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NEW TOOLS FOR RESIDUAL ANALYSIS!

By A. P. DEMPSTER AND M. GASKO-GREEN

Harvard University

Techniques are presented for stepwise selection of observations in order
of discrepancy from a linear model, and for assigning a P value to each
selected observation. A general class of criteria for discrepancy is defined, and
leading members of the class are discussed. Two ways to define the sequence
of P values for a general selection criterion are discussed, and their relative
advantages are compared. The techniques are illustrated on several data sets
using only the computationally simpler of the two approaches to P values.

1. Introduction. We discuss here ways to assess residuals from least squares fits to
linear models. Specifically, we consider methods which remove observations one at a time
from a least squares analysis, using a combination of residual size and influence on the
fitted model to assess each particular observation as a candidate for removal. To define a
procedure, one needs a rule for sequentially selecting observations for removal, and one
needs a means of judging how far the sequential removal process should be carried. Our
main goal is to provide new techniques for the latter process of judging nominated outliers,
but first we review and study various selection rules.

Two related papers are Andrews and Pregibon (1978) and Cook (1977). Each advocates
a specific selection rule, motivated by considerations of influence. Andrews and Pregibon
discuss significance testing criteria while Cook’s criterion is a direct measure of influence.
We survey these and other selection rules in Section 3, where we introduce a general
formulation of selection rules.

Data analysis should consider applying several different rules to a given data set. There
can be no universal choice of a procedure because statistical analyses have a wide range of
purposes calling for different and often context-dependent concerns about outliers. Also,
as illustrated in Section 6, different rules may suggest different hypotheses about the
structure of a single data set.

Statistical analysis may be directed to developing scientific knowledge, or to more
technological or decision-oriented concerns. One scientific use of regression analysis is to
search for relations, as part of a process variously described as exploratory data analysis or
descriptive modelling. Part of description may be simply to identify observations which do
not fit the relation defined by the bulk of the data. For this purpose it may be sufficient to
select the observation with the largest absolute deviation, especially if deviations thus
measured on a given scale have substantive meaning in relation to what is an important
shift. This simplest criterion is represented by (3.4) below. Another concern is to identify
and remove, or possibly downweight, outlying observations which have unusually large
influence on a fitted model. Rules which incorporate such influence are illustrated by (3.5)
and (3.7). The primary technological use of fitted regression models is to estimate or
predict a value for the dependent variable Y associated with a new vector X of values of
independent variables. In this case a good selection rule should reflect the influence of
specific observations on estimated Y values associated with a range of X vectors. It is thus
evident that many different selection rules can have a rational basis, depending on the
circumstances.
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The novelty of our approach comes in the test criteria we suggest as aids for judging
breaking points in the process of removing observations. These criteria are based on a
concept introduced in Section 4 which appeals to P values calculated from distributions on
pieces of an arc. We are not concerned with formal decision-analytic rules for selection and
testing, but rather with heuristic and informal methods for revealing possible structure in
data. We suggest P values that can be useful for this purpose, alongside more exploratory
assessments of the effects of individual observations.

We consider only least squares regression analysis and associated inference techniques
dependent on normality assumptions. Significance testing criteria could be developed for
other distributional assumptions, and it should be anticipated that the resulting tests
would give different answers. For example, if a long-tailed distribution of deviations from
a regression plane is accepted as an accurate descriptive model, then extreme residuals
picked up by a normal theory significance test are inappropriate as evidence of model
failure. Thus model-dependence is an essential part of the problem. We do believe that
methods based on normal null hypotheses have a useful place in applied statistics. In
circumstances where normal plots of studentized residuals are performed in search of
stragglers, our testing procedures are appropriate.

2. Notation and Background. It will be useful to have facility with certain geo-
metric quantities related to the linear model

(2.1) Y=XB+e,

where Y and e and n X 1 vectors and X is an n X p array of rank p. The 1 + p + n columns
of the matrix (Y, X, I) define vectors in an n-dimensional Euclidean space # corresponding
to the dependent variable, the p independent variables, and the n indicator variables for
the observations, respectively.

Any vector V in £ may be decomposed into Vx + V,, where Vy is the component in
the p-dimensional subspace #x spanned by the column vectors of X, while V, is the
component in the orthogonal (n — p)-dimensional subspace £.. It is well known that XX’
and I — XX’ represent the complementary orthogonal projections V— Vxand V — V,,
where X! = (XTX)'XT. In particular, we make use of

(2.2) Y. =(I-XX)Y
and
(2.3) I, = I - XX,

where Y, is the familiar residual vector after fitting Y to X by least squares, and the
columns of I, are similarly projections of the columns of I into #,. When we regard the
columns of I as indicator variables for the n observations, we denote them by 1,2, ... , n.
The corresponding columns of I, we denote by 1,,2,, ---, n,.

From (2.3), we see that I, can be interpreted both as a set of residual vectors and as the
projection operator I — XX itself. And we see that I, =I7. Since Y, andI, are already
in £, it follows that projecting them into %, leaves them unchanged, so that

(2.4) YJ_ = IfY_L
and
(2.5) I, =171.

In Section 3 we compare different selection rules by expressing them in terms of 2n
geometric quantities, namely, the squared lengths

(2.6) g =ifi,

of the i, for 1, 2, ..., n, and the angles 6, between Y, and i, expressible as



RESIDUAL ANALYSIS 947

2.7) cos 8, = q Vg V4TY,
i=1,2, ..., n, where ¢ is the squared length of Y,
(2.8) g=YIY..

The quantity ¢ is the residual sum of squares. From (2.4) and (2.7) the residual vector is
expressible as

(2.9) Y, = q'*(gi"*cos 0., g3/%cos b, « - - , g+'%cos 6,,) 7.

There are many close connections between the lengths and angles just defined and
sampling distributions determined by the model (2.1) when the vector e consists of
independent N (0, o%) random quantities. Our significance tests use the fact that cos® 6, has
a beta distribution with density proportional to u~/%(i — u)/*" =% or equivalently that

(2.10) t;=(n—p— 1)"*cot 6,

has the Student’s-¢ distribution with n — p — 1 degrees of freedom. The quantity ¢; is often
called the ith studentized residual.

The quantities g; are determined solely by X. They obviously satisfy 0 =< g, < 1 and
Y%i g = n — p. From (2.5) and (2.6) we see that g, is the ith diagonal element of I,
whereas, from (2.3), 1 — g, is the ith diagonal element of XX’. Hoaglin and Welsch (1978)
call XX’ the “hat” matrix, because it carries Y into its least squares predicted value Yx,
which they denote by Y. They argue that 1 — g, is intepretable as a direct measure of the
influence of the ith observation on the least squares fit because 1 — g, is the fraction of the
ith component of Y directly preserved in Yx.

Andrews and Pregibon (1978) stress interpretations based on the effects of removing
the ith observation from the regression. Suppose we denote by g, the residual sum of
squares in the regression with the ith observation removed, and by X, the remainder of
X after moving the ith row. It can be shown that

qq

(2.11) sin® ; —
q
and
_ det(X(T)X(,))
(2.12) & = m .

As noted below, Andrews and Pregibon suggest the product g;sin® 6, as the quantity
governing selection of the most important outlier. Formula (2.12) has an important
sampling distribution interpretation because det(X”X)™' is proportional to the squared
volume of the standard confidence ellipsoid for B. Hence, a smaller g; means a larger
increase in the volume of the ellipsoid when the ith observation is removed, and hence a
larger influence of the ith observation on the accuracy with which B is estimated.

Finally, it often helps the study of least squares operations to work with sweeping
operations on the inner product matrix (Y, X, I)7(Y, X, I). As shown in Chapter 4 of
Dempster (1969), the operator SWP applied to the ith index of the 3rd part of the matrix
has the effect of removing the ith observation from the remaining parts corresponding to
Y and X. Also, the operator SWP applied to the part corresponding to X, carries out least
square analysis. Since these SWP operators commute, the first can be used to remove the
ith observation after the basic least squares calculations are performed. It is easy to check
formulas (2.11) and (2.12) this way, but we omit details.

3. Selection Rules. Given data Y, X, a selection rule is a rule which nominates one
of the n observations as most discrepant. Assuming that the rule is defined for general n,
it can be applied successively to remove observations one at a time. That is, after removing
the most discrepant observation, the same rule can be applied to the remaining sample of
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n — 1 observations to obtain the second observation for removal, and so forth. In view of
the repeated stepwise nature of the process, we need only discuss the first step.

We present rules covering a range of important purposes. We stress generally applicable
rules, but conclude by illustrating the concept of a rule tailored to the needs of a particular
hypothetical application. The comparsion of different selection rules is facilitated by use
of the quantities 6, and g, defined in Section 2. Thus, to specify a rule we define a function
H(-, ) and nominate the mth observation as most discrepant if

(3‘1) H(Om, gm) > H(H;, gz) v i # m.

We assume that the function H(., .) is sufficiently well-behaved that the rule (3.1)
determines m uniquely with probability one, and hence we ignore cases of ties.
Our examples satisfy the requirement that

which from (2.9) means that we judge positive and negative residuals of the same size
symmetrically. Also, it appears reasonable to assume that H (6, g) is monotone decreasing
T
2
observations with the same g value should be compared by using the absolute size of their
residuals. Our examples exhibit no firm rule, however, about the direction of monotonicity
of H(-, -) in g for fixed 6.
In terms of 6, and g,, the simplest rule ignores the g; and uses

on0 <8< g (increasing on - < # < 7) for fixed g, on the heuristic grounds that two

H@,g)=-6 on0=60=<

Nty

(3.3) T
=—(7r—0) 011550577.

Equivalently, H(f, g) may be taken to be cos’d or cot?d. From (2.10), the rule (3.3) is
equivalent to choosing as most discrepant the observation with the largest absolute
studentized residual | ¢, |. From (2.9), another characterization of (3.3) is that components
of the residual vector Y, are scaled by factors proportional to g;"/* and then compared in
absolute value.

The rule (3.3) is evidently motivated by consideration of sampling distributions. Each
t; has the same marginal distribution, namely, student’s £ on (n — p — 1) degrees of
freedom, under the null hypothesis that the components of e in (2.1) are independent N (0,
o®). Hence the use of this rule is most natural for a specific technical purpose: to test the
null hypothesis of normal homoscedastic error terms against an alternative hypothesis
which envisions tail contamination with large values. Such tests can be useful aids to
statistical modelling, especially when followed by procedures which depend critically on
normality in the far tail. As discussed in Section 1, however, we believe that other selection
rules may be more directly relevant to the primary purposes of data analysis.

Another simple selection rule uses the largest absolute residual, which from (2.9) is
equivalent to choosing

(3.4) H(8, g) = g cos’ 8.

As remarked in Section 1, rule (3.4) may be appealing in situations where the fitted model
is accepted as reasonably accurate and the focus is on picking up for special study
observations which do not appear to fit. Since the g; tend to be close to 1 when n increases,
criteria (3.3) and (3.4) tend to be similar, but (3.4) downweights influence.

Our third example is the rule proposed by Cook (1977) which can be shown to
correspond to the choice

(3.5) H@,g) = cos? 4.

1-g
g
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Cook derived (3.5) by calculating how far the least squares estimate of 8 moves when the
ith observation is removed, where distance is determined by radii of the standard
confidence ellipsoid for B based on all of the data. We suggest an alternative derivation
keyed to the use of regression for prediction.

Suppose that b and b, denote the least squares estimates of B8 based on all n
observations, and on n — 1 observations after removal of the ith observation, respectively.
Suppose that it is intended to apply the estimated regression coefficients to predict Y for
a set of £ X’s represented by a &£ X p matrix X*. Then a plausible measure of the influence
of the ith observation in the prediction is

(3.6) {X*b — X*by} "{X*b — X*by}.
If X* is chosen to be X, then selection based on (3.6) can be shown to be equivalent to
(3.5).

Because the factor (1 — g)/g in (3.5) increases as influence increases, it is clear that
(3.5) moves away from (3.3) in the direction of rewarding influence, whereas (3.4) moves
oppositely. Both (3.4) and (3.5) possess the property that an observation with 8; = 0 or 7
need not be selected as most outlying, since maximizing cost® 6; need not outweigh the
other factor involving g.. This property deserves attention because, when cos’® 6; = 1,
removal of the ith observation results in a perfect fit to the remaining n — 1 observations,
i.e. gu = 0, as shown by (2.11). It may be more disturbing in the case of (3.4) than (3.5)
because the selected observation is both less influential and Y. has larger angle with +i,.
Replacing cos® 8 by cot® 6 in (3.5) removes this disturbing property and the resulting rule
maximizes the standardized sum of squared changes in all regression coefficients when an
observation is omitted. This diagnostic is suggested in Welsch and Peters (1978) and
discussed in Belsley, Kuh and Welsch (1980).

The fourth general rule uses the Andrews and Pregibon rule

(3.7) H(, g) = —g sin’ 6.
From (2.11) and (2.12) it follows that (3.7) is equivalent to
(3.8) H(0;, g) = det{(Yu), X)) (Y, Xo)}/det{(Y, X)"(Y, X))},

which is mathematically appealing since the right side of (3.8) is the generalized variance
proposed by Wilks (1932). Also, both influence and small 4 are rewarded. Note that here
an observation with 6, = 0 is automatically selected. A weakness of (3.7) is that the Wilks
generalized variance has no direct connection with the primary goals of data analysis. Also,
we note in Section 4 a mathematical awkwardness in relation to our proposed significance
tests.

The rules (3.3), (3.4), (3.5), and (3.7) provide a kit of general purpose tools. We conclude
by illustrating a possible special purpose tool. If the primary purpose is to look at a
particular regression coefficient, say the first component 8, of B3, than a rule based on (3.6)
would be appropriate, when 2 =1and X* = (1, 0,0, - .., 0). Such a rule is not determined
by 6, and g; alone. Cook (1979) extends (3.5) to situations in which a number of linearly
independent combinations of the elements of B are of interest. The corresponding rule is
also not determined by 6, and g; alone.

4. Testing the First Selected Observation. Our main purpose in this paper is to
propose the use of a sequence of P values corresponding to a sequence of observations
chosen by stepwise application of a selection rule. We will describe in Section 5 two ways
to obtain such a sequence of P values for any given selection rule. The two methods adopt
the same initial P value, but differ in the second and later values of the sequence. In
Section 4 we discuss the common initial P value, but not the later P values.

The null hypothesis defining the first P value is that Y is random according to the
model (2.1), where X is fixed, and e is a vector of n independent N(0, o%) random variables.
The test statistic is tied to the selection rule, and hence depends on the values of H(4;, g:)
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fori=1,2, .-, n. Since X is regarded as fixed, the g; are likewise fixed, so the test statistic
depends only on the random 6, i.e. is determined by the direction of Y, in £, . Under the
null model, the direction of Y, is distributed independent of ¢ = Y7Y ., and hence the null
distribution can equivalently be described either in the unconditional way introduced
above, or as a conditional distribution given g. Taking the latter view, we regard the null
model as a uniform distribution over the surface & of the sphere of radius ¢/ centered at
the origin in £, .

Our proposed P value is defined by a further conditioning which reduces the sample to
a subset of a certain one-dimensional arc on & Before describing our highly conditional
test, we describe in contrast the conventional approach to testing a nominated largest
outlier, which uses the uniform distribution on & The idea is to reject the null hypothesis
if H(0n, n) defined in (3.1) is too large. To this end, a P value is the probability under the
null hypothesis that a random H(#,,, g.) exceeds the observed value. This probability is
the volume of a region on % which typically is the union of n pairs of polar caps around
the axes +i,, 1 < i = n. The ith pair consists of all points where H(6;, g,) exceeds the
observed H(0n, gn), i =1, 2, - - -, n respectively. Usually the 2n caps are not disjoint and
their intersection cannot be easily computed, hence, computing the volume of their union
is not trivial. Andrews (1971) and Andrews and Pregibon (1978) suggest an approximation
to this volume.

Turning now to our more conditional approach, we define several steps of conditioning
beyond reducing the sample space to & For demonstration we use Figure 4.1 where R, is
the three demensional Euclidean space, the selection rule is (3.3), and only i,,j., and m,,
three of the unit residual vectors, are considered. First, we condition on the observed m,
the index of the first selected observation. This reduces the sample space to a pair of
opposite subregions of & which we denote by Q... and @_,,, where the sign s,, of the mth
component of Y_ is +1 on Q.+, and —1 on &_,.. Note that 6,, is closer to 0 or to = according
as Y, € Qinor Y, € Q_n, respectively. Second, we condition on the observed s, reducing
the sample space to £.. or Q- according as the observed s, is +1 or —1. Finally, we
condition on the signs and absolute sizes relative to each other of the n — 1 residuals

Fic. 4.1. A geometrical representation of selection rule (3.3) and the conditional sample space.
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obtained from the reduced least squares analysis omitting the mth observation. The final
condition by itself, being equivalent to the direction of the component of Y, in the subspace
of #, orthogonal to m,, (O—)E in Figure 4.1), restricts the sample space to a semi-circle ¥
on % % can be described as the half great circle joining two opposite poles A and —A of
& and passing through, B, the observed Y ., where the two opposite poles are defined by
the intersection of % with the line formed by extending m, in both directions. Hence,
under the full conditioning, the sample space for the test is

(4.1) Gom = €Ny .

In the example of Figure 4.1., %,  is the arc from A to D where at D the semicircle 4
intersects the boundary of 2, ..

The argument for conditioning on m is that some observation must be nominated by
the selection rule even when none is out of line, so that the value of m does not in itself
convey any information bearing on the significance or lack thereof of the first selected
observation. The argument for conditioning on o, is likewise that the sign of the mth
residual carries no information about the significance of the residual. The final step of
conditioning is introduced largely to obtain a simply understood and easily computable
criterion. The information excluded by this conditioning is used both in the selection and
testing procedures in subsequent steps of the proposed sequential process, as described in
Section 5.

The null distribution along the arc % is characterized by Student’s-¢ distribution (2.10),
and hence the conditional null distribution over the restricted arc %, . is characterized by
a restriction of the t-distribution to %, .. Significance is judged by calculating the
conditional probability that a random cos®d,, would exceed the observed cos®6,,.

In most applications, the intersection (4.1) defines a single connected subarc of €
running from the pole 6, = 0 or 6, = 7 to the boundary of £, ... In such cases, the P value
is simply the ratio of two tail areas calculated from the ¢ distribution (2.10), namely the
measure of the arc from the pole to the observed 8, divided by the measure of the full
subarc %, ». The main computational task is to find the value of 6, at the boundary of
Q, m.For certain selection rules, %, » may be less well-behaved, depending on the particular
data set. For example, as noted in Section 3, a rule such as the Cook rule which chooses
H(8, g) to be a weighted cos® need not select the ith observation even when cos?, = 1.
Even more paradoxically, the rule may select this ith observation for certain cos?§; < 1, so
that %,; becomes a subarc which excludes the pole. Other kinds of pathological behavior
can arise where %, . consists of a union of disjoint segments of %. Such pathologies will be
discussed in a later report. Here we simply note that the principle for computing P values
defined in the preceding paragraph still applies, but the calculations become more difficult
because the end points of various subarcs of € must be located.

We conclude our discussion of the first P value with a cautionary note. A small P value
does indicate that an improbable event has occurred, where the class of improbable
outcomes making up the event are those with larger H(0,., g.) than the observed H(6,,,
£&m). We point out, however, that an unsurprising conditional P values, say .2 or .6, does
not rule out the possibility that H(6,., &) is significantly large according to the uncondi-
tional test mentioned at the beginning of Section 4. The reason is that the conditional P
value, being the specified ratio of tail areas assesses the magnitude of the most extreme
observed discrepancy not on an absolute scale, but rather its excess over the next most
extreme discrepancy in the data. While in this ratio the numerator may be very small, so
may the denominator be small.

For example, suppose there are two extremely discrepant observations in the data with
distinctly larger values on a chosen criterion H(6, g) than the rest of the data. Initially the
observation with the largest value on the criterion is nominated most discrepant. Although
the corresponding unconditional P value may be very small the conditional P value can be
of a moderate, unsurprising size. This is because the presence of a second outlier implies
that the denominator of the conditional P value, being the probability measure associated
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with %, » only slightly exceeds the probability measure association with %, ,, having a
larger value of H(6,., g») than observed, which is the numerator. From the definition of
the complete sequence of conditional P values, in Section 5, it follows that for the above
example the second element in the sequence will be small, suggesting that the first two
selected observations are an outlying subset.

Thus, the first conditional P value should be interpreted alone only when it is small as
suggesting that the selected most discrepant observation is significantly more discrepant
than the next most discrepant observation. A moderate to large conditional P value would
not be interpreted in isolation from the next P values in the sequence. The sequences of P
values discussed in Section 5 are intended to provide markers between subsets of obser-
vations removed in sequence.

5. Two Sequences of P Values. Each of the two sequences to be described has
advantages and disadvantages. The first sequence is computationally relatively easy, while
the second sequence requires multiple integrations which are feasible only with a Monte
Carlo simulation for each P value. Apart from computational ease, there is an important
conceptual difference between the two sequences. Neither sequence is fully satisfactory,
for reasons which we shall explain, and both can usefully be reported. For computational
reasons, the examples in Section 6 report only the first sequence. A later report will
illustrate the second sequence, and will analyze conditions under which the two approaches
give similar or different results.

The first sequence is most easily described. Upon selecting observations one at a time,
a P value is computed at each step in the sequential process as described in Section 4.
That is, after removing the first observation, we pretend that the reduced sample of n —
1 observations is like an original sample. We select a second observation, the most
discrepant in the reduced sample, and compute a second P value, as described in Sections
3 and 4, respectively, and so on. Each P value relates to a null hypothesis that the
remaining data at that step are generated from the correspondingly reduced model (2.1).
Analogous conditioning to that described in Section 4 implies that the 2th P value can be
computed using the ¢ distribution on n — p — % degrees of freedom. Each conditional P
value is uniformly distributed under the respective null hypothesis which relates to the
correspondingly reduced model.

The P values in the first sequence are not strictly independent nor marginally uniform
under the full null hypothesis that all of the components of e in the model (2.1) are
mdependent N(0, 6%). Accordingly, we have defined, and studied, a second set P, PP,

-+, P, " which are independent uniform random variables, conditional on both the
order of selection of the observations and the signs of the residuals of each selected
observation at the stage when it is selected. Since a considerable amount of notation is
required to give a precise definition of the P¥, we postpone details to a later paper which
compares the two sequences using numerical studies. However, the basic idea is to define
P{ from the precise conditional sampling distributions under the full null hypothesis
using the same angles as in the first seqdence. Unlike in the first sequence where the
cotangents of the angles are simply assigned ¢ distributions, in computing the second
sequence marginals of joint sampling densities need to be derived. The latter densities do
not have a simple analytic representation but can be straightforwardly simulated.

Which of the sequences P{", P?, ..., or PY, P¥, ... is more appropriate in practice?
The use envisaged for either sequence is to mark off groups of observations which appear
to fit the model (2.1) notably less well than the remaining observations. For example, if the
sequence were to begin .62, .48, .001, .8, .01, . - - the suggestion would be that removing the
first three observations implies a better fitting model with the remaining n — 3, and that
the next two form another group that worsens the fit of the remaining n — 5. The method
is intended to serve as a suggestive diagnostic.

As long as the full null hypothesis remains tenable, it would seem to be preferable to
use PY, since these are independently uniformly distributed. But after some observations
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are rejected, like the first three in the above hypothetical example, then the original null
hypothesis becomes irrelevant. At this point, P is computed from a sampling null
distribution that does not relate well to the then current null hypothesis, namely, the
hypothesis that observations m for r = 4, 5, - . - fit the model (2.1) given that m®, m®,
m® have been rejected. Indeed, if m, m®, m® are judged to be extreme outliers, then
the corresponding ordinary ¢ distribution on n — p — 4 degrees of freedom becomes
approximately relevant, i.e., P{ is more appropriate than P$".

Thus, we conclude that both sequences have merit and neither should be preferred to
the other.

6. Examples We illustrate our proposed methodology by applying the four selection
rules (3.3)-(3.5), (3.7) to analyze three data sets two of which are discussed in Andrews and
Pregibon (1978). For each data set we have tabulated the first 15 observations ordered by
discrepancy, along with the corresponding sequence of P values for each of the four
selection rules. Our results indicate that rules (3.3) and (3.4) based on studentized residuals
and absolute residual sizes, respectively, suggest similar structure of data except when a
moderate to large residual is associated with an excessively influential observation on the
fitted model. The other two rules, (3.5) and (3.7) based on criteria suggested by Cook
(1977) and Andrews and Pregibon (1978), respectively, also suggest similar structure in the
data but different from that of the first two rules. As emphasized in Section 2 we do not
recommend one type of rule over the others because all may provide valuable insight into
the data. In Section 7 we present the computational methods for selection, testing, and
removal of selected observations.

Example 1. Mickey, Dunn, and Clark (1967). The data describe observations on 21
children where the response is the Gessel Adaptive score and the independent variable is
age in months at first word. Figure 6.1 shows a plot of the data, and Table 6.1 shows the
ordered observations and the corresponding P values using each of the four selection rules.

SCORE

1201
110

100~

8ol 33

70+ 2

1 L l L 1
0 10 20 30 20 50 AGE (months)

FiG. 6.1. Children’s score in an aptitude test vs. age.
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TABLE 6.1
Children’s scores
Observations listed in a descending order of discrepancy with corresponding
P values using four selection rules

Studentized Absolute Andrews and Pregibon Cook’s Criterion
Residuals (3.3) Residual Size (3.4) (3.7) (3.5)

observation P value observation P value observation P value observation P value
19 .0225 19 0221 18 4091 18 6375
3 1.0000 3 1.0000 2 2165 2 2592
13 5670 13 5733 19 1270 19 .1503
14 .5766 14 5766 11 7070 11 2077
20 .5036 20 4886 6 4416 6 .8185
4 .2530 4 2242 10 .8288 9 7510
2 8677 2 9777 7 6166 3 1.0000
12 2514 12 2611 5 5291 13 .5621
5 .8927 5 .8188 1 9376 14 5702
11 7334 11 .7888 9 .1908 20 .5620
10 .9960 10 9932 17 .2855 4 .1448
17 .0359 17 .0364 12 9222 12 .3353
7 5112 7 4951 4 9467 17 7691
15 1434 15 1410 15 1.0000 5 .3093
1 7363 1 .6961 8 5590 10 .3970

Figure 6.1 suggests that observations 18, 2, and 19 in this order stand out. The rules
(3.3) and (3.4) imply an identical order with two similar sequences of P values which
identify two significant gaps in the data. The first gap comes between the initially selected
observation 19 and the remainder of the data, in agreement with the analysis of Mickey et
al. based on reduction in residual sums of squares which is an identical selection criterion
to (3.4). The second gap is at the 12th step of the process when the remaining 21 — 12 —
9 observations fit very closely to a straight line which is similar to the least squares fit by
all the data.

The rules (3.5) and (3.7) do not find significant gaps in the data, suggesting that the
observations are compatible among themselves and with the linear model. Both rules
select in their first three steps the above mentioned outstanding observations, i.e., 18, 2,
and 19 in that order, but the large corresponding P values suggest that 18 and 2 merely
extend the domain of the model. Combining the results of all three rules suggests that
observation 19 selected for its large studentized and absolute residual size has no significant
influence on the fitted model conforming to what Andrews and Pregibon call an outlier
that does not matter.

TABLE 6.2
Data from oxidizing ammonia plant
No. X3 X2 X3 y No. X X2 X3 y No. X X2 X3 y
1. 80 27 89 42 8. 62 24 93 20 15. 50 18 89 8
2. 80 27 88 37 9. 58 23 87 15 16. 50 18 86 7
3. 75 25 90 37 10. 58 18 80 14 17. 50 19 72 8
4. 62 24 87 28 11. 58 18 89 14 18. 50 19 79 8
5. 62 22 87 18 12. 58 17 88 13 19. 50 20 80 9
6. 62 23 87 18 13. 58 18 82 11 20. 56 20 82 15
7. 62 24 93 19 14. 58 19 93 12 21. 70 20 91 15

x1 = air flow; X3 = cooling water inlet temperature; x3 = acid concentration; Yy = stack loss
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TABLE 6.3
Oxidizing ammonia data
Observations listed in a descending order of discrepancy with corresponding P values using four
selection rules

Studentized Absolute Andrews and Pregibon Cook’s Criterion
Residuals (3.3) Residual Size (3.4) 3.7 (3.5)
observation P value observation P value observation P value observation P value

21 .1596 21 .2561 21 .0613 21 .0291

4 .0529 4 .0468 4 .2992 4 .9833
5157 3 .5352 2 .8412 2 9724

1 .0673 1 1567 1 5346 3 .8695

13 2246 13 2862 3 .0004 1 .0023
20 .9806 20 7474 13 4675 13 .3219
2 9768 14 6066 14 9353 14 .3927

14 1967 6 6550 20 .2539 8 9415

8 .3762 15 .9266 8 .3732 20 .3816

16 4734 5 .9407 16 6470 16 4361
12 .8801 9 .5655 15 .9926 12 .6389
19 .5500 7 .5040 12 .5827 7 9189

7 .0251 19 .3470 11 4316 19 .0131

5 2415 11 .1634 17 7234 15 4008

15 .5833 18 .2694 19 .0157 [ .3279

Example 2. Daniel and Wood (1975), Brownlee (1965). The data of this example
describe the operation of a plant oxidizing ammonia to nitric acid. The rows in Table 6.2
refer to observations taken on 21 successive days of operation while the columns refer to
three input variables and a response variable which (inversely) measures the efficiency of
the system. Table 6.3 presents the results of our analysis.

Daniel and Wood (1971, Chapter 5) investigate the data using residual plots from least
squares fit to various subsets of the observations, realizing the masking effect by which
days 1-4 conspire to hide a significantly single most discrepant observation. Following
careful examination of the data, they find observations 21, 4, 3, and 1 to be outliers. They
remark that the system underwent a transient stage during the initial days of operation
and that it makes sense to include observation 2 among the outliers.

Turning to Table 6.3 we see that the selection rules (3.5) and (3.7) identify initially
observation 21 as significantly most discrepant and a second last significant gap after
selecting the observations taken on the initial four days, including the second day. The
results of the two rules (3.3) and (3.4) are similar to each other and to the findings of
Daniel and Wood. In this case examination of the raw data in Table 6.3 does not easily
suggest the results.

Example 3. Doll (1955). The data include observations on yearly cigarette consump-
tion per capita in 1930 and deaths per million in 1950 from 11 countries. Figure 6.2 shows
a plot of the data and the least squares fitted lines using all observations and excluding
observation 7 denoted by solid and broken lines, respectively. Observation 7 stands out
and has the largest residual.

Table 6.4 summarizes the analyses using the four selection rules. All rules select initially
observation 7 and its P value is significant. Indeed, omitting observation 7 the fitted line
is steeper. The second and third selected observations by all rules are 10 and 11 respectively.
Both (3.3) and (3.4), not weighting influence, do not suggest these as an outlying subset.
However, both (3.7) and (3.5) considering influence find the two observations jointly and
sequentially, respectively, significant outliers.
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Fi1G. 6.2. Smoking data.

TABLE 6.4
Smoking Data
Observations listed in a descending order of discrepancy with corresponding P-values using four
selection rules

Studentized Absolute Andrews and Pregibon Cook’s Criterion
Residuals (3.3) Residual Size (3.4) (3.7) (3.5)
observation P value observation P value observation P value observation P value
7 .0027 7 .0022 7 .0156 7 .0201
10 2293 10 3183 10 .3338 10 .0641
11 8873 8 7726 11 .0817 11 .0996
4 1120 4 6724 4 2178 8 .7883
6 .6316 9 .2442 6 .9540 9 6272
8 .0940 5 2814 8 1177 4 .3826
2 .3042 1 .0268 9 .8301 6 .0619
5 5785 6 .0322 2 4383 1 7925

The fourth and successive moderate to large P values in all sequences suggest that
among the remaining 8 observations there are no more outliers. The few small P values at
the end of the sequence can be ignored because they relate to situations when a totality of
only 4, 3, or 2 observations are considered.

7. Computational Methods. We used a straightforward computational strategy to
carry out the computations involved in selecting a most discrepant observation, assessing
the corresponding P value and eliminating the selected observation from the data in
preparation of a reduced sample for the next step of the process. This computational
strategy is not the most economical in storage space; however, we end this section
describing two alternative computational strategies calling for decreasirg amounts of
storage locations compensated by increasing amounts of calculations. Description of
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software can be found in an unpublished Ph.D. dissertation, “P Values for Sequentially
Selected Outliers,” by M. Gasko-Green (Statistics Department, Harvard University, Cam-
bridge, MA).

The simplest strategy assumes that at every step of the process, say k, the numbers in
corresponding rows to the reduced data in the array (Y, I®') are directly accessible. The
k + 1 step array, (Y&, I¥*?) is computed by sweeping (Y, I®?") along the m*® column
of I® which corresponds to the observation being removed, as described in Chapter 4 of
Dempster (1969).

In view of the stepwise repeated nature of our process it suffices to describe the
computational aspect of the intial step of the process while in successive steps the
computations are identical using the corresponding quantities to the reduced samples.

We show that the computations involved both in selecting and testing the first most
discrepant observation use some elements of the inner product matrix (Y,, I OI(YL, LL).
The identities (2.4) and (2.5) imply that except for ¢ = Y2Y,, the (1.1) element of this
matrix, these elements need not be calculated once we have computed and can directly
access the elements of (Y., I,).

In order to compute any general selection rule of the form described in Section 3 we
need the quantities g, and either cos®d, or sin’6;, i = 1, 2, - - -, n. From (2.9) it follows that
&, is the ith diagonal element of I,. From (2.5) and (2.7) cos®d; is the ratio of the element
in ith row of Y, squared to the product ¢ X g;, and sin?§, = 1 — cos?6..

The main computational task involved in computing the first conditional P value is to
compute the range ® of angles 6,, associated with the conditional sample space ¥, ». The
semicircle ¥ defined in Section 4 is expressible as

(7.1) Y.(¢) =q YAVmcosp+Unsing), O=<¢=<mn

where v, is a unit vector in the direction of m,, v,, = g,"?m, and u,, is a unit vector in
the direction of the component of Y, (¢) in the subspace of £, orthogonal to m,. The
angles 6; defined in Section 2, corresponding to Y,(¢) are denoted by 6:(Y.(¢)), i = 1, 2,
- -+, n, respectively. Recalling (4.1), €, = is the intersection of the n — 1 arc subsets of ¥,
all contained in £, ,» and each consists of Y.(¢) such that m is selected over specific j,
J # m. Hence @ can be expressed as

(72) @ =0 (¢: HOY.(), &n)
JF*Em

> H0(Y.(¢), &), Y.(¢) of the form (7.1), s» cos ¢ > 0 and 0 < ¢ < 7}

First we show how to compute (7.2) for rules of the form H(6;, g;) = w; cos’d; and later for
rule H(6;, g;) = —w; sin®;, where w; = w(g;) > 0 is a known function.
H(, g) = cos’d. Expressing Y, (¢) as in (7.1) shows cos’8,(Y_.(¢)) = cos’p and

Yl T-l 2
cos’¢;(Y.(¢) = (—ﬁ—)

— (T T, o 2
(7.3) P = (VmV, COS ¢ + Un,V, sin ¢)

Jj#*Em
Using (7.3), given j, 1 < j < n, j # m, the corresponding range, ®,, defined in (7.2) consists
of 0 < ¢ =< 7, sm cos ¢ > 0 such that
(7.4) W €08%p > w;(VAV; cos ¢ + uLv; sin ¢)2

In order to simplify notation denote a = v&iv; and b = ulv,. Simple arithmetic manipu-
lations imply that (7.4) is equivalent to

(7.5) f(cot ¢) = [wm — wya®]cot’ — 2w;ab cot ¢ — w;b> > 0.

Condition (7.5) together with cot ¢ = 0 as 4,, = 0 and the equality cot a = cot(7 — a) imply
that the jth region ®; is expressible as
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P =
on($ ey 2T
where
¢*=arccot_wb— with+as b=0
+ \/% — ImQ
and ’
0 if wm > wja®

: b
¢** = 4 arc cot———————  withF as b= 0, otherwise
Wm
F 4\ /-—— — ImQ
w;

Computing ¢*, ¢** is simple in view of the earlier remark about the inner product matrix,
specifically

(Il )m,j
v (IJ.)m,m . (IJ. )j,j

(Yi)m
(IJ. )m,m

2
VI, \g— ((E;)m

where (Y. )n is the mth component of Y., and (I.),,; is the (i, j) element of I,.

and

(Y.); - c (L)m,y

b=

H(0, g) = —w sin®f. Using the equality sin’a = 1 — cos?« and (7.3), algebraic manipu-
lations imply that the jth region in (7.2) consist of angles ¢ such that cot ¢ =0, as 4, =0
and

Wm

7.7 flcot ¢) = (1 — a®)cot’p — 2ab cotp + 1 — b* ———> 0.

w;

Condition (7.7) together with cot ¢ = 0 as s, = 0 imply that ®, is expressible

0, ¢*) U (4»%) i om = +1
j=
bg .
<§,7r—0**> U(r—0*7) if s,=-1
where, writing A = 4% — (1 — a?){1 — (wn/w))},
w/2 if A<O

¢* = smab + VA .
arc cot| - otherwise,

and

m b_‘/Z m m
arc cot(i_—aT—> if(l—a2)<1 —I—ﬂ—) <bi<1-2m

1 wy w,

otherwise

|3



RESIDUAL ANALYSIS 959

The second computational strategy assumes that, (X’7, Y. ), a smaller matrix is directly
accessible, where X’ is defined in Chapter 2. When needed we compute the required
elements I, using I, = I — X’”X” which increases the amount of computations involved.
Initially (X7, Y,) is obtained by sweeping the first P columns from (X,Y). The working
array corresponding to the reduced sample after eliminating observation m from the data
is obtained by sweeping on m, from (X7, m,, Y.) where m, need to be calculated.

The third computational strategy, the most economical in storage space, assumes that
at each step we have the arrays (X”X)™!, § and the residual sum of squares ¢ which may
be stored, or at least conceived, as the single matrix

_ &™) B
=[5 4]

At the initial step, Q is obtained by sweeping the first p columns from the inner product
matrix (XY)”(XY). The elements of I, and Y, are computed as needed by first computing

X’ and thereafter proceeding with the second algorithm. The next step @ matrix corre-
sponding to the reduced data without observation m is obtained by sweeping the last

column from
Q  Ba
Bh  &m

where £, = (X7X) X7 and X7 is the ith row of X and g, is the (m, m) element of I, .
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