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TESTS FOR INDEPENDENCE IN TWO-WAY CONTINGENCY TABLES
BASED ON CANONICAL CORRELATION AND ON LINEAR-BY-
LINEAR INTERACTION'

By SHELBY J. HABERMAN
University of Chicago

Tests for independence of rows and columns in an r X s contingency table
are developed from canonical correlation analysis and from models of linear-
by-linear interaction. The resulting test statistics are asymptotically equiva-

“lent under the null hypothesis. They are consistent and asymptotically un-

biased. Approximate critical values are available from existing tables. The
proposed tests are most appropriate when the matrix of joint probabilities is
well approximated by a matrix of rank 2. Against some alternatives which
may arise in such tables, the proposed statistics have greater asymptotic
power than conventional chi-square tests of independence.

1. Introduction. Both the canonical correlation analysis of Fisher (1939) and the
models of linear-by-linear interaction of Andersen (1980) and Goodman (1979) can be
employed to test for independence of the row and column variables in an r by s contingency
table. As shown in this paper, the resulting test statistics from these approaches are all
asymptoticaly equivalent under the null hypothesis, and approximate critical values for
these statistics may be obtained from Pearson and Hartley (1972). These test statistics all
have the same asymptotic power, and they share the properties of asymptotic unbiasedness
and consistency with the more familiar Pearson and likelihood-ratio chi-square tests for
independence. As is evident from results of Sections 4, 5, and 6, the proposed test statistics
have neither uniformly greater nor uniformly smaller asymptotic power than conventional
chi-square tests. Based on a result of Section 1, the new statistics appear most useful when
the r by s matrix of all probabilities is well approximated by a matrix of rank 2. Thus the
new statistics work best if the data are well approximated by a latent-class model with two
latent classes or a model of linear-by-linear interaction.

2. The canonical correlation test of independence. Consider an r X s contingency
table with frequencies n,;,, 1 =i<r,1<j=<sr=2s=2 Letthen, =Y. n;,,1<i=<
r, be the row marginal totals, and let the n.; = Y/_, n,;, 1 <j < s, be the column marginal
totals. Assume that the n,, have a multinomial distribution with sample size N and with
cell probabilities p;, > 0,1 = i=<r, 1 <j=<s Let f; = N'n f. = N'n;., and
f.j = N7'n; denote the relative frequencies corresponding respectively to n;), n,., and n.,.
The canonical correlation test is a test of the independence hypothesis

2.1) Dij = Di.p.; l1=<i=r, l1=j=s,

where the p,. = ¥ 7., p;, 1 = i < r, are row marginal probabilities and the p., = Y7 p;j, 1
=Jj = s, are column marginal probabilities. The test is appropriate when row and column
categories are ordered but no specific scores are known to be associated with the categories.
To perform the test, assign scores x,, 1 < i < r, to the row categories and scores y,, 1 <
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= s, to the column categories so that the correlation

(2.2) Ry =Y Y5 fijxiy;

of scores of row and column variables is maximized subject to the constraints that the
mean row score ,;-; f;.x; and the mean column score Y’ f.; y; are both 0 and the respective
observed variances Y1 f;.x7 and Y f.;¥} of the row and column scores are both 1.

Computation of R, is straightforward. Let g;; = f..f.; be the maximum likelihood estimate
of p;; under (2.1), and let e;; = f;;/g}/*. By Kendall and Stuart (1973, page 591), R? is the
second largest eigenvalue of the r X r matrix C with elements

Ciy = 2‘3':1 ejjey;, 1=:i=< r, 1<i/=<r.

Since C always has an eigenvalue of 1 and an eigenvector x with coordinatesf/?,1 < i <
r, it follows from Wilkinson (1965, page 585) that R} is the largest eigenvalue of the r X r
matrix B with elements

bir = Y -1 dijdyj

=Y ejer;— fife., l=i<r, l<si=r,

1/2

where d;; = (fi — &) /8i}".

The correlation R, is the test statistic in the canonical correlation test. Conditional on
the marginal totals n;., 1 =i =<r,and n.,; 1 =j < s, an exact significance level of R; can be
obtained in principle; however, in practice an approximate significance level is more likely
to be used. Let W(r — 1, s — 1) be the r — 1 by r — 1 central Wishart matrix with s — 1
degrees of freedom with elements

wir(r — 1, s — 1) = Y521 vvir,, lsi=sr-1, l1si=r-1,

such that the v, 1=i=<r —1,1=<j=<s — 1, are independent N(0, 1) random variables.
Let F(r — 1, s — 1) be the maximum eigenvalue of W(r — 1, s — 1), and for 0 < a < 1, let
A(r — 1, s — 1, a) be the upper « point of F(r — 1, s — 1). Let — denote convergence in
distribution. As shown by Corsten (1976) and O’Neill (1978a) if the independence model
(2.1) holds as N — oo, then NR? -, F(r — 1, s — 1). Thus R; has an approximate
significance level less than a if NR} > A(r — 1, s — 1, a). For values of A\(r — 1, s — 1, a) for
a equal to 0.05 or 0.01, see Table 51 of Pearson and Hartley (1972). Note that if » = 2, then
F(r — 1, s — 1) has a chi-square distribution with s — 1 degrees of freedom, while F(r — 1,
s — 1) has a chi-square distribution with r — 1 degrees of freedom if s = 2. In other cases,
F(r — 1, s — 1) does not have a chi-square distribution.

3. The model of linear-by-linear interaction. Alternate tests of independence
may be based on the model of linear-by-linear interaction of Andersen (1980) and Goodman
(1979). In this model, it may be assumed that p is in the closure @ of @, where @ consists
of vectors p = {p;;:1 =i=r,1=<j=<s)}suchthat Yi.; ¥, p;;=1and

3.1) pij =pi.p.jexpla + Bi + y;i + Yuw)), l=i=<r, l=j=<s,
for some a, B, v, ¥, 1;, and »; such that
Yic1pipi = i py; =1
and
Q=1 Pifti = Xj=1P. % = Tim1 i = Li-1p.jv; = 0.

(An alternative parameterization in which p;.p.; is omitted from (3.1) is equivalent if all p;;
are positive.) Let p = {p;;:1 =i=<r,1=<j =< s} be a vector of maximum likelihood estimates
(MLEs) of p= {p;;:1 =i=<r,1=<j=< s} under the model p € §. To test the independence
model against the alternative p € @, one may use the Pearson chi-square statistic
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X2=NYri Y5 (B — 8)°/8

or the likelihood-ratio chi-square statistic

LP=25%0 Y ny 1og(£’2 ) .
8ij

In Section 6, the following result is shown. If the independence model (2.1) holds, then
X? and L? are both asymptotically equivalent to NR?, so that as N — o, X? —, F(r — 1,
s —1) and L? -, F(r — 1, s — 1). The approximate significance level of X? (or L?) is less
than « if X2 (or L?) exceeds A(r — 1, s — 1, «). Note that the chi-square statistics X and L?
do not have approximate chi-square distributions when r > 2 and s > 2. The basic cause
of this result is that v, u, and »; are uniquely determined, except for sign, if (2.1) does not

hold, but y; and »; are undetermined if (2.1) holds.

4. Comparison with conventional chi-square tests. Most tests for independence
rely on the Pearson chi-square statistic

Xi=N3Yi Y- (fs— &)°/8y
or the likelihood-ratio chi-square statistic
L} =2 ¥io Y51 iy log(fij/8i)-

It is of interest to compare the properties of these test statistics with those of NR?, X2 and
L

To begin, comparisons are only of real interest if » > 2 and s > 2, for X3 = NR} = X*
and L3 = L? when r = 2 or s = 2. Proofs are elementary. If 2 = min (r — 1, s — 1) and R?
is the jth largest eigenvalue of B, then

X% = NZ;?:l R,2

(Kendall and Stuart, 1973, page 594). Thus X = NR; when £ = 1. If r = 2 or s = 2, then
the model p € @ imposes no restrictions on p. Thus p;; = fi;, X* = X} and L? = L3. Given
these observations, it is appropriate to assume for the remainder of the section that r > 2
and s > 2.

It is well known that X% and L} provide consistent and asymptotically unbiased tests of
independence. As shown in Sections 5 and 6, these properties are shared by NR3, X2, and
L*. Asymptotic powers of the five statistics are not identical, and no one statistic uniformly
dominates any other statistic in this regard.

To examine this situation, define

a; = (p,;— pip.)/(p:ip )% 1=<i=<r, 1=j=<s,
to be a normalized deviation of p;; from the value p,.p., found under independence, and let
hip = Y 5-1 aa,, l=si=r, l1=si=sr

Let H be the r X r matrix with elements A, let p% 1 <j < &, be the jth largest eigenvalue
of H, and let

¢ =trH=Yr Y5 a}=Y% p?
be the coefficient of mean square contingency. Note that p? = $? =0, 1 <j < &, if and only
if (2.1) holds.

It is well known that the asymptotic power of X% or L} at level a is C(N¢®, a) =
P{XAN$* > x2.}, where v = (r — 1)(s — 1), x%. is the upper-a point of a chi-square
distribution with » degrees of freedom, and x?(N¢?) is a noncentral chi-square random
variable with noncentrality parameter N¢* and with » degrees of freedom.

In contrast, the asymptotic power of NR3, X2 or L? at level « is D(N"%p, a) =
P{F'(r—1,s—1,N"”p)>A(r—-1,s—1,a)}. Hereforz= {z:1<j<k}and 2, =0,/ >
k, F'(r — 1, s — 1, z) is the largest eigenvalue of the noncentral Wishart matrix
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Wir-1,s—1z)={w,(r—1,s—lz):l=<=i=r,1=i=<r}
such that
wy(r—1,s—-1,z) = ﬁ«;}(v,«, + 6,‘,‘2,')(0,’7 + 8:2)), l=i=r, l1=i'=r,

and d denotes the Kronecker 8. As in the case of the central Wishart, the v;;are independent
N (0, 1) random variables. These results are proven in Sections 5 and 6.

Given that tr W’(r — 1, s — 1, N%p) has a x%(N¢?) distribution, comparison of NR}, X%,
or L? to X% or L} corresponds to comparison in multivariate analysis of the largest root
criterion to the trace criterion when the underlying covariance matrix is known. By
Perlman and Olkin (1980), C(0, a) = D(0, a) = a, C(N¢?, a) is strictly increasing in N¢?,
and D(N'?p, «) is strictly increasing in the N'/%o;, 1 <j < k. Thus all tests under study are
asymptotically unbiased.

By John (1971), C(N¢% «) > D(N'?p, a) for all N¢® sufficiently small; i.e., the
conventional chi-square tests dominate the tests based on NR%, X2 or L? if the deviation
from independence is sufficiently small. On the other hand, C(N¢? a) < D(N'?p, a) if p,
= 0,7 > 1, and if N'/?p, is sufficiently large. For a proof see Section 7.

The condition N'/%p; = 0, 2 < j < k, holds if the matrix of p;;, I <=i=<r,1<j<s, has
rank two, as is the case if the p,; are consistent with a latent-class model with two latent
classes (Good, 1965, and Gilula, 1979). If (3.1) holds and NV%) — § > 0 as N — oo, then it
is easily verified that N'%p, — 0, 2 <j < k, and N'/?p; — 8. Thus the canonical correlation
tests and the X2 and L? tests are likely to be most satisfactory if the p;; have rank 2 or if
(3.1) holds.

5. Asymptotic properties of the canonical correlation statistic. In this section,
the p;; are assumed to depend implicitly on the sample size N. In this way, asymptotic
power can be considered. The basic results on NR? are provided by Theorem 1.

THEOREM 1. Assume thatp;j—pl,l<i<r,1<j=<s.Let0<a<1l. Then
(5.1) P{NRi>Ar—-1,s—1,a)} —P{F'(r-1,s—1, N?)>Ar—1,s—1,a)}— 0.

ProoF. Case l. Assumep}; =p/p¥ and

(5.2) Nl/za,-j—> >\,'j, 1=:i=< r, 1 SjS S.

Define the r X s matrices A = {\j;l1<i=sr,lsj=<s}andD={d,,:)1<i<r 1=;=
s}. Then N'2D is the matrix of standardized residuals in the independence model
(Haberman, 1973). Let T'= {t;s:1 <i<r, 1 =i < r} be the orthogonal projection on R" of
rank r — 1 with elements

ti =08y —pi’p/’, 1=isr 1=i=r

and let U = {uj;:1 =j =< s, 1 =j < s} be the orthogonal projection on R’ of rank s — 1 with
elements
w; =8, — p' ¥ p' l1=j=<s 1=j <s

Here 8 is the Kronecker function. Let T'® U be the Kronecker product of T and U. By
Haberman (1974, pages 104, 138, 140, 212), N*/2D converges in distribution to the r X s
random matrix Z with distribution N(A, T ® U). If asterisks are used to denote transposes,
so that D* is the transpose of D and Z* is the transpose of Z, then NDD* — 4 ZZ*. Since
NR? is a continuous function of NDD* (Wilkinson, 1965, pages 72-77), NR} converges in
distribution to the largest eigenvalue of ZZ*. Let V= {v;,;:1=i<r—1,1<j=<s—1}. Let
o= {p/*1=<i=r}and 7= {p*:1=<j=s),sothat A*6 = 0 and At = 0. There exists an
rX (r— 1) matrix I', an s X (s — 1) matrix A, and an (r — 1) X (s — 1) matrix Q such that
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A =TQA* TT* =T, AA* = U, T"*I" = I,_,, the (r — 1) X (r —1) identity matrix, A*A = I,_,,
and @ = {§;§,:1<i=<r—1,1=<j=s— 1} for a nonincreasing sequence {;,, 1 <j<s—1,
such that ¢, = 0 for any j > k. By Eaton (1970), Z is distributed as I'(V + Q)A* and ZZ* is
distributed as I'(V + Q)(V + Q)*I"*. Since I'*T" = I,_,, the largest eigenvalue of ZZ* is also
the largest eigenvalue of (V + Q)(V + Q)*. This latter eigenvalue has a F'(r — 1, s — 1,
£¢) distribution if £ = {£;:1 =j < k). Thus NR} -4 F'(r — 1, s — 1, £). Since N'?%p — §,
F'(r—1,s—1,N"p) - F(r—1,s— 1, £) and (5.1) holds in this case.

Case 2. Let N¢2 N = 1, be bounded above. Then every subsequence of the {p,;:1<1i
< r,1=j < s} contains a subsequence such that (5.2), and therefore (5.1), holds. Thus
(5.1) holds if N¢? is bounded above.

Case 3. Let N¢? — . Since ¢* = Y%, p}, Np? — . Since
F'(r—1,s—1, N'?p) = Yl (v1; + N%.8,)%,

it follows that P{F'(r — 1,s — 1, N?p) >A(r— 1, s — 1, a)} — 1 as N — . Similarly, let
= {m:1 =i =<r} be an eigenvector of H corresponding to the eigenvalue p3 such that
Y1 p? = 1. Then

NR} = 27=1(2f=1 /-"idlj)z
and d,, — a,, —, 0, where —, denotes convergence in probability. Since

2§=1(2f=1 ,uzaij)z = P%

it follows that NRf —, 0. Thus P{NRi > A(r— 1,5 —1,a)} = 1 as N — 0, and (5.1) holds.
Given these three cases, it follows that (5.1) holds whenever p,, »p;,1<i<r,1<j=<s.
]

The case of constant p,, implies that NR? —, F(r — 1, s — 1) if (2.1) holds and that
P{NR? > A\(r — 1, s — 1, a)} — 1 if (2.1) does not hold. Thus the theorem implies
consistency of the canonical correlation test and implies that approximate significance
levels of the test may be found by reference to the distribution of F(r — 1, s — 1).

6. Asymptotic properties of X2 and L?>. Results for X* and L® closely resemble
those for NR? To avoid technical difficulties, it is assumed in this section that p is a
function of the counts n,,. Since the likelihood kernel

(6.1) L(q) = II)., I}, gl

is continuous for q in the simplex Sof q = {¢,,;:1<i=<r,1=<j =< s} suchthatq, =0,1
=i=rl=<j=<s,and Y1 ¥-1 ¢;; = 1 and since @ is closed, some p always exists. By
Goodman (1979), p.. = Y j-1 pij = f,. and p.; = Yiv1 p,; = f,. Since L(q) = 0 < L(g) if q,, =
0 and n,, > 0 for some ¢ and j, p,, > 0 if n,; > 0. Thus X* and L are finite if the conventions
0/0 = 0 and 0 log 0 = 0 are used.

Corresponding to Theorem 1, one has

THEOREM 2. Assume thatp,,—p) >0,1<i<sr,1sj<s. Thenfor0<a<],

62) PX’>Ar—-1,s—1La}—P{F'(r—1,s—1,N%)>A(r—-1,s—1,a)} >0
and
6.3) P{L*>A0r—1,s—1,a)} — P{F'(r—1,s—1,N"?p) >A(r—1,s — 1,a)} = 0.

If N¢? is bounded above as N — o, then X? — L?, X* — NR?, and L? — NR} all converge
in probability to 0.
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Proor. Case 1. Assume (5.2) and (2.1). Let

(6.4) K(q) = Yie1 Y51 fiilog(fi/qys) = N7' log{L(f)/L(q)}
and

(6.5) J(@) = Tie1 X1 (f5 = 90)° /8y

for q € S. Thus

(6.6) L?=2N{K(g) — K(P)}.

The function L? is readily approximated by N{J(g) — J(p)}. To verify this claim,
observe that

(6.7 0=K(p)=K(g)

and that 2NK(g) is well known to converge in distribution to x3(u), where p =
Y71 Y521 AZ. The estimate g, is well known to be the maximum likelihood estimate of p,
under the independence model, and it is well known that f;; =, p;. The argument of Rao
(1975, page 356) implies that g, —, pJ and p;; —, 3.

By Rao (1973, page 356), if ¢;; > 0 whenever f; > 0, then

(6.8) K(q) =% Yim1 X5=1 fyfy — @4)°/25
for some z, between ¢;; and f;,. Thus

(6.9) 2K(g) = J(g)(1 + ¢

and

(6.10) 2K(p) =J(P)(1 +¢€),

where € —, 0 and € —,, 0. It follows that
(6.11) L? — N{J(g) — J(P)} —, 0.

An approx1mat10n for J(P) can then be obtamed Let ¢, = log(p;;/g;), so that —o < ¢,
< w. If all p, are positive, then t; = & + B + ¥ + \141,1/,, where

Zf:l ﬁ 185 = Z‘;=1 f-l’Yj = Z:=1 ﬁ,Uq = 23=1 f.,Vj =0
and
Yioi fifif = Y51 £ = L.

Let w; = g;(1 + ¢t,). One may then approximate J(p) by J(w).
To verify the approximation using J(w), note that

J(P) = J(w) — 2G, + G,
where '
Gy = Yie1 Xi=1 (fij — wy) @y — wy) /8y
and
Gz = Yim1 Yj-1 (D — wy)*/8y
By Schwarz’s inequality, G: = e; {J(wW)G:}"/?, where | e;| = 1. By the quadratic formula,
(6.12) {(J(W)}2 = e,GY? + 5, (3G + J(P) — G2},

where s; is 1 or —1.
To use (6.12) to achieve the desired approximation, it must be shown that NG —; 0.

To do so, let

o(x) =e*—1—x,
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so that | o(x) | < x? for | x| sufficiently small. Then
Gz = ¥io1 Yj-1 85 {(0(t,))}".
By Taylor’s theorem,
(6.13) X*/N = Yie1 Xi=1 (By — £5)°/8y
= Yie1 X5-1 8y {ts exp(t}))?

for some t;} between 0 and ¢,. Since ¢; —, 0, G2 = e.X?/N, where e; —, 0. By Schwarz’s
inequality,

X?/N = Yies Y51 (fy — 8y — fi+ Pi)?/8y
= J(g) + JP) — 2¥1 Y1 (fy — &) fiy — Py)/8gy
=J(g) + J@B) + 2{J(@)J D)}~

Since NJ(g) is the Pearson chi-square statistic for testing independence, NJ(g) —o x2(u).
Given that 2NK(g) —o xZ(n), K(P) = K(g), and (6.10) holds, it follows that NGz —, 0.
Squaring (6.12) shows that

(6.14) N{J(w) — J(P)} — 0.
Thus
(6.15) L?* — N{J(g) — J(w)} —, 0.
For anye > 0,as N — »
(6.16) P(L? - NRi>¢) — 0.
This claim follows since whenever all p;, are positive,
(6.17) J(g) —JI(w) =h*— (b= h)’ =& =3 f. B = 2 %),
where

h =31 Yia (fy — gy)iud, = Yim1 i1 fu(fls — @) (3, — B)
for a = Y1 fi.fand b = Y5, f,7;. Since
Y1 filfli — @) = ¥j-1 f47,— b) =0,
Yo filfli— @)’ =1-a’,
and
Yoo [ —b)°=1-0b°  |h|=R.

Thus (6.16) follows.
On the other hand, as N — oo,

(6.18) P(L* — NRi< —e) — 0.
To verify this claim, let p* € @ satisfy
pi = ¢ 'gy exp(Rix:)).

Here x, and y, are defined as in Section 2 so that (2.2) holds, Y-, fi.x;=Y5-1 f,5, =0, and
St fix?=Y1 f,¥?=1. One has

c= Y1 Y5-1 8y exp(Rix.y) = 14 Yie1 Y1 o(Rix. ).
Clearly
(6.19) L’ =2N{K(g) — K(p)} = 2N{K(g) — K(p*)}.
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Since NRi—,, F(r — 1, s — 1, £), where £ is defined as in the proof of Theorem 1, it readily
follows that

(6.20) NQ2K(p") — Yie1 X5=1 (fy — 8y — 8iR1x:3;)?/84} —» 0.
Since, as in Householder and Young (1938),

Ef=1 Zj’=1 (ﬂj — &8y — qulxzyj) /8y = J(g) — R%,
(6.9), (6.19), and (6.20) imply (6.17). Thus L* — NR?—, 0 and (6.2) holds.
In the case of X?, if p,, > 0, then
(6.21) Yimt Yo gt =2+ &°+ N fi B+ X £ 7).
The mequallty h® = R%, (6.2), (6.13), (6.15), and (6.17) imply that Ny* — NR} —, 0,
— N{y? =, 0, and X> — NR}—, 0. Thus (6.2) holds, and X* — L*> -, 0.

Case 2. Let N¢? be bounded above as N — . Then the argument proceeds as in Case
2 of the proof of Theorem 1.

Case 3. Let N¢® — «. Then NR} — , . Let 8 < 1 be a function of N such that SR,
—, 0 and BNR3 —, . Let x, and y; be defined as in Case 1, and let

Py = c gy exp(BR1x.Y)),
where
€= Yi-1 Xj-1 8 exp(BR1x:Y)).
Thenp’' = {p,:1<i<r,1=<j=<s} € @ and as in (6.19),
L? = 2N{K(g) — K(p’)} = BNR2 — N log c.

Since (8%R3) ™' log ¢ —, %, L* —, . As in Case 3 of the proof of Theorem 1, it follows that
(6.3) holds. Since L* —, o and since Yi-1 ¥5—1 %: ¥, fi = Yie1 Y5=1 X, ¥; Dy (Goodman, 1979),
L? = 2N ¥ie1 Y51 Py log(Dy/8y) —p
Using a relationship analogous to (6.8), it easily follows that X* —, o, so that (6.3) holds. 0

7. Asymptotic power comparison for p; = 0, 2 <j < k. To show that C(N¢?, )
< D(N'"?p, a) for N'/%0, = N'?¢ sufficiently large in this case, one proceeds by analogy.
Let X,,1=i=<r—1,1=<j=<s— 1, be independent normal observations with respective

means 1, and variances 1. One may argue as in Ghosh (1964) and Stein (1956). The joint
density f(-, p) of the X, relative to Lebesgue measure has the exponential family form,

fx, p) = (2m) "2V exp(—1 sm1xf — % X5 Tisl ph + XTIt Xom1 Xoy)

A possible unbiased test of size a of the hypothesis p, =0, 1=i<r—-1,1=<j=<s-1,
rejects only if (¥/=f ¥5-1 x,a.8,)’ =A(r—1,s — 1,a) forsomea = {a,: 1 <i=<r— 1} and
b={b:1=<j=<s— 1) such that Y= a? =351 b7 = 1. This test is well known to have
power D(c, a), where ¢ = {¢,: 1 = j = k} and ¢, is the jth largest eigenvalue of the (r — 1)
X (r — 1) matrix with elements

Dy T, l=si=sr-1, 1=si'=r-1

An alternate unbiased test of size «a rejects if and only if Yoo Y0 Xi= x,, This latter test
has power C(d, a), where d = Y*_; c2. Let u, = N %pen,, wherez,_l e2=Y1 n7=1. As
in Stein (1956), it follows that for sufficiently large N'/%p,

C(d, a) = C(N$? a) < D(c, a),
where ¢c; = N?¢pand ¢, =0,2< j<k.
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