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SOME NONPARAMETRIC TECHNIQUES FOR ESTIMATING THE
INTENSITY FUNCTION OF A CANCER RELATED
NONSTATIONARY POISSON PROCESS!
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and William Marsh Rice University

An attempt is made to model the appearance times of metastases as a
nonstationary Poisson process. Three algorithms are developed for this task.
The first follows the kernel approach used in probability density estimation
by Parzen and Rosenblatt; the second extends the work of Grenander on
mortality measurements to a more general censoring scheme appropriate for
the present application; the third employs a discrete maximum penalized
likelihood approach. We obtain estimates using both stratification and the
proportional hazards model. Contrary to customary belief, it seems that the
intensity functions associated with the tumor systems under investigation are
nonincreasing.

1. Introduction. The kinetic mechanism for the spread of cancer by metastases is not
well understood. In general, it is believed that the untreated primary tumor grows roughly
exponentially with time, throwing off metastases in random fashion proportional to some
monotone increasing function of the primary mass. These metastases grow according to
the same kinetic mechanism as that of the primary. As the metastases grow, they
themselves are thought to produce metastases, and so on.

For an explication of current considerations in modelling of the metastatic process with
twenty-nine references to the clinical and experimental literature see the monograph
(Swan, 1977). Liotta et al. (1976) explicitly argue that the number of metastases rapidly
increases with time.

If these notions are correct, then one should expect that the appearance times of
metastases could be modelled as a nonstationary Poisson process with intensity function
A(¢), whose functional form can only be conjectured. For example, if the probability of a
metastasis being produced is proportional to the total number of tumor cells present in the
body, we might expect that A(¢) would be roughly exponential. Rather than assuming a
functional form for A (¢), we have elected to let the data determine its shape.

We shall assume that we have metastasis data on n patients. Each of these patients has
his clinical clock set equal to zero at the time of diagnosis and removal of a trunk
melanoma. We follow the ith patient, say, for a time T;. During the time interval (0, 7]
the patient exhibits metastases at times #;; < ;o < - - - <tm,. If the patient dies at time T,
then this will be taken as a censoring time for that patient.

Now it is clear that the time of observation is really a concatenation of (at least) two
stochastic processes—namely the time at which a new metastasis is thrown off, and the
time required for a metastasis to develop to observable size. We shall assume that
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observation times of metastases follow a nonstationary Poisson law with intensity function
A(t). That is, for any given patient, the probability that no metastasis will be observed
from time ¢, to time ¢, will be given by

exp[— Jr A7) df].

1

Then, assuming that each patient’s intensity of metastatic display is given by the same
function, A(¢), the joint likelihood given the times of metastasis observations is
T,

v

L(A) = [TT&1 121 A(ty)] exp [— =1 J A7) dTJ-

0

The naive nonparametric maximum likelihood estimate for A is
As(t) = Yt Y 7 8(t — ty),

where §(-) is the Dirac delta function. The estimate A;(¢) gives an infinite value to the
likelihood, and is generally a poor estimate.

Our task will be to obtain useful nonparametric algorithms for estimating the intensity
function A and then to use them for the analysis of metastasis display intensities for a
number of melanoma patients-at the M.D. Anderson Hospital and Tumor Institute.

Clevenson and Zidek (1977) develop histogram and kernel estimators assuming {A(¢)}
to be a wide sense stationary stochastic process with specified covariance function and
mean trace. Leonard (1978) estimates a Poisson intensity using the relationship (Snyder,
1975) that the conditional distribution of » appearance times given that n observations
occur in (0, T') is the same as the distribution of the order statistics of a random sample of
size n from a distribution with density

T
f(t) = )\(t)/J' A(r) dr.
0

In obtaining his prior likelihood estimator, Leonard assumes that f’/f possesses the
probability structure over differentiable function space of a specified Gaussian process.
Rice and Rosenblatt (1976), extending the results of Watson and Leadbetter (1964), use
the relationship

£

A(t) “1-F@)’

where F'is the distribution function of appearance times, to obtain three density estimates
for A(-) based on smoothing expressions involving the empirical distribution function F,.

Because of censoring considerations in the present application and the desirability of
being able to impose constraints on A, we have elected in this paper to use direct estimates.
In Section 2 we obtain a kernel estimator for A. In Section 3 we give an algorithm for
maximum likelihood estimation where A is assumed to be nondecreasing. In Section 4 we
discuss maximum penalized likelihood estimation (MPLE) of A. In Section 5 we discuss a
MPLE implementation of Cox’s proportional hazards model. Each of our algorithms is
designed to require a minimum of input information. All design parameters are data
determined. Moreover, no complicated prior information or structure is required for their
use. In Section 6 we describe an analysis of melanoma metastasis data, considering only
patients who do develop metastases. Contrary to expectations, we find the resulting
intensity functions are nonincreasing.

2. A window type estimator for A\. Motivated by Rosenblatt (1956) and Parzen
(1962), and following the observation of Silverman (1978) and others that kernel shape is
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of marginal importance, we consider the following estimator, using Rosenblatt’s step-
function kernel,

Y(¢, h(2)
(2.1) Au(t) = = RED)
where
Y(t, A(t)) = number of metastases observed during (t - h_(2t2 t+ h;t))

£(t) = number of patients still at risk at time ¢.

In a manner similar to that employed for kernel width selection in probability density
estimation in Tapia and Thompson (1978), it can be shown that, if the number of patients
censored in (¢ — h/2, t + h/2) is negligible relative to £(¢) and if A is twice differentiable at
t, then

A(t) | R*A(D) 1 )
(2.2) MSE[A.(2)| £(2)] = mot it o) <£(t)> + O(RK).
Consideration of the two leading terms here suggests the use of
2\ 1
(2.3) h(t) = (5(0) OB

As in the probability density estimation case, A(¢) is a function of what is being estimated.
Therefore, by analogy with Scott et al. (1977), we use an iterative algorithm to estimate
A(t) at each metastasis time ¢;. We begin with an initial constant estimate A, equal to the
total number of metastases divided by the total duration of the study. Then we iterate as
follows: Given a previous estimate of A, we update A by (2.3) and obtain a new estimate
X, from (2.1). The interval (¢ — A/2, t + h/2) may overlap one or both endpoints of the
study in which case the interval is truncated to the endpoint.

A convergence criterion is that the updated A, be close to the previous estimate.
However, it is possible for the s to cycle over a set of values. In this case, we look for
convergence of the Cesaro sum

(2.4) YN R/ (N + 1)

where X, is the estimate of X in the jth iteration. Our experience has been that termmatmg
after twenty iterations (if the other criteria are not met) does little harm.
In Figure 1, we show the use of thisA,, algorithm for the case where

(2.5) A =1 for ¢t€ (0,5)
=0 for t€&(0,5),

with 500 simulated patients for whom censoring is applied after the first metastasis or 5,
whichever comes first (Curve A).

Because this procedure estimates the hazard function locally whether the Poisson
assumption is true or not, it is useful for comparison with global procedures which use this
Poisson assumption. Moreover, this algorithm can be performed quite satisfactorily on a
hand-held calculator. However, because of the well known tendency of random points to
fall in apparent clusters (Feller, 1968, page 161), any procedure for local estimation of A
will exhibit considerable fluctuation (e.g., compare Curve A with Fig. 6 in Rice and
Rosenblatt (1976)). The global estimation procedure developed in Section 4 admits of
easier generalization and imposition of constraints than does A,,.

3. A constrained maximum likelihood algorithm. We now consider an estimation
procedure similar to that proposed by Grenander (1956).
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Fic. 1. Estimates of intensity for data generated from Poisson process with A = 1.

PrROBLEM 1. Let A(¢) € M(0, T], the class of all nonnegative monotone nondecreasing
functions on (0, T']. We seek to
T,

maxyemo,7110g L(A) = Y1 ¥ 72 log A(2,) — 7=1f A7) dT.

0

LEMMA 3.1. A solution to Problem 1 must consist of step functions closed on the left
with no jumps except at some of the metastasis points.

ProoF. Increases in log L(A) can occur only by an increase in A(-) at the metastasis
points. Since A(-) is nondecreasing, any increase of A(-) away from these points will make
a negative contribution to the log likelihood, via the integral terms, with no attending
contribution by the log terms. O

Let us sort the metastasis times into a single list. This gives us the ordering

0<TI<Te< +0:e < Ty < Ter1=T=maxT,.
Let ¢, = number of metastases observed at time 7,,

d, = ¥ max[0, min{(7, — 7,), (1,41 — 7,)}] J=1,2,...,s.
Clearly for ¢ < 71, the optimal value of A(¢) is zero. Then as a consequence of Lemma 3.1,
we may simplify Problem 1 to the finite dimensional

PROBLEM 1’

(3.1) maxy o log L(A1, Az, «++, As) = Yi1 (e log A; — dil,).
Since it leads to a useful algorithm, we take the time to give a constructive proof for the

existence and uniqueness of a solution to Problem 1'.

THEOREM 3.1. The solution to Problem 1’ exists and is unique.
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ProoF. Letz =A;,j=1,2, ... s. If z1, 2, - -+, 2,1 have already been selected, then
2, is that value of z which is greater than or equal to z,—; and maximizes
f(2) = cs log z — dsz.

The unique local maximum of f;(z) occurs at z = ¢,/d;, so that

Cs .o Cs
_ if —> 2z —1
ds d~ "
2s =
.. C
2s—1 lf = = 2s—1.
ds

Next, let D} (25-1) be the maximum of the last term of the sum in (3.1) given the choice of
2s-1, 1.€.,

cslog zs—1 — dszs—1 if 21 = %

Di(z-) = c c cs
slog — —dy— iz <—.

¢ log ) ) 25-1 4

Note that D¥(z,-1) is at first constant, then decreases monotonically to — « as z,;
increases. Suppose we have zi, 22, - - -, 2,—2. Then 2,_; must be that value which is greater
than or equal to z,_» and maximizes

cs-1log 251 — ds—12s-1 + D¥(25-1).

Since the derivative is monotone, starting from o at 0 and going to — » as 2,_; — o, the
maximum is unique. If z,-; =< (¢;)/(ds), the derivative is (cs-1)/(2s-1) — ds-1, and the
maximum occurs at (¢s—1) /(ds—1) if (cs—1)/(ds—1) = (¢5)/(ds). If 2521 > (¢5) /(ds), the derivative
equals (cs—1 + ¢5)/(2s-1) — (ds—1 + d), and the maximum occurs at (¢cs—1 + ¢5)/(ds-1 + d;)
if (co-1)/(ds-1) > (c5)/(ds).

Let

D$(z,—2) = max,,_ > _, {Co—1108 2,21 — ds—125-1 + D (25-1)}.

Thg maximum occurs either at z,» or at one of the points (cs—1)/(ds-1), (cs-1 + ¢s5)/
(ds—1 + ds) depending on z,_». Again, D$(z;—) is first constant in z,—» and then decreases
to — oo,

Next, assume D} (2,_;) is already defined and is first constant in 2,_, and then decreases
to — «. We choose z,_, which is greater than or equal to 2,_x—; and maximizes

cs—r log 2sr — ds—r2s— + D¥(25-2).
Again, the maximum is unique and
{cs—rlog x — ds_rx + d¥(x)}

Di:+1 (zs—k—l ) = IMaXy= Zo py

is of the same form as D#. Proceeding in this way we obtain, finally, the optimal value
21 = }\1 = }\(Tl).
The problem then returns to the solution in the domain [7., T'] with fixed 2, etc.
REMARK. We note that Problem 1 without the assumption of monotonicity has no
solution. Moreover, the numerical implementation of the maximum penalized likelihood
estimation (MPLE) algorithm in the next section includes the present algorithm as a

special case. However, relative to the MPLE procedure, the unpenalized algorithm in this
section is computationally simple.

4. A maximum penalized likelihood algorithm. To remove nonsmooth estimates
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of A from the feasibility set we shall subtract a penalty term from the log likelihood; see
Tapia and Thompson (1978). We shall seek solutions to

PROBLEM 2.
T,

maxyes J(A\, a) = Yoy Y74 log A(ty) — Yy f A(r) dr — | A

0
where S is a closed convex subset of H*(0, T) = {(A|AY € L*0, T);j=0,1, ---, s = 1},
AY denotes the jth derivative,

T
||)\||2=23'=0an (Y (1))?dr  with >0 for j=0,1,---,
i )

and T = max{T}. It is well known that H*(0, T') is a Hilbert space. (See Theorem 1.1 of
Lions and Magenes (1972)).

DEFINITION. We recall that a Hilbert space H defined on (0, T) is a reproducing
kernel Hilbert space (RKHS) if pointwise evaluation is a continuous operation, or
equivalently, if for every ¢ € (0, T') there exists M, such that | f(¢) | < M, || f| for all f € H.

LEmMA 4.1.  H*(0, T') is a reproducing kernel Hilbert space.

PRroOOF. See Theorem 9.8 of Lions and Magenes (1972).

LEMMA 4.2 Let S be a closed convex subset of a Hilbert space H. Let J:H — R be
continuous in S, twice Gateaux differentiable in S with the second Gdateaux variation
uniformly negative definite in S. Then J has a unique maximizer in S.

PRroOOF. See Theorem 7 of Appendix I of Tapia and Thompson (1978).
THEOREM 4.1 Problem 2 has a unique solution in H*(0, T) n {A|A = 0}.

Proor. Clearly H*(0, T) n {A|X =0} is closed and convex. Since H*(0, T) is a RKHS,
we know that pointwise evaluation is a continuous operation. To establish the continuity
of Jin H°(0, T) n {A|A = 0}, we then need only show that for any sequence such that A,
— Ao in H*(0, T) norm, [§ A.(1) dr = [§ Ao(r) dr. But this is obvious because of the
H®(0, T) norm. Finally, a straightforward computation shows that the second Gateaux
variation of ¢/ at A in the direction 7 is given by

2
ty
T N, 1) = =58 5 T g2 < )l
AT(E,)

But then J is uniformly negative definite on H*(0, T') n {A|A =0}.0

To obtain a numerical implementation of the MPLE algorithm, we have used the robust
constrained nonlinear optimization routine STEPIT (Chandler, 1975). Because of the
rather high storage requirements of STEPIT, we have employed a step function approxi-
mation with (0, T') divided into 50 intervals.

COROLLARY 4.1. If X is nondecreasing, Problem 2 has a unique solution in this set.

ProoF. Follows immediately since H*(0, T') n {A|A >0, \’ = 0} is closed and convex.
Because of the naturally occurring term — [{ A(r) d7 in J(\, ) we can use ao = 0. As
a practical matter, in our discrete implementation, no instability results when we let a; =
0 as well. Consequently, we are left with only one design parameter as. The method for its
selection is to pick a large value of a; and to plot the resulting MPLE. Then we successively
reduce this a; value by negative powers of 10 until high frequency wiggles appear in the
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estimate. At this point we return to the previous estimate which did not exhibit the high
frequency wiggles. A graphical display of this interactive approach in the probability
density estimation case is given in Tapia and Thompson (1978), pages 130-138.

Let us consider again the 500 simulated patients with constant intensity in (2.5). In
Figure 1 (Curve B) we examine the MPLE without monotonicity constraints using ao =
a; =0 and a; = 1. In Figure 1 (Curve C) we show the MPLE using the {a;} above but with
the constraint that A be nondecreasing on (0, 5).

We observe that the unconstrained MPLE estimates give curves close to smoothed
versions of the kernel estimates. In analyzing real data we can use the kernel estimates as
rough but robust checks for the MPLEs. We note that the imposition of prior information
in the form of constraints on the MPLE solutions is straightforward. Such is not the case
with kernel estimators. Moreover, as we shall note in the next section, it is easy to
generalize the MPLE to more complicated models.

5. A maximum penalized likelihood solution using the proportional hazards
model. In an attempt to estimate an individual intensity function for each patient, we
might try to estimate A;(¢) fori=1,2, --- ,n and t € (0, T;). We need, in estimating A,, to
use some mechanism for taking advantage of more than the metastasis record {¢;:j =1, 2,
.+« ,m;}. It might be possible to use the entire ensemble {¢,:i=1,2, ... ,n;j=1, .-+ ,m;}
if we had some model of similarity of patients. One of the simplest such models is the
proportional hazards model of Cox (1972), according to which

(5.1) Ai(t) = A(2) exp(z]B); i=12--.,n;

where A(t) is the same for all patients, z is a k-tuple of risk factors, B is a k-tuple of
regression coefficients and

217‘,3 = 25;1 ,312iz~

Accordingly, following our approach in Section 4, we are led to consider

PROBLEM 3. maxopges @\, B, @ v) = YL Y% logA\(ty) + Y% mizlB) —
S, exp(zfB) [T A(r) dr — || (A, B) || %, where 2; € Ri,

T

52 B2 = Do oy f A2 dr + y T B2
0

with ao, a, -+ - , @y y > 0, and S = [H*(0, T) n (A|A=0}] X R

REMARK. Note that Problem 3 is not separable into two problems, one involving only
A, the other involving only S.

THEOREM 5.1 Problem 3 has a unique solution in S.

PRrROOF. Clearly H*(0, T) X R; is a Hilbert space using the inner product implied by
(5.2). Moreover, S is a closed and convex subset of H°(0, T') X R;. From Theorem 4.2, we
have established the continuity of @. The second Gateaux variation at (A, B8) in the
direction (m;, 72) is given by

T,

— Y% (2Mm2)? exp (27 B) f IMT) dr

0

m ni(¢y)

Q" B)((m, ), (my ) = —Bfa T o

(5.3)

T,
=2 Y (27m2) exp(2]p) f m(r) dr = 2| ||® = 2[n21® < = |, m2||®.
0

So @ is uniformly negative definite in S. 0
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FiG. 2. MPLE of intensity for data generated using proportional hazards model with A = 1.

REMARK. We note that it was to establish the uniform negative definiteness of @ that
we used the assumption z;, 8 € Ri. In practice, this assumption is probably unnecessarily
restrictive, being an artifact of the method of proof. However, because of the form of (5.1),
it would not be difficult to arrange for z;, 8 € Rj in most practical situations. In our
numerical work, we have not experienced any instability in our algorithms when we
remove the constraint that 2, 8 € Rf.

COROLLARY 5.1. If A is nondecreasing, Problem 3 has a unique solution in this set.

ProoF. The result follows immediately since [H*(0, T') n {A|A =0, X" = 0}] X R} is
closed and convex.

In Figure 2, we show that MPLE for A and B for 100 simulated patients where A(¢) = 1
for t € (0, 5), A(t) = 0 for ¢ & (0, 5), 8 =1 and z is N(1, 1). Censoring is after the first
metastasis or time ¢ = 5, whichever comes first. We have used y = ap = a; = 0 and a2 = 1.

6. Analysis of melanoma metastatic data. We recall that according to the usual
notions of the spread of cancer, the metastatic intensity function A(¢) should increase with
t—perhaps at an exponential rate. We shall examine two sets of data from patients with
trunk melanoma treated at the M.D. Anderson Hospital and Tumor Institute (McBride et
al., 1976). First we consider 152 patients who were treated for regionally spread melanoma
and subsequently developed distant metastases. The time of the first distant metastasis
for each was noted. In Figure 3 (Curve A) we note the window estimate (see Section 2) for
the intensity function of metastatic display. Although some high frequency wiggles are
present, the general pattern of the intensity estimator is clear.

In Figure 3 (Curve C) we show the unpenalized likelihood estimator assuming the
intensity is nondecreasing in time (Section 3). The near constancy of the estimated
intensity is seen. However, the window estimator in Figure 3 makes us call into question
our prior assumption as to the nondecreasing nature of the intensity. The maximum
penalized likelihood estimator (Section 4) with ap = oy = 0, az = 10 and without any
monotonicity assumptions gives us, in Figure 3 (Curve B), effectively a smoothed equivalent
of the window estimator.

Next, in Figure 4, we show the MPLE for 192 patients who presented themselves with
local melanoma and subsequently displayed distant metastases. There seems to be strong
evidence that the intensity is nearly constant, not increasing.
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Fi1c. 3. Estimates of intensity of metastatic display {(regional to distant) for 152 patients with
melanoma of the trunk.
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Fi16. 4. MPLE of intensity of metastatic displa)'r (local to distant) for 192 patients with melanoma of
the trunk.

The starting time for events used in Figure 3 is the time of known regional spread of
disease. This could be either time of progression for previously treated patients or time of
admission for new patients with regionally spread disease. The starting time for events in
Figure 4 is time of admission. Both of these times as well as the end event, known distant
metastases, are subject to considerable individual variation. However, they represent the
best obtainable clinical data and such times are the usual basis for clinical trials of
competing treatments.

By definition, the proportional hazards model in (5.1) should be most useful when the
ratios of intensities for various strata are in fact constant in time. We have not found
natural risk factors in the present investigation which would give us insight beyond those
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F1c. 5. MPLE of intensity of metastatic display (both local and regional to distant using proportional
hazards model) for patients with melanoma of the trunk.

obtained by stratification according to stage of presentation. However, by way of demon-
stration of the use of the MPLE technique in Problem 3, we consider the estimates
obtained using (5.1) in the case where local disease at presentation is coded as z = 0 and
regional disease is coded as z = 1. The estimated (A, 8) is shown in Figure 5.

The nonincreasing nature of our intensity estimates appears to be inconsistent with
orthodox notions of metastatic progression. Nor does the nonincreasing intensity of
metastatic display appear to be a property only of melanoma. Preliminary results carried
out on breast cancer data at the Curie-Sklodowska Institute in Warsaw using our algo-
rithms indicate that, for that neoplastic system as well, the intensity of metastatic display
is roughly constant.
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