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ASYMPTOTIC EXPANSIONS FOR CORRECT CLASSIFICATION
RATES IN DISCRIMINANT ANALYSIS

BY MARK J. SCHERVISH

Carnegie-Mellon University

When classifying an observation into one of 2 multivariate normal distri-
butions based on samples of correctly classified observations, two estimates of
the probability of correct classification, called the apparent and plug-in correct

~ classification rates, are considered. Asymptotic expansions are found for the
means and variances of these estimates. It is shown that these expansions can
be used to help reduce the bias of the estimates. In the course of finding the
expansions, an asymptotic expansion for the conditional joint density of two
observations given the sample mean and pooled covariance matrix is found.

1. Introduction. Much work has been done concerning the probability of correctly
classifying a random vector X as belonging to one of two multivariate normal populations,
c.f. Lachenbruch (1975). Suppose now that X has one of £ = 2 p-variate normal distribu-
tions, denoted by P, = N,(u;, V') with V nonsingular. For a simple loss function, Rao (1954)
finds the Bayes classification rule with respect to the prior distribution which assigns
probability =, to distribution P,. The Bayes rule simplifies to:

Classify X as population j if, fori =1, .-+, k,

(1.1) log(mi/m) + (. — w)' VX + %(wV 'y — w.Vu) = 0.

If the parameters are unknown and a sample X;;, .- -, Xin from P; is available for i =
1, - ., k, then the Bayes rule (1.1) can be estimated by using the estimate T'= (X,, - - -, X,
W) of (i, - -+, ux, V), where W is the pooled sum of products matrix divided by its degrees
of freedom n.

There is no loss of generality in considering only the correct classification rate for
population (distribution) £, since the populations can be renumbered. The estimate of rule
(1.1) is called the sample rule and for j = k is given by:

Classify X as population k if fori=1, ---, 4

(1.2) log(m/m) + (Xi — XWX+ %(XiW'X, - XIW'X) =0,

where /= k — 1. The distribution of the statistics (1.2) is the same for all nonsingular V,
hence there is no loss of generality in assuming

(1.3) V=1L

Following Lachenbruch (1975, page 30), define the apparent correct classification rate
for population i, denoted by ACCR, to be the proportion of Xj;, ---, X,, which are
classified correctly by the sample rule. Another estimate of correct classification rate is
obtained by pretending that the estimates 7' are the parameters and computing the
probability that (1.2) occurs when X ~ P,. This estimate will be called the plug-in correct
classification rate, PCCR;. The purpose of this article is to find asymptotic expansions for
the means and variances of ACCR,, and PCCR,, with errors which are O(N~2), where N
= min{ny, - - -, nx, n}. The leading term O (1) of the mean expansions will be the probability
that the Bayes rule (1.1) classifies X correctly when X ~ P,. These expansions will then be
used to find improved estimators of the error rate.
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It has been noted by Lachenbruch (1975, page 33), among others, that the apparent
error rate (1 — ACCR,) is not a particularly good estimator of error rate. It is noted in
Section 6 that with the aid of the asymptotic expansions the bias of 1-ACCR, as well as the
bias of 1-PCCR, as estimators of the error rate for the sample rule can be reduced. In
Section 6, the results of Monte Carlo studies are given in which the bias-corrected ACCR,
and PCCR, are compared to other estimators of error rate. McLachlan (1973, 1976)
considers ACCR and PCCR in the special case & = 2. The present work, in addition to
handling the case of any %, attempts to make more clear the connection between the
asymptotic expansions for ACCR and PCCR by deriving them simultaneously. The results
will be stated without proofs in the text. The proofs are given in the appendix for the
serious reader since they are mostly quite technical.

2. The conditional distribution of two observations given the sample mo-
ments. The following assumption is necessary for the remainder of this work.

AssUMPTION 1. The vectors .y, - - -, ux do not lie in any flat of dimension k — 2 or less.

Under Assumption 1, the dimension p is greater than or equal to /= %k — 1. This fact is
needed in Lemma 1 below as well as in Theorems 1 and 2.
Write ACCR, as

ACCR: =n;' I I,

where I; equals one if X, is classified correctly by the sample rule (1.2) and equals zero if
not. It is clear that E(ACCR,) = E (I,), and that E (I;) can be written as EE (I | T) where
T is the sample means and covariance matrix. Similarly E (ACCRZ) = n;'E (I;) + (n, —
1)n;'E (I.,), and E (I.L,) = EE (Il;| T). Since I and I, are measurable functions of X,
X2 and T, it would help to know the conditional joint distribution of (Xii, Xx2) given T.
Lemma 1 is useful in this regard.

LemMma 1. Under Assumption 1 and condition (1.3), the conditional joint density of

(Xr1, Xig) glven T = (X, «++, Xp, W) is

f(x1, x2) = 27) 7| W| lexp{—%(A1 + As))
2.1 (1 +pni' — 2n)"'p(p + 3) — ni'As,

+ {(p+3)2n)" = 2n) "} A + Ax) — 2n)'AL

- n) (AL + AB)] + G,
where

Ay = (xu— X)Wy, — Xa), i/ =1, 2,

and G satisfies

‘

(2.2) EJ G dxwmdxr = O(N7?),
o

for any subset Q of R? X R”.

To find the mean and variance of ACCRy, the term G is ignored, the remainder of f is
integrated over the appropriate subsets of R? X R”, and the expected value is taken over
the distribution of 7. If one were to ignore all of the terms in (2.1) enclosed in square
brackets, what would remain would be the density of two independent random variables
each with N,(X,, W) distribution. But this is exactly the distribution one assumes for X
when computing PCCR,. as the probability that (1.2) occurs. It is not surprising, therefore,
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that the asymptotic expansions for the means and variances of ACCR; and PCCR;, are so
similar.
3. The expected value expansions. First define o, = (1, — pr)’(t, — p) and = =

((ay)). Then set S = ((S,)) = HH', where
(X - Xyw?

(X, — X"k)’W’l/2
In view of (1.2), define
(3.1) Y=HW'VAX, — X)) +¢6i=1,2,
where

e= (e, -+, &) with g = Yo, — %S,.

If we define
B = {y€ Ry =< %oii — log(m/m),i=1, - -+, ¢},

then E(I,|T) = P(Y: € B|T) and E(I.I,| T) = P(Y: € B, Y € B| T). For the mean of
ACCR;, we need only E(I;|T), so we compute the conditional marginal density of Y;
given T using the transformation (3.1) on the density (2.1). The result is, ignoring higher
order terms,

g(y) =h*(y[1+42n)~" — @Cny) Ny — ey Sy —¢) — £(¢+ 2)(dn) !
(3.2)
+(£+2)2n) "y —e)'STH(y —e) — (4n) {(y — e)'S7H(y —&)}?],
where
hx(y) = (2m)~"%| S| exp{—Y(y — &)S™(y — &)}.

The mean of ACCR,, will then equal E[5 g(y)dy + O(N7?). It is not hard to see that if
px denotes the probability that the Bayes rule (1.1) classifies X correctly when X ~ P;,
then

(3.3) pr = j ¢(y) dy,
B
with ¢(y) = (2m) "7%| =| %exp(—% y' = 'y). Substituting the estimates 7T for the parame-
ters (w1, - -+, s, V) into (3.3) it follows that the plug-in correct classification rate,
(3.4) PCCR, = J h*(y) dy.
B

What we see here is that since the conditional distribution of Xj; given T is “nearly”
N,(X:, W), E (ACCR.| T) is “nearly” equal to PCCR,, the difference, to order N™! , being
the integral over B of A*(y) times the O(N™") terms which appear in (3.2).

THEOREM 1:  Under Assumption 1 and condition (1.3),
E(ACCR:) =pr+ Ri+ Ry + Ry + Ry + O(N7?),
E(PCCR:) =pr+ R1 + Rf + R + Rf + O(N™?),
where py is defined in (3.3)
=Y Cl!, R,=YYC%J%, Ri=YYD}J%,
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Ry=3¥¥YClradise  Ri=3¥3F Clrasdtian  Ri=3355 Dijrdtan
with all summations being over integers 1,2, --., {=k — 1 and
Ci=-p@2n)'ou+ (4 —p)2n) "'+ 4 —p+2,)2nx) "t +n" Y100+ Yoo,
Ci, = (4n) "o} + (2n) 'o,(1 + p) — (2nK) (- p + 4 + 0y Y Yom10™)
+ (2n) 7'8,(0, — 4 — £+ p) — Yoy ¥ 4-1 09071,
Clra = —(2n) 0,40, — 2n) oy + 0,) — (2n) 78,04, — (2n,)7'8:50,
Cirge = —(4n) 0,04 + (8n) (0,40 + 0.0,g) + (8n) 8,00,
+ (8n)7'8)00u + (8n,)7'8u0jg + (81) 10,40, + (814) (0ug + 0y + 0u + a0
D%;=C% —o,,{(¢+2)(2n)" — (2ny) "}, DYjge = Cijge+ 4n)'o,0,.
Also,
Ji= j ay$(y) dy,
B

Ji, = f (0'y)(a’y)p(y) dy — 6¥ps,
B
Jipg = J (') (0’y) (a%y)o(y) dy,
B

St = J (0*y)(0’Y) (6%y) (0"Y)p(y) dy — pr(06% + 0'%” + 067,
B

where o' is the ith row of 3™, and o” is the (i, j) element of ¥\ ~".

The theorem is stated in a rather structured format because, in the course of developing
the expansion, it is discovered that each term has a factor of the form I8 P(y)o(y) dy,
where P(y) is a monomial of degree at most 4 in the coordinates of y. It turns out to be
convenient, both for the proof of the theorem and later for the calculation of the expansion
via computer, to collect the terms of the expansion by the degree of the monomial P(y).
These are the R terms. The J’s are the integrals of the monomials, and the C’s and D’s are
the expected values of the coefficients.

Theorem 1 was stated for the special case ( 1.3), since the general case can be so reduced.
For arbitrary nonsingular V, replace p, by V"%, i =1, ..., kin all places. In particular,
0, becomes (i1, — )’V ™" (i, — pz). This remark will apply to the remainder of the results in
this article as well as to Theorem 1.

4. The special case 2 = 2. McLachlan (1973, 1976) considered the case of two
populations, i.e. k = 2, /= 1. It can be shown that the results of Theorem 1 agree with
those of McLachlan for both E (ACCRy) and E (PCCRy) to terms of order O(N7Y). Rather
than carry out all of the calculations, we will just check that E(ACCR;) — E(PCCR,)
agrees. McLachlan (1976) gives this difference in the case 7, = 7 as
(4.1) 8(A/32){8/n; — (12 — A% /n},

where A? = ¢;; and g is the standard normal density evaluated at —%A. The relevant terms
from Theorem 1 are

Jh = -%Ag,
Jtu = —(1/8A% + 3/2)A g,
Ci — D} = A*3/n — 1/ny)/2,
Ctin — D = —A%(4n).
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It follows immediately that (4.1) equals J%,(C% — D31) + J4111(Ciin — D411). The fact
that the expansion for E(PCCR;) agrees with McLachlan (1973) can also be checked
easily.

5. The variance expansions. Theorem 2 gives asymptotic expansions for the vari-
ances of ACCR,, and PCCR,.

THEOREM 2: Under the conditions of Theorem 1,
Var(ACCR;) = ni'ox(1 — px) + Rs + Rs + R, + O(N?),
Var(PCCRy) = R¥ + Rs + Rf + O(N7?),
where, with summations over i, ---,l=k — 1,
=YY JiJ}F:,,  RE=3YJiJjGi,  Re=23YY Jid;,Cl
Ry =2¥¥5% J0yd0lClsars  RY = 2333 I3, 3D g,
the J, C, and D terms are as in Theorem 1, and
F?; = (2n) 6% + 8,n. "o,
GE; = Fi, + ni'o,.

Note that the first term of Var(ACCRy,) is just the variance of a random variable with
binomial b(ny, px) distribution. The distribution of ACCR,, would be b(n;, p:) if the Bayes
rule (1.1) were used instead of the sample rule. The terms Rs + Rs + R, then, represent
the increase in variance due to using the sample rule.

6. Estimating error rates. The goal of error rate analysis is often to estimate what
Hills (1966) calls the actual error rate, which will be denoted ex(T), i.e. the conditional
probability given 7 that the sample rule (1.2) classifies a future observation X, independent
of T, incorrectly if X ~ P;. Both 1-PCCR,, and 1-ACCR;,. tend to be optimistic, i.e. low,
estimates of ex(T'). Schervish (1981) gives an asymptotic expansion for E{1 — e;(T')} which
is similar to those of the present article. If we write that expansion as E {1 — ex(T)} = px
+ @: + O(N™?), and we write the expansions of the present article as E (ACCR,) = px, + Q2
+ O(N %) and E(PCCR;) = P + Q3 + O(N™?), then one can use ea=1- ACCR; + Q2
- @, or ep=1-— PCCR;c + Q3 - Ql to estimate ex(7T'), where Q, is the estimate of @;
formed by using (X, ---, X;, W) as if they were (1, ---, s, V). The biases of the
estimates es and e, should be smaller than those of ACCR, and PCCR;, as estimates of
ex(T).

Simulations were performed on the Carnegie-Mellon University DEC-20 system to
compare the estimates e4 and e, to 1-ACCR;, 1-PCCR;, the “leave one out” estimator of
Lachenbruch and Mickey (1968) (L — M), and the “bootstrap” estimator using 100
bootstraps per simulation. This last estimator equals 1-ACCR,. + R where R is the estimate
of ex(T) — (1-ACCR,) described by Efron (1979). In some of the simulations the sample
mean vectors nearly violated Assumption 1. In such cases the matrix which estimates X is
nearly singular and the estimates e4 and/or e, can become negative or greater than one.
When e4 was out of range, it was replaced by ACCR,. When e, was out of range, it was
replaced by PCCR,. Let m denote the number of times such replacement was necessary.
Two cases were simulated 1000 times each. Each case had ui = [1, 0], 2 = [0, 1], u3 =
[0, 0], and V = I. The first case had n; = 10 for each i, and the second had n, = 20. The
results are given in Table 1. Using both bias and MSE equal to the average of {X — e;(T)}2
over the 1000 simulations as measures of how close an estimate X is to es(7'), the results
are conflicting. The bootstrap estimate had the smallest bias, but nearly the largest MSE,
while e, had the smallest MSE and the second or third smallest bias. These results are
similar to results reported by McLachlan (1980) for the case k& = 2.
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TABLE 1
Simulation results to compare estimates of error rate
Estimator Sample Size 10 Sample Size 20

Name Value MSE m Value MSE m
1-ACCR; 0.4753 0.028 0.5063 0.013
ea 0.5382 0.025 15 0.5364 0.013 1
1-PCCR;3 0.4837 0.014 0.5131 0.007
ep 0.5411 0.014 6 0.5403 0.007 0
L-M 0.4723 0.026 0.5063 0.013
Bootstrap 0.5435 0.026 0.5397 0.014
es (T) 0.5462 0.5385

Each case is based on 1000 simulations. MSE is the average squared deviation of estimator from
ex(T), and m is the number of times ea or ep was outside (0,1). For an explanation of the “bootstrap”
estimator, see Efron (1979). There were one hundred bootstraps per simulation.

7. Conclusion. It appears that asymptotic expansions for the means of error rate
estimators can be used to provide estimates of error rate with less bias and less mean
squared error than the original estimators. The new estimators even appear to be compet-
itive with the well known current estimators in terms of bias and mean squared error,
when the assumption of normal distributions holds. The J integrals in the theorems can
be evaluated using multivariate integration by parts. Computer programs for their evalu-
ation are available in Schervish (1979).

Acknowledgment. Most of this work was performed as part of the author’s Ph.D.
thesis under Professor R.A. Wijsman at the University of Illinois at Urbana-Champaign.

APPENDIX

Proor oF LEMMA 1. Define S;, to be the sum of squares and products matrix for all of
the observations except X, and Xz:. Then nW = S, + U,Ui + U,U; where U, =
(e — 02y —i + 1)72(X, — X)), and X, = (nx — ) ' Y™,-ie1 Xu. A theorem of Khatri
(1959) and a slight change of variables gives that W is independent of (Z;, Zs) = (W™2U,,
WY2U,). In fact (W, Xy, - -, Xs, Z1, Z,) are jointly independent. The joint density of (Z;,
Z,), given by Khatri, is

_ [ex|B|Y**P=¥ if B is positive definite,
821, ) = {0 otherwise,
where
o= (nm) P [[ T — i+ DY/T %R - i - 1)},
and

B=1-n"z12} + 2225).
It is not difficult to show that
|B|=1-n""[zlz1 + 2522 — n” {(2121)(2522) — (2122)%}].

It is also true that if 7 = {(21, 22): z;z; = rn, i = 1, 2}, where 0 < r < '%, then
f 8(z1, z2) dz1dz

is exponentially bounded as n goes to infinity for fixed . On the set 7,0 <1 — |B| <1, so
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Taylor’s theorem can be used to write
nlog|B| = —2iz1 — 252, — n7'(2122)" — (2n) 7 {(2121)® + (2522)"} + n"%ha(2),

where h,(z) is a function which behaves like a polynomial for large ziz, for (z1, z;) in 1.
After approximating ¢, and using Taylor’s theorem to approximate exp(log|B|), we can
drop the terms of polynomial order in z;z, which have factors of n~2. Then notice that what
remains has an exponentially bounded integral over 7°. It follows that

8(z1, 22) = (2m) Pexp{—14(z121 + 2522)}[1 — (2n) 'p(p + 3)]
(A1) +(p +3)@2n) (2121 + 2522) — (20)7'(2120)°
—(4n)"{(2121) + (2522)%} + H,

where [o H dz; dz; = O(n™?) for any subset Q of R” X R?. Finally, note that X, = X, +
n;l/z(nk - 1)1/2W1/221 and

Xz =Xi + (ne — 1)y — 2)2PWVY2Z, — {nulng, — 1)} V2W2Z,.
Apply this transformation to the density (A.1) to obtain the joint density for (X, Xx2)

given by Lemma 1.

Proor oF THEOREM 1. The expression [g h*(y) dy is of the same form as the actual
correct classification rate discussed in Schervish (1981) with ¢ and S defined slightly
differently. The procedure used was to write 2* (y) as ¢(y) {1 + @(y)}, where Q is a fourth
degree polynomial whose coefficients have means of O (N ~') plus higher order terms. The
same method applies here. The means of the degree i terms are R, or R; in the expansion
for E (PCCRy). For full details see Schervish (1979). The difference between E(ACCR, | T')
and PCCR; is, after taking care to ignore higher order terms whose means are O (N"?),

(A.2) f S(V[(2ne) (€= y'Z7'y) + (4n) {2y’ Y0+ 2) — AL+ 2) — (Y= 'yP}] dy,
B

where h* has been replaced by ¢, S~ by 7', and ¢ by zero since each term already has a
factor O(n™') and the differences S™ — =7, A* — ¢, and € — 0 all have mean O (N ~"). After
making the change of variables y — 7'y, the integral (A.2) is exactly the difference
between the two expansions of Theorem 1.

Proor oF THEOREM 2. Since E(PCCR;) — pr = O(N ™), it follows that

2
(A.3) Var(PCCR,) = EI:{J h*(y) dy — pk} ] + O(N7?).
B

It is also easy to see that
(A4) Var(ACCRy) = (1 — ni)E(LL) + ni'E(L) — {E(I))?,

where I; is the indicator of whether the sample rule classifies X;, correctly. Theorem 1
gives the O (N ") terms of E(I;). To compute E(I,],), make the transformation (3.1) to (Y7,
Y:) and obtain the joint density

(A.5) m(y1, y2) = h* (y)h* () (1 + ¢ni' — (2n) 4 + 3)
— (2nx) (B + 2Bi12 + Bx) + (¢+ 3)(2n)}(Bi1 + Bx)
— (2n)"'Bh; — (4n)"'(Bh + BR)} + @,

where B, = y;27'y; and G’ satisfies (2.2).
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Since

2
J' h*x(y1)h* (y2) dy, dy, = {J' h*(y) dy} ,
BxB B

the expression for Var(PCCR;) will aid in the calculation of the mean of the integral of the
leading term of (A.5). For the other terms, A* can be replaced by ¢ since they each have
a factor of O(N™"). The remaining integrals are now easily computed to finish the proof.
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