965); (2.10) follows from a theorem of Freedman
(1973, page 919); while (2.11) follows by applying the Kronecker lemma and (2.10), since
S lui| /(B4 | w])? < oo. If (1.6) holds, then since sup, E(|es — E(eh| 1) |7| Famr) <
a.s. forsomel<r=2,

(2.14) Y |w|{e} — E(}| Zi-1)} = o (3% |w|") = o(T |w])
a.s. on {sups|un| < 0, YT | un| = 0},

cf. Chow (1965). Since 37 |, |E (e?| #i-1) = O(X! |ui]") a.s. by (1.6), (2.12) follows from
(2.14).0

PrROOF OF LEMMA 1. Let X, = (Xn1, +++, %n). For n = N, let V, = (X;X,)™' =
(Y2-1xx})"". Then V,., satisfies (1.4b), by the matrix inversion lemma (Goodwin and
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Payne, 1977). By (1.4b), for £ > N,
2.15 Xp Vi =Xt Vior — (1 4+ X4 Vio1X2) (X5 Vie-1X2)X5 Vit
=xX,Vio1/(1 + X, Vi_1Xp).
This leads to the following recursion for . For 2 > N, by (2.2),
Q= (Th1 xle) Vi (Th xie0)

(2.16) = (X xle) Ve (Sl + xaVaxeed + 2(x5Ve Y xi8:)er

= Qro1 — (XiVeo1 DT x06)% /(1 + X3 Veo1X2) + X4 Vixee?

+ 2{x, Vi1 5 Xie)en } /(1 + X2 Vi1Xz),
by (1.4b) and (2.15). Summing the recursion (2.16), we obtain that for n > N
Q. — Qn + Yi-n+1 (X Vi1 DI %)%/ (1 + X5 Vio1Xe)
= Yione XiVixped + 2 Yionver (X5 Vo1 (TET xie)en} /(1 + X4 Vio1Xe).

Let u, = x}er_l(Zi; x;6)/(1 + x4, Vp-1X;) if B > N and set u, = 0 if £ < N. Since u is
%_1-measurable, it follows from (2.9) and Lemma 2(iii) that with probability 1

Srone1 (Xe Vet (BF xie)er} /(1 + X5 Vio1Xa)

(2.17)

(2.18) :
=0(Yi-n+1 X2 Vi1 2 xie)? /(1 + x5 Vieixe)?) + O(1).

On {lim,.e Ama () < ©} we obtain by Lemma 2(ii) that Y%.+1x%VeXs < ® as., and
therefore by (2.10) of Lemma 2(iii), Y ¥+1 x,ViXpe2 < . This together with (2.17) and
(2.18) implies that

(2.19) @.=0(@1)as. and
(2.20) Sione1 (X Vao: YT x08)%/ (1 + X4 Veo1Xe) <0 as.

Now consider the event {lim,_,oAmax(72) = ©}. Here we obtain by Lemma 2(ii) and (2.11)
of Lemma 2(iii) that

(2.21) Yh-ne1 XaVixeer = O((Zha1 xiVixn) ') = O((log Amax(n))'™’)  as.
From (2.17), (2.18) and (2.21), it then follows that on {lim,—«Amax(r) = %}
(2.22) Q. = O((log Amax(n))**®) a.s., and

(2.23) Sroner (XeVior D5 %)%/ (1 + x4 VioiXs) = O((log Amax(n))'™®)  aus.

If (1.6) also holds, then noting that x+V:x; =< 1 by Lemma 2(i), and using (2.12) of Lemma
2(iii) instead of (2.11), we can take 8 = 0 in (2.21), (2.22) and (2.23) and thereby obtain (2.4)
in the event that lim,_,oAmax(n) = 0. [

It is worth noting that in the preceding proof, we have also established the result in
Corollary 1. This result is applied in the analysis by Lai and Wei (1981a) of the asymptotic
properties of certain projections which are useful for studying the order of magnitude of
Amin(72) in many applications and which also provide an alternative proof and a refinement
of Theorem 1; cf. Lai and Wei (1981a).

CoROLLARY 1. Let {e,} be a martingale difference sequence with respect to an
increasing sequence of o-fields {£#.} such that (2.1) holds. Let X, = (Xp1, ..., Xnp)" be an
Fn—1-measurable random vector for every n. Let V, be the Moore-Penrose generalized
inverse of .7 xx}, and let Amax(n) denote the maximum eigenvalue of ¥.© xxi. Let N =
inf{n:¥ 7 x;x! is nonsingular}; inf ¢ = .

(i) On {N < o and lim, .« Amax(n) < ®} (2.20) holds.
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(ii) On {N < ® and lim,_,« Amax(n) = ©} (2.23) holds for every § > 0.
(iii) If the assumption (2.1) is replaced by the stronger assumption (1.6), then (2.23)
also holds with 6 = 0 on {N < o, lim,_,«Amax(n) = ©}.

The special case p = 1 in parts (i) and (ii) of Lemma 1 reduces to the convergence
property (2.7) and the strong law (2.8) of martingale transforms in Lemma 2(iii). More
importantly, Lemma 1(iii) in the special case p = 1 provides an improvement of (2.8) under
the assumption (1.6). This is the content of

COROLLARY 2. Let {&,} be a martingale difference with respect to an increasing
sequence of o-fields {%#} such that (1.6) holds. Let u, be an %, ,-measurable random
variable for every n. Then in the event (Y7 u? = »},

Tug = O((TF udlog(Xt ud}?)  as.

.

ProoF. Setting X, = (#:)1=i= in Lemma 1, we obtain that Amax(n) = Y1 »} and
e, XX/ X,) ' Xhe, = (X7 uie))?/ (37 ud).
Hence the desired conclusion follows from Lemma 1(ii). 0

PRrOOF OF THEOREM 1. Since Amin(n) — ® a.s., XX, is nonsingular for all large n with
probability 1. Therefore :

b, = B> = (XiXn) ™" T xees|®
= | X7 X0) 2P (X 7 X) T2 D x|
= Amin(n)) 7 {€7Xa(X7 X)X 00}
Hence from (1.7) and Lemma 1(iii), (1.8) follows. 0O

By applying Lemma 1(ii) instead of Lemma 1(iii) in the preceding proof, we can weaken
the assumption (1.6) of Theorem 1 into (2.1) but at the expense of slightly strengthening
the condition (1.7). This is the content of

COROLLARY 3. Suppose that in the regression model (1.1), {&.} is a martingale
difference sequence with respect to an increasing sequence of o-fields {#,} such that (2.1)
holds. Moreover, assume that the design levels xp1, . . . , X, at stage n are 7,_,-measurable
random variables such that with probability 1

(2.24) Amin(@) = ©  and  {10g Amax(7)}*° = 0(Amin(n)) for some & > 0.
Then the least squares estimate b, converges a.s. to f.

The following example of Lai and Robbins (1981) shows that the condition (1.7) of
Theorem 1 is in some sense weakest possible.

ExampLE 1. Let ¢ # 0 be a real constant and let &, &, --- be ii.d. random variables
with Ee; = 0 and Ee? = 1. Let %, be the o-field generated by e, . . ., &,. Consider the simple
linear model

yi = PB1+ Baxi + &,
where the stochastic regressors x; are defined inductively by
(2.25) x1 =0, Xn+1 = Xp + CEp, n=1.

(The notation @, denotes the arithmetic mean of n numbers a, ..., a,.) The random
variable x, is clearly %,_;-measurable. As shown by Lai and Robbins (1981), the least
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squares estimate b, of 8, converges to 8; — ¢ (#82) a.s. Moreover, it can be shown by
induction that

(2.26) X1 =cYtily, n=1

By Kolmogorov’s convergence theorem, ¥ i '¢; converges a.s., and it therefore follows
from (2.25) and (2.26) that

(2.27) Tn=Xns1 —CEn—CcYT 1 e as.
Hence the least squares estimate
br1 = Jn — bnokn = B1 + (B2 — br2)Xn + &
converges to 81 + Y7 i '¢; a.s. We therefore have
(2.28) bu— B +Y7i % as, bz — B2 —c™' as,;

i.e., the least squares estimates b;1, b2 of B1, B2 are both inconsistent. As shown by Lai and
Robbins (1981),

(2.29) (% — %,)? ~ c’logn  as.
Moreover, by (2.26),
(2.30) txt~nc® (XFi %) as.

Making use of (2.29) and (2.30), it can be shown that the eigenvalues Amax(r2) and Amin(n) of
XX, satisfy the asymptotic relations

Amax(n) ~ n{l + C‘2 (ZT’ l.“1£,')2} a.s.,
(2.31)
Amin(n) ~ c2(log n)/{1 + ¢ (37 i '&)?} as.

Hence
10g }\max(n)/Amln n) {]- + C Ew ._181)2}/02 a.s.
and condition (1.7) is only marginally violated.

3. Applications to identification and control of dynamic systems. In this section
we consider the input-output dynamic model

(3.1) Yn = QYn-1F +o0 + rYn-r+ YUn+ -+ YiUn-n + &n,

where the errors e, form a martingale difference sequence satisfying (2.1), u, is the input
vector and v, is the output of the system at stage n. The column vectors v, and u; in (3.1)
are m-dimensional, while the y;, a, and ¢; are scalars. In a feedback system, the input u,
depends on the previous inputs and outputs w,, y;,/j <n — 1. Let

(3.2) B=(ar, ..., 0, Yo, .., Y4, Xn = (Yol e vs YnkrUnyooo, Wnop).

The least squares estimate b, of 8 is commonly used in its recursive form (1.4) for the
recursive on-line identification of the system (3.1). Motivated by systems with time-varying
and adaptive feedback, Ljung (1976) examined the strong consistency problem of b, under
the assumption

(3.3) lim Supp_.n ! Y (yi+w]?) <o as.

This assumption stems from the important case where the inputs satisfy [ u.||* = O(n) a.s.
and the roots of the characteristic polynomial

(3.4) o(2) = 2P — 2l — s —

lie inside the unit circle. Example 1 in Section 2 shows, however, that the assumption (3.3)
fails to ensure the strong consistency of b,. First note that Example 1 is a special case
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of (3.1) with 2 = A =0, yo = (81, B2), U, = (1, x,)’. Moreover, (2.30) and the fact that
n' Y7 2 > 1 as. imply that (3.3) holds. However, b, in Example 1 is not strongly
consistent. Ljung (1976, page 781) pointed out that b, is strongly consistent in models
satisfying (3.3) and the additional assumption that for some positive definite matrix I'":

(3.5) niYrxxi—»T as.
The following theorem generalizes this result of Ljung by considerably weakening (3.3)

and (3.5).

THEOREM 2. Suppose that in the dynamic system (3.1), {e.} is @ martingale difference
sequence with respect to an increasing sequence of o-fields {#,} such that (2.1) holds.
Suppose that at every stage n the output y, is #,-measurable, the input vector W, is F,-1-
measurable, and

(3.6) lu.]l=O(n") as. for somer=0.

Define B and x, as in (3.2). Let A, denote the minimum eigenvalue of )7 X;X;.
(i) If the roots z; of the characteristic polynomial ¢(z) defined in (3.4) satisfy | z.| =1
fori=1,... k, then

3.7) ¥.=0(n% as. forsomea>D0.
(ii) Assume that (3.7) holds and }
(3.8 lim,_» A,/(log n)? = as. forsomep >1,
then the least squares estimate b, of B is strongly consistent; in fact
3.9) b, — Bll = O({(log n)*/Ax}"%) ass.
(ili) Assume that (1.6) and (3.7) hold, and replace (3.8) by the weaker assumption
(3.10) lim, . Az/(logn) = as.
Then b, is still strongly consistent, and (3.9) can be strengthened into
(3.11) b, — Bl = O({(log n)/Ax}"?) as.
ProoF. (ii) and (iii) follow from Thegrem 1 and Corollary 2 since the maximum

eigenvalue of Y7 x;x/ is majorized by tr(}¥? x.x/), and (3.6) and (3.7) imply that
tr(Y7 x;x{) = O(n") a.s. for some b > 0. To prove (i), we note that

YF Pllen| >n| Puci] = 35 nPE(er| Faor) < as, by (2.1).
Therefore by the conditional Borel-Cantelli lemma (Freedman, 1973),
(3.12) & =0(n) as.

If £ = 0, then (3.7) follows trivially from (3.1), (3.6) and (3.12). Now assume that 2 = 1.
Define the k-dimensional vectors

(3-13) y. = (yn, “’,yn—k+l)l, e, = (‘Y(,)un + .. +Y;tun—h + &n, 0, "',0),-
By (3.6) and (3.12),
(3.14) lex]l = O(n®) as. forsome s> 0.

Consider the £ X k& matrix
_ Q1 e 01 Ok
a=("i g)

where I, denotes the p X p identity matrix. By (3.1) and (3.13), y» = Ay»-1 + €, and
therefore
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(3.15) Yo =A"yo + Y1 A" e,
Express A in its Jordan form
(3.16) A=CDC™,
where D = diag {D, .-+, D,},
z 1 0.:.0
D, = 0z 1---0 is an m;, X m; matrix,

z; is a root of @(z) with multiplicity m;, and C is a nonsingular matrix. Define

f}(n,y):(’:)z}t_"’ V=Oyly"'y n=ly2)'

.

Then, since | z;| = 1,

f}(ny 0) f}(ny ]-) e f}(n) mf - 1)
0 fi(n,0)--- filn,m —2)

(8.17) ID7I= L = 0(n™™).
0 0 coveens fi(n, 0)

Let M = max;m;. By (3.16) and (3.17),

(3.18) | A%l =1 CD"C'l <[ CIlI €] £L, D7 = 0.

From (3.14), (3.15) and (3.18), (3.7) follows. O

Some specific applications of Theorem 2 to system identification problems are given by
Lai and Wei (1981a). They show in particular that if
(i) in the dynamic system (3.1), the roots of the characteristic polynomial z* — a; 2%~
— «+. — ay lie on or inside the unit circle,
(ii) the noise {e,} is a martingale difference sequence such that (1.6) holds and
lim inf, . E(e%| Fn-1) > 0 a.s., and
(iii) the set of inputs {un1, + -+, Uwm; n = 1} is a set of independent random variables
which are independent of the noise sequence {e,} such that Eu,, = 0, inf; ,EuZ; >
0 and sup; . E |y |* < o for some a > 2,
then (3.6) and (3.8) both hold and therefore the least squares estimates of a1, - - -, az, Yo,
-+ -, v are strongly consistent by Theorem 2.

If the roots of the characteristic polynomial should all lie strictly inside the unit circle,
then with the independent white noise inputs u, as before, the system (3.1) is stable, and
the aforementioned results of Ljung (1976), Anderson and Taylor (1979), and Christopeit
and Helmes (1980) are related to such stable systems. By allowing the roots of the
characteristic polynomial to lie on the unit circle as well, we can formulate unstable but
non-explosive systems related to the ARIMA models of Box and Jenkins (1970). The
following example shows that while the results of Anderson and Taylor (1979), Christopeit
and Helmes (1980), Ljung (1976) are not applicable to the least squares identification
method for such unstable systems, the conditions (3.6) and (3.8) of Theorem 2 are weak
enough for these systems.

1

ExaMPLE 2. Consider the dynamic system
(3.19) Yn = QYn—1 + YUn + &n, n=1,

where the errors ¢, are ii.d. random variables with mean 0 and variance o? > 0, and the
inputs u, are also i.i.d. random variables independent of {&,, n = 1} such that Eu, = 0, Eu2
= 03 > 0. Letting X, = (¥a—1, 4n)’, We have
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n .2 n
3.20 " XX, = 21_’)’;‘4 Zlyi—lui )
(820 L < Ty YTul

Let Amax(n) and Amin(n) denote the maximum and minimum eigenvalues of Y7 x;x;
respectively. Then

(3-21) )\max(n) + )\min(n) 21 yz 1+ 21 uz ’ )\max(n)kmin(n) det(zl X;X

Suppose that the unknown parameters a, y actually take on the values « = 1, y = 0, so that
the dynamic system (3.19) reduces to y, = ¥,—1 + &, or equivalently,

(3.22) Yn =230+ Sy, where S,=YTs.

Making use of a theorem of Donsker and Varadhan (1977, page 751), it can be shown that
(3.23) lim inf, ,.n"%(log log n) 37 yi_1 = lim inf, ..n"2(log log n) 37 Si-1 = 0}/4 as.
On the other hand, by the law of the iterated logarithm,

(3.24) Ytyi,=0(n"loglogn) as.

Moreover, by (2.8) of Lemma 2(iii) and (3.24),

(3.25) St yiciuws = o((X2 y¥)log (37 ¥7)) = o(n(og n)?) as.
By the strong law of large numbers,

(3.26) Yt u?~no} as.

From (3.21) and (3.23)-(3.26), it then follows that

(3.27) Amax(n) ~Y7y%, as,  Amn(n) ~no} as.

In view of (3.26) and (3.27), conditions (3.6) and (3.8) of Theorem 3 are satisfied, and
therefore the least squares estimates of « and y are strongly consistent by Theorem 3. On
the other hand, (3.23) shows that the condition (3.3) of Ljung (1976) is violated. Moreover,
(3.23) and (3.27) imply that

lim inf,,_, . { Amax(72)10g 108 Amax (1)} V2 /Amin(n) = 01/20% a.s.,

violating the assumptions of Anderson and Taylor (1979, Theorem 1) and of Christopeit
and Helmes (1980, Corollary 1).

Laiand Wei (1981b) apply Theorem 2 to the problem of adaptive control of the dynamic
system (3.1) with scalar inputs when the errors ¢, are i.i.d. random variables with Ee, = 0,
Eel = ¢® > 0, and all roots of the characteristic polynomials z* — a;2*™* — ... — @, and
v02" + 12”71 + ... + y; lie inside the unit circle. To focus on the main ideas, we assume
here that v, # 0, and the details for the general case without such an assumption are given
by Lai and Wei (1981b). If the parameters ay, - - -, ax, o, - - -, y» are known, then the input
u, which minimizes Ey;, and which is based on the previous inputs and outputs u;, y;,/ <

n, is given by
(3.28) U, =—{ayn-1+ o + QY p+ yilly;+ oo + Yhun—h}/yo-

With this minimum variance controller u,, y, = &, (Goodwin and Payne, 1977), and
therefore

(3.29) nt ¥ y? > o? as.

Moreover, (3.6) holds for such inputs u,.

In ignorance of the parameters a1, - - -, az, Yo, - - -, Y, it is natural to try replacing them
in (3.28) at each stage n by their least squares estimates based on past data. It is also
natural to expect that (3.29) would still hold if the least squares estimates should in fact
converge a.s. to the true parameters. On the other hand, if u, should in fact be given by the
minimum variance controller (3.28) with the parameters known, then the design matrix
Y1 x;x/ would be singular since (3.28) implies that «; is a linear combination of the other
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components of X; = (Yi—1, *++, Yi-k, Ui, * -+, Ui—»)". However, Theorem 2 says that to have
strong consistency of the least squares estimates of a1, -« -, ax, Yo, * - -, Y», not only should
Y x;x} be nonsingular, but its minimum eigenvalue should grow faster than log n. This
difficulty can be resolved by occasionally perturbing the system with white noise inputs to
ensure that (3.8) holds, and Theorem 2 suggests that such white noise inputs need only be
introduced in a negligible proportion, say O((log n)*/n), of the first n stages as n — o.
Making use of this idea, Lai and Wei (1981b) obtain a class of adaptive controllers that
satisfy (3.29).

4. Asymptotic normality of least squares estimates in stochastic regression
models and related confidence ellipsoids. In this section we assume that the errors
& in the regression model (1.1) form a martingale difference sequence with respect to the
o-fields %, such that (1.6) holds and

4.1) lim,oE(e2| #-1) = 6> as. for some constanta.

An important special case is where the &, are independent random variables with zero
means, variance o2, and sup,E |e,|* < o for some a > 2. The following theorem gives
conditions on the stochastic regressors x, that would ensure the asymptotic normality of
the least squares estimate b,.

THEOREM 3. Suppose that in the regression model (1.1), {e.} is a martingale
difference sequence with respect to an increasing sequence of o-fields {#.} such that
(1.6) and (4.1) hold. Moreover, assume for each n that the design vector X, = (Xn1, * -+,
Xnp)" at stage n is F,_1-measurable and that there exists a non-random positive definite
symmetric matrix B, for which

(4.2) B;' (Y7 xix/)"*—>pl, and
(4.3) maXi<;<n " Br_lei " —p0.

Then the least squares estimate b, of B has an asymptotically normal distribution in the
sense that

(4.4) (X7 xix/)*(b, — B) —=p N(0, 6’L,),
where —p denotes convergence in distribution.
Proor. In view of (1.3), (4.2) and the Cramér-Wold theorem, we need only show that
for any non-random p X 1 vector ¢,
(4.5) ¢'B;'(31 xie:)) = N(O, o*[ ¢ ).

The desired conclusion (4.5) can be obtained by making use of a martingale central limit
theorem of Dvoretzky (1972, Theorem 2.2) and an argument similar to that in Theorem 5
of Lai and Robbins (1981).

The existence of a non-random matrix B, satisfying condition (4.2) in Theorem 3 can be
regarded as a stability assumption on the matrix (Y7 x;x{)"/? Without making this
assumption, we can replace condition (4.3) by

(4.6) maXi<i<.X; (Y =1 X;X}) 1%, —p0.

However, the following example shows that the asymptotic normality property (4.4) of b,
may fail to hold under (4.6) in the absence of the stability assumption (4.2).

ExaMpPLE 3. Consider the autoregressive AR (1) process
(4.7) Yn = ,Byn—l + En, n= ly

where the errors &, are i.i.d. random variables with mean 0 and variance 1. The least
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squares estimate of 8 is
(4.8) b, = (X1 yiyi-1) /(T yi1) = B+ (X1 yimre) /(X1 yi-1).

Suppose that the unknown parameter § actually assumes the value 1, so that (4.7) reduces
to y» = Yo + Su, where S, = Y7 ;. Then (maxi<i<.y?)/ (X7 y?) — 0 as. by (3.23) and the
law of the iterated logarithm for S,.. On the other hand, by Donsker’s invariance principle,

1
4.9) n Yt yii—p f w?(¢t) dt,
0
and
1 1 1/2
(4.10) (X yi-0)"(bn — B) -3 {w(1) — H/{J w(t) dt} ,
0

where w(t) denotes the standard Wiener process (White; 1958, page 1196). Hence the
asymptotic normality property (4.4) fails to hold for b,.

The limiting normal distribution in (4.4) involves ¢ which is usually unknown. Con-
sistent estimation of o2 using the residual sum of squares is considered in the following.

LEMMA 3. Suppose that in the regression model (1.1), {e,} is a martingale difference
sequence with respect to an increasing sequence of o-fields { #,} such that (1.6) and (4.1)
hold. Moreover, assume that the design levels x,1, - - - , X at stage n are ,_,-measurable
random variables. Let X, = (xy)1=i=n, 1=j<p. Assume that N = inf{n = p :X,, is of rank p}
< a.s. For n = N, let b, be the least squares estimate of B defined by (1.2), and let

(4.11) 6’?; = n'l E? (yz — On1Xi1 — ¢+ — npxip)z-
Let Amax(n) denote the maximum eigenvalue of X, X,,.. If
(4.12) lim, . (log Amax(n))/n=0 as,

then 62 — o” a.s.

ProoF. Let e, = (e, ---, &,)’. Standard analysis of variance computations give the
following expression for the residual sum of squares: For n = N,
(4.13) ST (yi— barxin — « -+ — bupxip)® = eren — €1 Xn (X1 Xn) X €.
By Lemma 1 (iii),
(4.14) e, X, (X, X,) "X} e, = O(log Amax(n)) as.
It follows from (1.6) that Y7 {e? — E(e?| Zi-1)} = o(n) as. (Chow, 1965), so
(4.15) ene, =Y el =Y1 E(e?| #im1) + 0(n) ~ na® as.
In view of (4.12), (4.13), (4.14) and (4.15), 6% — ¢ a.s. O

Under the assumptions of Theorem 3 and the additional assumption (4.12), we note
that (4.2) implies that

P{rank (}! x;x;) = p for all largen} =1,

and therefore by Theorem 3 and Lemma 3,
(4.16)  lim,.P(37°(b, — B)' (2! xixi) (b, — B) S u} = P{x*(p) su}, u>0,

where x*(p) denotes the Chi squared distribution with p degrees of freedom. For 0 < a <
1, choosing u such that P[x2(p) < u] = a, the relation (4.16) then provides an approximate
a-level confidence ellipsoid for S.

Making use of Theorem 3 to obtain the asymptotic normality of b, and Lemma 3 to
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obtain the strong consistency of 62, we can also extend the results of Albert (1966) and of
Gleser (1965) on fixed size confidence ellipsoids for 8 in the case of non-random regressors
X, to the case where X, is random but is #,_;-measurable.
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