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ADMISSIBILITY IN FINITE PROBLEMS'

By GLEN MEEDEN AND MALAY GHOSH

Iowa State University

Let X be a random variable which takes on only finitelv many values x
€ x with a finite family of possible distributions indexed by some parameter
0 € 0. Let IT = {m(.):x € x} be a family of possible distributions (termed
“inverse probability distributions”) on © depending on x € x. A theorem is
given to characterize the admissibility of a decision rule § which minimizes
the expected loss with respect to the distribution ,(-) for each x € x. The
theorem is partially extended to the case when the sample space and the
parameter space are not necessarily finite. Finally a notion of “admissible
consistency” is introduced and a necessary and sufficient condition for admis-
sible consistency is provided when the parameter spéce is finite, while the
sample space is countable.

1. Introduction. Let X be a random variable which takes on values in some finite
sample space x. Let {f;, § € ©®} be a family of possible probability functions for X where
0= {6, --., 0,}. Assume that for each x € x, f;.(x) > 0 for at least one 6; € ©. Consider
the decision problem specified by the decision space D and the nonnegative loss function
L,ie., ford € D and § € 0, L(f, d) denotes the nonnegative loss incurred in making the
decision d when @ is the true value of the parameter.

For each x € x, let 7.(-) denote a probability distribution on 0, i.e., 7.(f) = 0 for all §
€ 0 and Yyeco 7.(6) = 1. Following the terminology of Dawid and Stone (1972, 1973) a
family

(1.1) M= {m():x € x}

will be called a family of inverse probability distributions on ©. Further, such a family I1
is said to be ‘“Bayes” if there exists a probability distribution A on ® such that

(1.2) 7x(0) Yoco AO) fo(x) = A(0) fy(x)

for all 8 € ©, x € x i.e, 7.(.) is essentially a posterior distribution with respect to some
prior A for each x € x. A decision function § is said to be “optimal” with respect to the
family IT if for each x, 8(x) minimizes the expected loss with respect to the distribution
7.(+). In the more common terminology such a decision rule 8 is a Bayes decision rule with
respect to the prior A when 7.(-) is a bonafide posterior distribution for each x € .

In this note we study the problem of determining when an optimal decision function
with respect to a family IT is admissible. It is well known that if I1 is Bayes with respect to
a prior A which puts positive mass on each point of ©, then the corresponding optimal
decision function is admissible. In Section 2 we assume that D and L are such that

¥\ L(6:, d)\; is minimized uniquely with respect to d for any distribution A = (A, - -,
Ax) on © where A; denotes the probability assigned to 8; by the distribution A. Theorem 1
of Section 2 shows that the family IT yields an admissible decision function if and only if
I1 is Bayes with respect to a set of mutually singular prior distributions. This notion will
be made precise in Section 2. The result is essentially contained in the Theorem 2 and
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Example 4 of Hsuan (1979) where a stepwise Bayesian procedure for obtaining admissible
rules is introduced.

Suppose now that it is required that IT yields an admissible decision function for any
decision problem based on x, © and {f;, § € ©} and not just the one satisfying the
conditions of the previous paragraph. A family IT with this property is said to be “admissible
consistent”. This extends the notion of “expectation consistency” for a family I'T which was
introduced by Dawid and Stone (1972, 1973). Theorem 2 in Section 3 shows a family IT is
admissible consistent if and only if it is Bayes against a prior which puts positive mass on
each point of the parameter space. The relationship between Theorems 1 and 2 is also
pointed out in this section. Finally, in Section 4, Theorem 3 extends the sufficiency part of
Theorem 1 to cases where x and © are arbitrary.

2. A characterization of admissible decision rules. Let A = (A, ---, A;) denote
a prior distribution on ® with support ®(A) = {6;: \; > 0}. Two prior distributions A and
A" are said to be singular if ®(A\) n ©(\") = ¢. Theorem 1 characterizes the families of
inverse probability distributions which lead to admissible optimal decision functions. Let
g(x; A) = Y¥., f, (x)A; denote the marginal probability function of X under A.

THEOREM 1. For the decision problem specified by the decision space D and loss
function L(., -) assume that for each prior distribution X\, Yt_. L(6;, d)\; is minimized
uniquely with respect to d. Let T1 be a family of inverse probability distributions and let
8 be optimal against 11.

If 8 is admissible, then there exists a nonempty set of mutually singular prior
distributions \' = (A}, - << A}L), -« <, N = (AT, -+, A}) such that

() if *A' = {x:g(x; ') > 0}, and for i = 2, ---, n, *A' = {x:g(x; \') > 0 and
x & U I *AYY, then each *A' is nonempty and U'—; *A' = x;

(i) if x € *A, then

7(0) g(x; \) = fy(x)N'(6) for all § € O, i=1-.-, n

Conversely, if for a given family 11 of inverse probability distributions there exists a
set of mutually singular prior distributions \', - .., A" satisfying (i) and (ii), then 8 the
optimal decision function with respect to Il is admissible.

Theorem 1 essentially says that a family of inverse probability distributions leads to an
admissible rule if and only if it is Bayes with respect to several singular priors, since by (ii)
of the theorem for x € *A’, 8(x) is the unique value of d minimizing

Yozons L6, d) f(x)N'(6)/g(x; \').

It should be noted that the order in which the A”’s appear is important in the construction
of *A', ..., *A". A different ordering of the A\"’s may result in a different set of *A"s.

As an example suppose x = {0, 1, 2} and © = {#,, 6,, 65} with §, < 6, < 6;. Let f;, (x) =
lor0asx=0orx0.Let fy(x) = % for all x and let £, (0) = 0 and f, (x) = !4 for x # 0.
First consider the problem of estimating § when D is the closed interval [6;, 6;] and the
loss is squared error. The family of priors A’ = (1, 0, 0) and A* = (0, %, '4) yields the family
of inverse probability functions [14(6,) = 1 and I1y(4;) = 0 for i = 2 and 3, I1,(6,) = I1:(6-)
= %, [11(05) = 11.(63) = % and I1;(6:) = I[1.(6;) = 0. The optimal estimator §(0) = 6, §(1)
= §(2) = (26, + 36,)/5 against this family is admissible by Theorem 1. Now consider the
decision problem with D = {d, d.} and the loss function L(-, -) given by L(6,, d;) = 1 for
i=1,2,L(#:,d:) = L(#s,d) =0and L(#.,d,) =1/L(65, d-) = 10. It is easily checked that
§i(x) = d, or d; as x = 0 or x 5 0 is an optimal decision rule against A' and A% This rule is
not admissible, however, since it is dominated by the decision rule 8:(x) = d. for all x. Note
that D and L(-, -) do not satisfy the conditions of Theorem 1. Thus it is of interest to find
when a family of inverse probability distributions yields optimal decision functions that
are admissible for any decision problem whatsoever. This problem is discussed in Section
3.

This theorem was first suggested to the authors by some remarks of Johnson (1971).
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The proof of the theorem is omitted because the theorem is essentially equivalent to
Theorem 2 and the related discussion in Hsuan (1979) (see also Wald and Wolfowitz
(1951), and Brown (1979)). The theorem can be reformulated to show that for this finite
decision problem a decision function is admissible if and only if it is Bayes against a set of
mutually orthogonal priors. The authors have used this technique in proving the admis-
sibility and inadmissibility of various estimators in finite population sampling (see Meeden
and Ghosh (1980), and Ghosh and Meeden (1980)). Also, the theorem can be extended to
the case of a countable sample space x(® being still finite) provided it is assumed that
each admissible decision function has finite risk for each § € ©. However, we have
extended, in Section 4, the sufficiency part of Theorem 1 for arbitrary x and arbitrary ©
under the assumption of finite Bayes risks of the “optimal” decision rules with respect to
an ordered set of singular priors.

3. Admissible consistency and a characterization of inverse probability dis-
tributions. In this section we assume that x is countable, while O is still finite. Suppose
now that x, ® and {f;, § € ©} are given and fixed. Let I1 be a family of inverse probability
distributions. We are interested in determining whether for each decision problem based
on x, © and (fs, 6 € ©} the corresponding optimal decision rule based on IT is admissible.

We need to introduce a few concepts before proving the main result. Let L(6, §(x))
denote the loss incurred by using a decision rule § when § is the true parameter value and
x is the sample value. Suppose there exists a decision rule &, such that for the family IT
= {m(-):x € x}

Zae@ L(6, 8¢(x))m.(8) = inf; Zﬂee L8, 8(x))m(8),
for each x € x. Then for any decision rule 4,
(3.1) E,[L( 8,(x) — L@, 8(x)]=0,

for each x, where § is a random variable assuming values 8 in ©. Does (3.1) imply that 8
is admissible, that is does there exist any & such that

(3.2) Eo[L(6, 80(X)) — L4, 8(X))]= 0,

for all § € O with strict inequality for some § € ©?
With this in mind, we introduce the notion of admissible consistency. First let

(3.3) 46, x) = L(6, 8(x)) = L(8, 8(x)) — E.,[L@, 8:(x) ~ LE,5(x)],
for each § € ©® and x € x. If (3.1) and (3.2) both hold, then for each x

(3.4) E, t@ x) =0,

while

(3.5) Ezt(6, X) = 0,

for all § € © with strict inequality for some § € ©. Conversely, given any function #(6, x)
satisfying (3.4) one can construct loss functions L(6, d) and decision rules § and &, such
that ¢(6, x) = L(8, 8o(x)) — L(8, 8(x)). We are now in a position to give a formal definition
of “admissible consistency.”

DEFINITION. Il is said to be admissible inconsistent with fif there exists a ¢ such that
(3.4) and (3.5) hold. Otherwise, IT is said to be admissible consistent with f.

Dawid and Stone (1972, 1973) have considered this situation when O is infinite and
have defined the notion of expectation inconsistency for II. When O is finite, II is
expectation inconsistent with f if there exists a ¢ satisfying (3.4) and (3.5) with strict
inequality in (3.5) for all § € ©. (Actually Dawid and Stone have used utility rather than
loss. But since utility can be interpreted as negative loss the two approaches are equivalent.)



ADMISSIBILITY IN FINITE PROBLEMS 849

They have shown that if IT is Bayes then it is expectation consistent with f. Conversely, if
Il is expectation consistent with f, under very mild additional conditions it is Bayes. It is
clear from the definition that admissible consistency implies expectation consistency.
Note, however, that the Bayesness of I does not imply admissible consistency. The
following simple example illustrates this.
Let x = (x1, x2, x3), @ = {8, 62, O3}; fo,(x1) = Y5 =1~ fy(x2), fuo,(x1) = % = 1 = f,(x2),
fo,(x3) = 1, A(61) = % = A(f:). Then,

(3.6) T () = Y3 =1 — 7, (62), 7,(01) = Y11 = 1 — 7,,(62).

Also, 7,,(6;)’s can be arbitrarily defined as long as they are nonnegative and Z}Ll x,(0))
= 1. Take for example 7, (6,) = %, 7. (62) = %, 7, (65) = %2 Now define ¢(6;, x;) = 0 (¢, j
=1, 2), t(fs, x;)(j = 1, 2) arbitrary real numbers, (4, x3) = — %, t(f, x3) = —Y%, and

t(8;, x3) = 1. Then, one can easily verify that
E,\’t(gﬁ, x,) = O (l +, 2, 3), Eelt(gx, X) = Egzt(az, X) = 0, Eg.lt(e;g, X) = 1

We now prove a theorem which shows that admissible consistency is equivalent tc the
Bayesness of the inverse probability distributions with respect to a “full” prior (i.e., a prior
which puts positive mass on each point in the parameter space). It will be revealed in the
proof that this theorem is in the spirit of Theorem 1 in Section 2. Recall the notations and
definitions of Theorem 1.

THEOREM 2. IfIlis a family of inverse probability distributions which is admissible
consistent with f, then there exists a prior distribution N which puts positive mass on
each parameter point and against which Il is Bayes. Conversely, if a family 11 of inverse
probability distributions is Bayes against a prior which puts positive mass on each
parameter point, then Il is admissible consistent with f.

ProoF. Suppose II is admissible consistent with f. Then, proceed as in Lemma 1 of
Dawid and Stone (1972) to get a prior A' on © and a y;: x — [0, %) such that
(3.7) 7 (0)11(x) = fo(XN' ().

For x € A' = {x: g(x;A') > 0), using Y. (f) = 1, we find y:(x) = g(x; A') > 0 and (3.7) can
be rewritten as

(3.8) 7(0)g(x; N') = fy(x)A}(6)

Now if ®(\') = O the proof is complete since A = A'. So we suppose that O(\') # ©.
We first note that

ifxeA' and 6 O(\') thenn () =0
(3.9) and
ifx¢éA' and 6 € OQA') then . () =0.

The first equation of (3.9) follows from (3.8). To prove the second, it is enough to show
that one cannot simultaneously have both f (xo) = 0 and 7, (6o) > 0. Now if this were true
we could define #(6, x) = 0 for x # xy, = 7 (6o) for x = xo and 8 # 6y, = 7 (6y) — 1 for x
= xo and @ = 6,. Then ¢ satisfies (3.4) and

Ey[t(6,X)] =0 for 4 = 6,
= fo(x0)7x,(60) for 6 # 6,.

Since the family IT is admissible consistent, we must have f;(xo) = 0, for all §, which has
been excluded by assumption—a contradiction.
We now show that

for6 € ®©(\'), if fy(x) >0 then xe& Al
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(3.10) and
ford € O(A') if f,(x) >0 then x¢& Al

The first equation follows immediately from the definition of A'. To prove the second,
suppose that for some xo € A' and 6, & ©(\') that f;, (x0) > 0. By taking #(6,, xo) > 0 and
t(d, x) = 0 otherwise, it follows from (3.8) that the family IT is admissible inconsistent,
which is a contradiction. Note that from (3.9) and (3.10), (3.8) must be true from all § and
all x. We see from the second equation of (3.10) that x — A’ is nonempty since ® — &(\")
is nonempty.

We now consider the restricted problem where x € x — A' and § € ® — O(\'). From
(3.10) we see that for § € ® — ©(\'), fs(-) is a bonafide probability function for the
restricted problem. Similarly from (3.9) we see that from x € x — A', 7.(+) is an inverse
probability distribution for this restricted problem. If {7, x € x — A'} is admissible
inconsistent with f for the restricted problem, then there exists a ¢* defined on (x — A')
X {® — ®(A")) such that

*(f — _ Al
and E.t*(6,x) =0 foralx e x — A
E)*6,X)=0 foralld € © — O(\'),
with strict inequality for some 6. Defining
t@, x)=t*0,x) for6c®—-0O(\') and x€x—A'
=0, otherwise,

it follows that IT is admissible inconsistent with f for the original problem. Hence, similar
to the first part of the proof there exist A*(d) and yz(x) such that

{3.11) 7 (0)y2(x) = fo(x)A*(8) forx€x—A' and €O —OM\").

For x € A = {x: g(x; A%) > 0} we see that y2(x) = g(x; A*) > 0 since Yy7.(d) = 1 and
equation (3.11) becomes

(3.12) 7.(0) g(x; A%) = fo(x)A*()

for x € A%

Now it is easily seen that the equations in (3.9) and (3.10) are true when A' and A' are
replaced by A\* and A% Hence, (3.12) is true for all x and all 6.

We now let \* = ()N + (%£)A% We see that O©(A*) = O(\') u O(A\? and A = {x:
g(x; A*) > 0} = A’ u A% Now if ©@(A\*) = O the proof is complete. Since (3.8) holds for all
x when A\” is replaced by A*, we can take A = A*. If ©(A\*) 5 © then the equations in (3.9)
and (3.10) hold for A* and A and we consider the restricted problem when x € x — A and
8 € ® — O(A\*). Since O is finite the proof is complete by induction. As noted in the
introduction, the converse is well known, and so the theorem is proved.

Even though the statement of Theorem 2 involves just one prior, it is very similar in
spirit to Theorem 1 as the proof demonstrates. Let A', ..., A" and *A', ..., *A" be as in
Theorem 1. Let A= {x: g(x: \') >0} fori =1, - - -, n. Now if it happens that A’ = *A’ for
i=1,-.-,nand U/, ®(\') = O then each pair (A, ®(\')) can be regarded as the sample
space and parameter space of an isolated restricted problem, and the overall solution can
be found by analyzing each restricted problem separately. In this case in Theorem 1 the
order of the A”s is not important. In Theorem 2, we can take A to be any convex
combination of the A"’s which puts positive weight on each A’ fori =1, ..., n.

4. Admissibility when the parameter space is not necessarily finite. Consider
now the situation when the sample space x and the parameter space © are arbitrary. For
each 6 let f,(-) be a discrete probability function over x. It is assumed that for each x €
X, fo(x) > 0 for at least one § € ©. Let A be a discrete prior distribution on © putting mass
on at most a countable number of points. For any such prior A, let ®(A\) = {§ € ©:
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A(6) > 0}. The definition of singularity of two priors A and A’ is the same as in Section 2.
Also, the marginal distribution of X is denoted by g(x; A) with respect to the prior A. The
sufficiency part of Theorem 1 can now be extended as follows.

THEOREM 3. Let I1 = {7.(-): x € x} be a family of inverse probability distributions.
Consider the decision problem specified by the decision space D and loss function
L(-, -). Suppose there exists a nonempty set S = {A\*: a € I} of mutually singular prior
distributions where I is a well ordered set with smallest element «a(1) such that

(1) if *AY = {x: g(x; A*Y) > 0} and *A* = {x: g(x; \*) >0 and x € U, <, *A*)} for all
«a > «(l), then each *A" is nonempty and U,e; *A" = x;

(ii) if x € *A°, then

7. (0)g(x; AY) = fo(x)A*(0) for all § € ©

If, (a) if for each x € *A*, 8°(x) uniquely minimizes Ypeo L(6, d)m.(0) with respect to d,
and (b) Ysconn Yretar LB, 8°(x)) fo(x)A*(6)/b°(0) < oo, where b*(0) = Y. c-ra fy(x), § €
O(A"), then the estimator § given by §(x) = §°(x) for x € *A° is admissible.

PROOF. Suppose not, then there exists some decision rule §* such that
(4.1) EyL(6, §*(X)) < E,L(8, 6(X))

for all § € © with strict inequality for some § € ©. Now consider the restricted problem
with x restricted to * A" and 6 restricted to ® (\*?"). In view of (ii), (a) and (b), 8 restricted
to *A' is the unique “optimal” decision rule for the problem. So, & (x) = 6&(x) for
x € *A“" and equality holds in (4.1) for all § € ©(A°").

Assume now that §*(x) = §(x) for all x € U,, *A” where a is a member of I. Consider
now the restricted problem where x is restricted to the set *A* and 6 is restricted to the set
©(A°) and for 8 € O(A\*), f§(x) = fy(x)/b°(#) is the probability function. In view of (ii), (a)
and (b), 8 restricted to *A“ is the unique optimal decision rule for the restricted problem
and hence §*(x) = 8(x) for x € *A* as well. Applying the principle of transfinite induction
we have §*(x) = 8(x) for all x € X; hence there is equality in (4.1) for all , which is a
contradiction. This completes the proof.

Next we consider an application of this theorem in the discrete uniform model where
the probability function of X is given by

(4.2) fox) = Py(X=x) =67, x=12-..,6;

= {1, 2, ---} = x. In this case Blyth (1974) has proved the admissibility of X as an
estimator of # under squared error loss by using a Cramér-Rao type inequality. An alternate
way to prove this result would be to use our Theorem 3 with the priors Ay putting unit
massatf,6=1,2, ...

Note that the unique minimum variance unbiased estimator (UMVUE) of 6 in this case
is 2X — 1. It can be verified by direct computations that this estimator can be represented
as the posterior mean with respect to the prior A’ with A'(1) = 1 when x = 1, and with
respect to prior A>(8) = 4/[3(6° — 1)],0=2,3, --- when x =2, 3, - - .. Note that A\ and A\*
are mutually singular. However, since the posterior risk of every estimator under A*(6) and
squared error loss is infinite, (a) is not satisfied, and Theorem 3 cannot be used to prove
the admissibility of 2X — 1. In fact, in this case one can directly verify that X dominates 2X
— 1 under the squared error loss.

Now, under the model (4.2), for every function y(6) of §, the UMVUE of y(8) is given by
£(X) where

(4.3) g(x) = xy(x) — (x = Dy(x — 1), x=12---,
where y(0) can be arbitrarily defined. For § = 2 let
q(0;v) = {6 = D(v(O) —v(@ =)} = {(@+ Dy + 1) — ()}
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and suppose g(8; y) > 0 for § = 2 and Y5-2 q(6; y) < . If A' and A* are the mutually
singular priors given by

(4.4) A1) =1 and A4(6) o< q(6; v) for 6= 2,

then g(x) is the posterior mean of v(#) with respect to the mutually singular priors A' and
A for x = 1 and x = 1 respectively. However, as already noted, in many of these cases
Theorem 3 is not applicable when the loss function is L(6, d) = (d — v(#))~

We consider below one example where Theorem 3 can be applied to prove the
admissibility of g(x) = x** — (x — 1)** in estimating y(#) = §'/* with squared error loss. In
this case

(4.5) Ewg*(X) = Ey(X?) + Eo(X — 1)° — 2E,(X**(X — 1)**).
Using the inequality x*2(x — 1) = x® — (%)x2forall x = 2, 3, - - - it follows from (4.5) that
(4.6) Eg(X) <3E;(X) = (%)@ +1) <30 forall §=23, ...

Hence, the Bayes risk of g(X) against the prior \* is

\ } 1 ~ 1
e =3, {w N S Vi R (e e 03/?)}

4.7) —3y= 6{(6+ 1) + (6 — 1)** — 26%%)
. - =2 (02 — 1)03(1 — (1 — 0—1)3/2)((1 + 0—1)3/2 RN

97%15/46%*(1 + 0(67?))

2 _ 3 i -2 _3:_
6 1)6 <20+O(0 ))(20>

where C is some constant not depending on 6. Thus applying our Theorem 3, admissibility
of g in estimating y(6) = 8'/* follows.

=3%, =CYy 07 <o,
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