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ON NONPARAMETRIC MEASURES OF DEPENDENCE FOR
RANDOM VARIABLES

By B. ScHWEIZER AND E. F. WoLFF

University of Massachusetts and Beaver College

In 1959 A. Rényi proposed a set of axioms for a measure of dependence
for pairs of random variables. In the same year A. Sklar introduced the general
notion of a copula. This is a function which links an n-dimensional distribution
function to its one-dimensional margins and is itself a continuous distribution
function on the unit n-cube, with uniform margins. We show that the copula
of a pair of random variables X, Y is invariant under a.s. strictly increasing
transformations of X and Y, and that any property of the joint distribution
function of X and Y which is invariant under such transformations is solely a
function of their copula. Exploiting these facts, we use copulas to define
several natural nonparametric measures of dependence for pairs of random
variables. We show that these measures satisfy reasonable modifications of
Rényi’s conditions and compare them to various known measures of depen-
dence, e.g., the correlation coefficient and Spearman’s p.

1. Introduction. Let X, Y be random variables with continuous distribution func-
tions F, G and joint distribution function H. Many measures of dependence for the pair
(X, Y), which are symmetric in X and Y, have been proposed and studied in the literature.
Among the most familiar of these are Pearson’s correlation coefficient r, Spearman’s p and
Kendall’s 7. These are given, respectively, by

SRS S _
(1) rX,Y) = DEIDY) J; J; [H(x, y) — F(x)G(y)] dx dy,
(2) p(X,Y) = 12J’ f [H(x, y) — F(x)G(y)] dF(x) dG(y),
3) (X, Y) = 4] f [H(x, y) dH(x, y) — 1,

where D stands for standard deviation (Hoeffding (1948), Kruskal (1958) and Lehmann
(1966)).

If in the above integrals one makes the substitution u = F(x), v = G(y), i.e, if one
employs the probability transform (Whitt (1976)), then one obtains

[ ol dF ) dG-
(4) rX,Y)= PEODT) j(, JU [C(u, v) — uv] dF ™' (u) dG™'(v),
1 1
(5) o(X,Y) = 12J' J [C(u, v) — uv] du dv,
0 0
(6) X, Y)= 4J' J’ C(u, v) dC(u, v) — 1,
0 9]
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where F~', G™' and the usual inverses of F, G, respectively, and C is the function given by
(7) Clu, v) = H(F'(w), G™'(v)).

On analyzing the effects of this transformation, several things become apparent. First,
integrals over the plane are transformed into integrals over the unit square. Second, the
nonparametric measures p and 7 are distinguished from the measure r in that they are
functions of C alone. Third, the integrand in (5) is simply the signed volume between the
surfaces z = C(u, v) and z = uv. Since X and Y are independent if and only if C(u, v) = uv,
these observations suggest that any suitably normalized measure of distance between the
surfaces z = C(u, v) and z = wuv, e.g., any L,-distance, should yield a symmetric,
nonparametric measure of dependence. The principal purpose of this paper is to show that
this is indeed the case. Specifically we shall study the L,, L, and L.. distances, which we
denote by o(X, Y), y(X, Y), and (X, Y), respectively. These are given by

1 1
(8) o(X,Y)=12 J' J | C(u, v) — uv| du dv,
0 0
1 1 1/2
(9) vX,Y) = <90 J J' [C(u, v) — uv)® du dv) ,
0 0
(10) k(X, Y) = 4 supu,vero,1] Clu, v) — uv|,

or, when expressed in terms of the distributions F, G, H, by

(11) X, Y) = 12J J |H(x, y) — F(x)G(y) | dF(x) dG(y),

£ %o 1/2
(12) yX, Y) = (90 f f [H(x, y) — F(x)G(y)]* dF(x) dG(y)) ,
(13) k(X, Y) =4 sup.yer| H(x, y) — F(x)G(y)|.

The quantity y(X, Y) was introduced by R. Blum, J. Kiefer and M. Rosenblatt in 1961 as
a distribution-free statistic to test for the independence of X and Y.

We shall show that, when evaluated according to a (suitably modified) set of criteria
introduced by A. Rényi in 1959, 1970, these measures possess many pleasant properties;
we shall compare and contrast these measures with various known measures of dependence;
and we shall present arguments which show that the functions C which appear in the
displays (4)-(10) are of intrinsic interest.

2. Copulas. The function C in Kruskal (1958) is a copula as defined by A. Sklar in
1959 and studied further in Schweizer and Sklar (1974). The copula concept is a convenient
hub for our investigations.

DEFINITION 1. A (two-dimensional) copula is a mapping C from the unit square
[0, 1] X [0, 1] onto the unit interval [0, 1] satisfying the conditions:

(a) C(u, 0) = C(0, u) =0and C(u, 1) = C(1, u) = u, for every u € [0, 1].

(b) C(us, v2) — C(uy, v2) — Cluz, v1) + C(uy, v1) Z 0, for all u,, us, vy, vz, € [0, 1] such
that u; = w, and v, = v.. It readily follows that any copula C satisfies the Lipschitz
condition
(14) [Clur, v1) — Clug, v2) | = fur — w2 | + |01 — V2|,
whence C is continuous, and that
(15) max(u + v —1,0) = C(u, v) = min(y, v),

for all u, v € [0, 1]. Moreover, max(u + v — 1, 0) and min(x, v) are themselves copulas.
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Note. In the sequel we will use the symbols C~, C°, C* to denote the copulas whose
values for any u, v in [0, 1] are given by max(z + v — 1, 0), uv, min(u, v), respectively.
The graph of any copula is a surface over the unit square which is bounded above by
the surface z = C*(u, v) and below by the surface z = C (i, v). The hyperbolic paraboloid
= yv sits midway between these two extreme surfaces.

The fundamental results in the theory of copulas are expressed by the following three
theorems. The first is due to A. Sklar, 1959, the second to M. Fréchet (1951, 1957, 1958).

THEOREM 1. Let X, Y be random variables with individual distributions F, G and
Jjoint distribution H. Then there exists a copula Cxy such that

(16) H(x, y) = Cxy(F(x), G(y)),

for all real x, y. If F and G are continuous then Cxy is unique; otherwise Cxy is uniquely
determined on (Range F') X (Range G).

Note. In this paper, in order to keep the main ideas in focus and for the sake of brevity,
we restrict our attention to continuous distributions F, G. Also, when there is no danger of
confusion, we write C instead of Cxy.

THEOREM 2. Let X, Y be random variables with continuous distributions F, G, joint
distribution H and (unique) copula C. Then

(i) X and Y are independent if and only if C = C°.

(i) Y = f(X) a.s., where f is strictly increasing (resp, decreasing) a.s. on the range of
X ifand only if C = C"* (resp, C = C™).

Note that if the distribution function of X is continuous and f is strictly monotone a.s.
on the range of X, then the distribution function of f(X) is also continuous.

THEOREM 3. Let X, Y, F, G, H and C be as in Theorem 2. Then

(i) If f and g are strictly increasing a.s. on Range X and Range Y, respectively, then
Crxyayy = C.

(ii) If f and g are strictly decreasing a.s. on Range X and Range Y, respectively, then
the copulas C,, C; and C; of the pairs (f(X), Y), (X, g(Y)) and (f(X), g(Y)), respectively,
are independent of the particular choices of f and g and are given by

Ci(u,v)=v—CQ1 —u,v),
(17) Cou,v) =u—C(u, 1 —v),
Ciu,v) =u+v—1+C1—u,1-0o).

(iii) C is the restriction to the unit square of the joint distribution function of the
probability transforms F(X) and G(Y).

(iv) If F\ and G: are any given continuous distributions then the random variables
F{'F(X) and G{'G(Y) have distributions F, and G, respectively, and copula C.

A proof of Theorem 1 is given in Schweizer and Sklar (1974) (see also Moore and Spruill
(1975) and Whitt (1976)). The proof of Theorem 2, modulo some readily supplied details,
is given in Frechét. The proofs of (i) and (ii) of Theorem 3 are a series of straightforward
verifications. To prove (iii), let Hrx)cv) be the joint distribution function of F(X) and
G(Y). Then using (16), the fact that F(X) and G(Y) are both uniformly distributed on
[0, 1], and (i) with f = F and g = G, we have

(18) Hixiav(s, t) = Crxiar(s, t) = C(s, t).

Finally, (iv) follows from (i) and a simple verification.
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Theorem 1 shows that a copula is a function which links a bivariate distribution to its
one-dimensional margins. Thus, since a copula is itself a continuous bivariate distribution
on the unit square, with uniform margins, (7) and (16) show that much of the study of
joint distributions can be reduced to the study of copulas. But for us the true importance
of copulas lies in a combination of Theorems 1 and 3. For, from the structure of (16) and
the fact that, under a.s. strictly increasing transformations of X and Y, the copula is
invariant while the margins may be changed at will, it follows that it is precisely the copula
which captures those properties of the joint distribution which are invariant under a.s.
strictly increasing transformations. Hence the study of rank statistics—insofar as it is the
study of properties invariant under such transformations—may be characterized as the
study of copulas and copula-invariant properties.

3. Rényi’s axioms. The following conditions form a reasonable set of disiderata for
a symmetric, nonparametric measure of dependence R(X, Y) for two continuously distrib-
uted random variables X and Y.

(A) R(X, Y) is defined for any X and Y.

(B) R(X,Y) =R(Y, X).

(C) 0=ERX,Y)=1

(D) R(X,Y)=0if and only if X and Y are independent.

(E) R(X, Y) = 1if and only if each of X, Y is a.s. a strictly monotone function of the
other.

(F) If f and g are strictly monotone a.s. on Range X and Range Y, respectively, then
R(f(X), g(Y))=R(X, Y).

(G) If the joint distribution of X and Y is bivariate normal, with correlation coefficient
r, then R(X, Y) is a strictly increasing function ¢ of | r|.

(H) If (X, Y) and (X, Y.), n =1, 2, --., are pairs of random variables with joint
distributions H and H,, respectively, and if the sequence {H,} converges weakly to H,
then lim,_.. R(X,, Y,) = R(X, Y).

Rényi’s original axioms, which were introduced in Rényi (1959) (see also Rényi (1970)),
differed from the above in that: (1) They were not restricted to continuously distributed
random variables; (2) (E) was “R(X, Y) = 1 if either X = f(Y) or Y = g(X) for some
Borel-measurable functions f and g”; (3) (F) was “If f and g are Borel-measurable, one-
one mappings of the real line into itself then R(f(X), g(Y)) = R(X, Y)”; (4) In (G),
R(X, Y) was required to be equal to | |; (5) (H) was not included. However, from the very
outset this original set of axioms left something to be desired. For Rényi himself showed
in 1959 that, among various well-known measures of dependence, the only one which
satisfies all of his axioms is the maximal correlation coefficient

(19) S(X, Y) = supy, r(f(X), g(Y)),

where the supremum is taken over all Borel functions f, g for which r(f(X), g(Y)) is
defined. And as Hall pointed out in 1969, S has a number of major drawbacks, e.g., it
equals 1 too often and is generally not effectively computable. In addition, in Schweizer
and Wolff (1976) and Wolff (1977) we have given several examples which indicate that, at
least for nonparametric measures, Rényi’s conditions are too strong.

4. The measures o, y and «.

THEOREM 4. Let X and Y be continuously distributed random variables with copula
C. Then the quantity (X, Y) given by (8) satisfies the conditions (A)-(H), with the
function ¢ in (G) given by

6
(20) ¢(Ir|)=;arc sin(|r|/2).
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Proor. It is clear from (8) that o(S, Y) is well-defined. Next, it follows from (7) that
Cxy(u, v) = Cyx(v, u) which yields (B). (C) follows from (8) and the readily established fact
that, for any copula C,

1 1
(21) J' j [Clu, v) — uv| du dv = Yo.
0 0

(D) follows from (i) of Theorem 2 and the continuity of C and C°. (E) follows from (ii) of
Theorem 2 and the fact that equality holds in (21) if and only if C= C* or C = C". As
regards (F), if both f and g are strictly increasing a.s., this is an immediate consequence of
(i) of Theorem 3; if f is strictly increasing a.s., and g strictly decreasing a.s. then (F) follows
from (i) and (ii) of Theorem 3, together with the observation that (Cyx«v, — C°)(u, v) =
C° — Cxy)(1 — u, v); similar arguments establish (F) in the remaining cases. Turning to
(G), (20) can be established by a series of routine calculations using, among other things,
Schlafli’s differential recursion relation for the bivariate normal density (see Slepian (1962),
page 482). However, it is more instructive to exploit the relationship of o to Spearman’s p
as evidenced by (5) and (8). To this end we first note that when the joint distribution of X
and Y is bivariate normal then C > C°, C = C° or C < C° according as r > 0,r =0 or r <
0. Thus, in this case, o(X, Y) = | p(X, Y) |. But it is well-known (Kruskal (1958), page 827)
that for the bivariate normal distribution

(22) o(X,Y) = g arc sin(r/2),

whence (20) follows. Lastly, if H, —w H then it follows from (7) that the corresponding
copulas C, converge pointwise to C. By the Lipschitz condition (14), any family of copulas
is equicontinuous, whence the convergence is uniform. This establishes (H) and completes
the proof.

Using completely analogous arguments, it is easy to show that the quantity y given by
(9), as well as all the other normalized L,-distances, 1 < p < =, satisfy the conditions (A)-
(H). However, the explicit form of the function ¢ in (G) remains to be determined.

The situation changes slightly when one considers the L.-distance k given by (10). The

above arguments show that « satisfies all of the conditions (A)-(H) with the sole exception
of (E). Furthermore, the function ¢ in (G) is given by
(23) ¢(}r})=7—27arcsin(|r|).
As regards (E), if either X or Y is a.s. a strictly monotone function of the other then
k(X, Y) = 1. However, since there exist copulas C, distinct from C* and C~, for which sup
|C — C°| = Y%, the converse is false. On the other hand, if (X, Y) = 1 then ¢(X, Y) =
3(In 2) — % = 0.58, and this inequality is best-possible (Wolff (1977)).

5. Comparisons and examples. It follows immediately from (5) and (8) that
[p(X,Y)|=0(X, Y) for any X, Y. The difference between o and | p | can be large—exactly
how large remains to be determined. For example, if X is the identity map on [0, 1] and Y
is defined by

w, 0= w=1%,
Yw) = {%—w, %<ws=1,
then o(X, Y) — | p(X, Y) | = 3(In 2) — % = 0.58 (Wolff (1977)).
It is easy to show that | p | satisfies the conditions (A)-(H), with the important exception
of (D). The same is true for | 7|, where 7 is given by (6). And | r| always satisfies (A), (B),
(C) and (G) but, as is well-known, satisfies (E) and (F) if and only if the functions f and g
are linear. It is also well-known that | r| fails to satisfy both (D) and (H).
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In the case of the bivariate normal distribution, ¢ is a strictly increasing function of | r|.
In general, however, there is no functional relationship whatever between these quantities.
Indeed, one can construct a sequence {(X,, Y,)} for which ¢(X,, Y,) = 1, for all n, whereas
lim,_... r(X,, Y.) = 0; but the limiting values, cannot be attained, for we have:

THEOREM 5. Let X, Y, F, G, H and C be as in Theorem 2. Suppose that o(X, Y) =1
and that r(X, Y) exists. Then |r(X,Y)| > 0.

ProoF. Since o(X, Y) satisfies (E) it follows from (ii) of Theorem 2 that C = C* or
C = C". Assume C = C*. Then H(s, t) = C*(F(s), G(t)) whence, using (1), we have

(24) EXY)—-EX)E(Y) = J’ J’ [CT(F(s)G(t)) — F(s)G(¢t)] ds dt.

Now C*(F(s), G(t)) = F(s)G(t) for all s, ¢, with strict inequality whenever 0 < F(s)G(t) <
1. Therefore, since F' and G are continuous, the integral in (24) is positive, whence r(X, Y)
> 0. By the same argument, r(X, Y) <Owhen C=C".

In a recent paper (1978) G. Kimeldorf and A. R. Sampson introduced a measure of
dependence, which we denote by », and which is obtained from (19) by restricting the
supremum to monotone functions f and g. As they show, v satisfies (A)-(D), (F) and (G),
but neither (E) nor (H). As regards (E), if either X or Y is a.s. a strictly monotone function
of the other then v(X, Y) = 1, but not conversely. Indeed, there are simple examples in
which v(X, Y) = 1 while all of the measures 6(X, Y), p(X, Y), (X, Y),y(X, Y) and r(X, Y)
are, simultaneously, arbitrarily small. In addition, » is generally difficult to compute. Thus
it appears that » suffers from many of the same defects as the maximal correlation
coefficient itself.

Recently, S. Kotz and N. L. Johnson (1977) compared o to €, the mean square
contingency, by evaluating both quantities when X and Y have Iterated Generalized Farlie
Gumbel Morgenstern Distributions. They found the expressions for ¢ (X, Y) to be uniformly
simpler than the ones for @(X, Y') whence, as they remark, comparisons of the dependence
properties of these IGFGM distributions are more clearcut when o is used.

We conclude this section with several examples.

ExaMPLE 1. Let the pair (X, Y) be uniformly distributed on the circumference of the
unit circle. As is well-known, X and Y are dependent, yet r(X, Y) = p(X, Y) =7(X, Y) =
0. In this case the measures 6(X, Y), (X, Y) and y(X, Y) are easily evaluated by using (iii)
of Theorem 3 and the fact that the pair of probability transforms (F(X), G(Y)) is uniformly
distributed on the diamond with vertices (%4, 0), (1, %), (%, 1), (0, *2). We find that (X, Y)
=xkX,Y)=vX,Y) =%

ExamPLE 2. Let X be the identity function on [0, 1}; let 0 = z = 1; let g be defined on
[0,1]by g(0) =g(1) =0,g(u) =u/z2forO<u=zandgu)=1-u)/(1—-2)forz<u<
1; and let Y = g(X). Then X and Y are uniformly distributed on [0, 1], whence C = H; and
routine calculations yield 6(X, Y) = 2(z — %)% + %, (X, Y) = |z — | + %, and y(X, Y)
=[3(z — %)* + %]"". In this example | (X, Y) | =|p(X, Y) | = 2|z — | while S(X, Y) is
identically 1.

ExaMPLE 3. Let X be the identity function on [0, 1] and let y = A(X), where A : [0, 1]
— [0, 1] is the piecewise linear function determined by A(j/2k) = j(mod 2), for j = 0,
1, ..+, 2k. In this case 0(X, Y) = k(X, Y) = y(X, Y) = '%k. This result is appealing in that,
for a given value of Y, there are 2%k equiprobable possible values of X. Here r(X, Y) =
o(X,Y)=7(X,Y)=0and S(X, Y)=1.

6. Concluding remarks. Throughout this paper we have restricted our discussion
to random variables with continuous distribution functions. The measures o, k, etc., can
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also be defined for random variables whose distribution functions are not continuous. In
this case, one can work with one of the nonunique copulas whose existence is guaranteed
by Theorem 1, with the “subcopula” which is uniquely determined on (Range F) X (Range
G) and which is given by (7), or with the representations (11), (13), etc. In each instance
natural measures of dependence can be defined.

Theorem 1 is also valid for n-dimensional distributions, n > 2 (Moore and Spruill (1975),
Sklar (1959, 1973) and Whitt (1976)). That is, for every such distribution there exists an n-
dimensional copula joining the distribution to its margins. Thus the definitions of our
various measures extend easily to any collection of n random variables. Here one can use
eitaer a single number to measure the collective dependence or, on taking all the marginal
distributions into account, a set of 2°~' numbers. Finally, upon letting n — o, the limiting
measure could serve to measure the collective dependence of a sequence of random
variables. Details are given in Wolff (1977) and will be presented in a subsequent paper.
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